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Course Overview

This course aims to provide the student with the skills required to program in
assembly language. The 386 processor has been chosen because it is common
and commercially relevant. Although this course will concentrate on the 386
processor, many of the skills acquired will have wider application.

The course will cover the following major topics:

e 386 architecture

Instructions

Integers
— Register Set
— Memory Organization

— Memory Hierarchy

e Flow Charts and Pseudo Code

High and Low Level Concepts
— Flow Chart Elements

Pseudo Code Elements

Top Down Approach

— Documentation
e Basic Operations

— Arithmetic
— Jumps

— Alternation



Course Overview

e Control Structures

Pre-Test Loops

— Post-Test Loops

— If-Then

— If-Then-Else

— If-Then-Elself-Else
— Switch

e Subroutines (introduction)
— Call and Return
e Addressing Techniques

— Indexing
— Indirection

— Pointers
e Subroutines (advanced)

— Pass by Register
— Pass by Stack

— Pass by Reference
— Pass by Value

— Returning Results

Stack Frames

e Data Structures

— Vectors

— Arrays

Records

Dope Vectors
— Trees

e Block Structured Languages

— Scope

— Implementation



The course assumes a familiarity with at least one high level language. The
majority of the examples using high level languages are written in the ‘C’ pro-
gramming language. When ‘C’ does not have an appropriate language concept
then the Pascal language will be used.
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Introduction

A knowledge of assembly language programming is useful in many areas of com-
puter science. Key among these areas are program optimization both at the user
and compiler levels, code generation for compilers, and interfacing hardware.

A processor executes ‘machine code’. Assembly language has a one-to-one
mapping between its instructions and machine code instructions.

Although it is likely that many students will not be writing compilers or device
drivers, all programmers should have an interest in the efficiency of the code they
write. An understanding of the low level implementation of the code written in
a high level language assists the design of programs in high level languages when
speed is required.

With the improvement of compiler technology it is no longer necessary to
write routines in assembly language to obtain good performance. However, it is
still possible to replace critical routines in a program with carefully constructed
assembly language programs to give peak performance. Typically these assembly
language routines will reflect some additional knowledge about the problem that
cannot be made available to the compiler.
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Chapter 1

Processor Architecture

The Intel 386 and 486 processors are closely related. The 486 includes an internal
cache, a few additional instructions, and a floating point unit. The differences
between the processors mainly concern the systems programmer as the most
significant differences relate to cache management and bus locking.

1.1 Instructions

Assembler instruction sets may be divided into categories by varying criteria.
Typically the divisions are based on the type of operation, privilege levels, and
the type of arguments.

Some of the types of operations are:

Flow of Control Instructions that may cause a change in the order of execution
of instructions in a program. For example: Jumps, Conditional Jumps, and
Subroutine Calls

Integer Instructions which manipulate integers. For example: arithmetic in-
structions and logical instructions on integers.

Floating Point Instructions that manipulate floating point values. For exam-
ple: arithmetic instructions and logical instructions on floats.

Input Output Instructions that manipulate the IO address space.

String Operate on variable length vectors of similar items. For example: Mem-
ory Copying, and String Compares.

11
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Divided by privilege:

Non-Privileged: Non-Privileged instructions may be executed by any process.
Typically this group of instructions include arithmetic, logical, and most
flow of control instructions.

Privileged: Privileged instructions must be executed by processes running at
an appropriate privilege level and may include input output instructions,
instructions which alter the privilege level, and instructions related to ex-
ternal events (eg. interrupts).

Using argument types:

Memory to Memory: Operations which take an argument from memory, trans-
form it, and record the result in memory.

Memory to Register: Operations which take an argument from memory, trans-
form it, and record the result in a processor register.

Register to Memory: Operations which take an argument from a processor
register, transform it, and record the result in memory.

Register to Register: Operations which take an argument from a processor
register, transform it, and record the result in a processor register.

and in a segmented architecture:

Single Segment: For arithmetic or logical instructions: Instructions which take
data from one segment, and transform it. The result may either be left in a
register or the result may be written into the same segment as the source.

For instructions which control the order of execution of a program: Instructions
which may cause control to be transferred to code in the same segment.

Multi Segment: Instructions that either transfer data between segments, or
may cause code to be executed in another segment.

The 386/486 has a segmented architecture which supports the majority of
the classes of instructions described above. A key feature of the architecture of
the 386/486 is that, except for string instructions, the 386/486 does not support
memory to memory operations. This implies that moving data from one
location to another typically involves a memory to register move followed by a
register to memory move. Although this may seem to be inefficient, but it can
be easily shown that there are few occasions where the optimal coding of an
algorithm includes memory to memory operations. Typically the result of an
operation is used in the next phase of the program, in addition to being stored
in memory. By retaining the result in a register the result is readily available for
subsequent operations.
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1.2 Integers

The 386/486 supports 3 sizes of integers: 8 bits, 16 bits and 32 bits. The GNU
As assembler defines the sizes as byte (8 bits), word or short (16 bit), and int or
long (32 bit).

The 386/486 uses a little endian encoding of its integers. In a little endian
system the low order byte is stored at the low address in memory. A big endian
system stores the high order bits at the low address. (figure 1.1)

The hexadecimal number 5A4B3C2D may be represented in a computer’s memory
in two ways:
Little Endian:

m+3 m+2 m+1 m
5A 4B 3C 2D

Big Endian:

m+3 m+2 m+1 m
2D 3C 4B HA

Figure 1.1: Big and Little Endian Numbers

The size of the operand of an instruction is determined by appending either
a ‘b’ (8 bit), ‘w’ (16 bit), or an ‘I’ (32 bit) to the mnemonic.

The GNU As assembler uses the conventions of the ‘C’ programming language
to represent numbers. Hexadecimal numbers are prefaced by 0x, octal values by
0 and decimals begin with any digit other than zero.

1.3 Registers

The 386/486 is unusual among the current generation of microprocessors as it
is not a general register processor. Specific registers on the 486 are dedicated
to performing specific functions. This is unusual as it increases the difficulty in
optimizing code, often requiring that information be shuffled between registers
or out to memory before performing an operation.

The term ‘general register’ has several meanings. When this term is applied
to the 386/486 it is taken to mean one of the set of registers %eax, %ebx, %ecx,
and %edx. In wider usage ‘general register’ implies that the processor does not
have registers tied to specific functions. However, the registers on a 386/486 are
assigned specific functions for given operations, implying that the 386/486 is not
a ‘general register processor’.
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The register set of the 386/486 may be accessed in 8 bit, 16 bit and 32 bit
size units. The names of the major units and an example of deriving the subunits
names are shown in figure 1.2.

The registers are named according to function. The general registers are %eax,
%ebx, %ecx, and %edx. They are known respectively as the accumulator, base
register, count register and data register. The index registers %esi and %edi are
known as the source index register and the destination index register. The pointer
registers %ebp and %esp are called the base pointer and the stack pointer. The
segment registers %cs, %ds, %es, %ss, are known as the code segment register,
the data segment register, the extra segment register, and the stack segment
register. The two additional segment registers %fs and %gs are not named.

Although specific functions are assigned to the general registers and the in-
dexes for a few functions, for other operations they may be used interchangeably.

In addition to these registers the 386/486 has a flag register. This register
contains a set of bits which are set according to changes in the state of the
processor, and arithmetic operations.

The flag register known as eflags and the meanings of its bits are illustrated
in figure 1.3.

1.4 Memory Organization

Each address in the 386/486 consists of 2 parts: segment and offset. The segment
component of the address is loaded into a segment register, and instructions either
explicitly mention a segment register, or implicitly use a segment register when
accessing memory. The offset component specifies the distance into the segment
of the memory location that is to be referenced. Figure 1.4 shows the most
general representation of segmentation.

A segment is a contiguous region in memory. Segments may be disjoint or
overlap other segments. In addition a segment may be a subset or superset of
other segments. A segment is defined by a base, an extent and a set of rights
that users of the segment may exercise.

For simplicity the examples and exercises given in this course will be con-
ducted in ‘32 bit flat mode’. This is the Intel terminology for a 386/486 processor
where all the segment registers have been loaded with descriptors for the com-
plete logical address space of the system. The programmer perceives the memory
as a 4 Gigabyte contiguous array of bytes. Offsets, relative to any segment, map
to the same location and value in memory. Offsets, in this mode, are equivalent
to the absolute addresses.
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31 0
Gpeax | [
W
%ah  %al
—_—
R %azx B

%‘erax
Toebx | | [ ]
%ecx ‘ | | ‘
Gedx | | [ ]
%esi | | |
S —
R %si B

%‘ersi
%edi ‘ ‘
Y%oesp | | |
Y%ebp | | |
%cs ]

%
©0CS

%ds ]
%res [ ]
%oss [ ]
% [ ]
%ogs [ ]

Figure 1.2: The 386/486 register set
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31 0

1000 0 s S o s s ) s A s Y 5

AC Alignment Check
VM Virtual 8086 Mode
RF Resume Flag

NT Nested Task Flag
IOPL I/0O Privilege Level
OF Overflow Flag

DF Direction Flag

IF Interrupt Enable Flag
TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Carry Flag
PF Parity Flag

CF Carry Flag

Figure 1.3: The EFLAGS register
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—————————————

_____________

Segment 3

Segment 2

Segment 1

Figure 1.4: Segmentation

17



18 CHAPTER 1. PROCESSOR ARCHITECTURE

1.5 Memory Hierarchy

For the application programmer using an assembler there exists a two stage mem-
ory hierarchy: Registers and Main Memory. Access to registers is significantly
faster than access to main memory. However, there are a strictly limited number
of registers available to the programmer. By storing frequently used values in
registers a program’s execution time may be reduced significantly.



Chapter 2

Representation and Organization

A computer program is a specific representation of an algorithm written in a
programming language. The abstraction - algorithm - may be expressed in many
ways. Two will be considered in this chapter: Flow Charts and Pseudo Code.
The balance of the chapter will be devoted to describing the structure of programs
and documentation.

2.1 Representation

2.1.1 Flow Charts

The flow chart is a method of pictorially representing an algorithm. It represents
the ‘flow of execution’ or the ‘sequence of operations’ in a codified form. The
basic elements of a flow chart are shown in figure 2.1. Arrow heads are used to
represent the path through the chart, however, in the absence of arrows, it is
assumed that vertical lines are traversed in the downward direction.

In recent years the flow chart has come to be regarded as a poor method of
representing algorithms. Some of the reasons for this are:

e A flow chart can become too complex to be easily interpreted.

e A flow chart does not clearly distinguish between the structural elements
of a high level language. (do loops, while loops, for loops, and conditionals
are all represented by the same construct in a flow chart)

e The majority of programmers no longer work in assembler.

For the assembly language programmer the majority of these reasons are not
valid. The complexity of a flow chart can be managed by the person drawing
the flow chart. Problems can be broken down into independent subsections of
manageable size, flow charts can be drawn for these parts and a flow chart can be
drawn to show how the subsections should be executed. The majority of assembly

19
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Process

Input/Output

Decision

Q Connector

Figure 2.1: The elements of a flow chart

languages support only the structural elements that may be represented easily in
a flow chart.

2.1.2 Pseudo Code

Pseudo code is a form of structured English used to represent algorithms. Key-
words are used with descriptions of actions and conditions to form a representa-
tion of an algorithm. Pseudo code is more efficient for representing algorithms
than English alone, as the narrative description is too verbose, and often ambigu-
ous.
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The keywords used in Pseudo Code are typically:
e start ... stop
e if ... then ... else
e repeat ... until
e while ... do

Indentation is used to group operations, and comments are enclosed by ‘{’
and ‘}’.

2.2 Program Structure

An algorithm in its most abstract form describes the steps in performing an
operation without being concerned with the detail of a particular implementation.
This is a high level view of a problem. A low level view consists of the details
required for a specific implementation. Assembly language programming consists
of implementing high level concepts in a low level representation. To assist in
this process a Top Down Approach may be taken.

Assembly language programming requires strict attention to the structuring
of programs. If the structure of programs is ignored then maintenance and de-
bugging are made more complex. In addition, the readability of the program
code is reduced.

2.2.1 The Top Down Approach

The top down approach consists of breaking a problem up into parts. The parts
are broken up into smaller components until a sufficiently simple task is found,
such that it can be implemented in a straight forward manner in the application
language. This approach is also known as Stepwise Refinement.

The advantages of this approach are that it allows the programmer to solve
manageable problems and then connect these solutions to solve a larger problem.
If a fault is discovered in one of the components of the solution then only a
subset of the components of the program needs to be examined and corrected. In
addition if another programmer needs to modify the existing code then he/she
need only understand the abstract meanings of the lower level modules, so that
they can give attention to the area requiring modification without requiring full
understanding of the details of the complete program.
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2.3 Documentation

Programs are documented both internally and externally. Internal documentation
consists of comments in the program code. A comment describes the purpose
of a piece of code with relation to the problem, not what the code does at a low
level. For example the comment “adds one to register EAX” is considerably less
useful than the comment “setup to examine next array element” although they
both describe the line of code:

addl $1, %eax

The C commenting style /* ... */ is used in GNU as.

External documentation consists of a description of how the program works
in abstract terms (an algorithm), notes about any short comings or limitations
of the program, and details of unusual or in-obvious features of the code.

Both internal and external documentation are required to fully document a
program. In assembly language programming, good documentation practices are
required as, often, the structure and meaning of a piece of code cannot be easily
determined from the code itself.



Chapter 3

Basic Operations

Imperative programming languages support several fundamental classes of opera-
tions. This chapter discusses a subset of the operations available on the 386/486
divided into four classes: assignment, arithmetic, jumps and alternation. The
definitions of the four classes are:

Assignment - Storing values.
Arithmetic - Operations on numbers.

Jumps - Causing the executing of an instruction other than the instruction
immediately following the current instruction.

Alternation - Causing the executing of an instruction other than the instruction
immediately following the current instruction based on some condition.

However, before discussing the basic operations, the concepts of values and
addresses are introduced and the syntax for the GNU As assembler for simple
accesses to memory is covered. The concepts of indexing and indirection will be
dealt with in chapter 6.

3.1 Basic Memory Access

A colorful metaphor used for the memory of a computer is a bank of pigeonholes
where letters are placed for collection by guests at a hotel. Each pigeonhole has
a room number on it to uniquely identify it to the clerk at the desk, and it has
space for only one message.

Using this metaphor, the address of a memory location is the room number.
The address is unique in the computer. The contents of a memory location or its
value, is the message contained within the pigeonhole. As only one message can
fit at a time, a new message must displace any message that is already there.

23
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The metaphor can be further extended if the clerk is allowed to write, next
to the room number on the pigeonholes a number of names. This is similar to
the concept of labels. Hence Mr Smith can get his message, by saying ‘I am Mr
Smith may I have my message please’ or ‘The message for room 101 please’.

An example of a short assembly language program:

start:
movl d1, %eax /* Get the data value */
addl d2, Y%eax /* Add the value of data2 to datal */
addl $2, Y%eax /* Add 2 to the sum */
movl %eax, 100 /* Store the result at location 100 */
jmp exit

si:

di: .long 4

d2: .long 5

This short assembly language program illustrates the concepts of using and
declaring labels, using addresses, and constants. The label d1 is assigned to a long
integer which initially contains the value 4. d2 is assigned to a long integer which
initially contains the value 5. The result of the arithmetic operations is placed
at address 100. It is also clear that if the program is run before the contents of
d1 or d2 are changed then the result stored at location 100 will be 11.

The declaration of a label under GNU As consists of a name followed by a
colon. Several labels may refer to the one location. Thus in the above example
s1 is a synonym for d1.

Labels beginning with an ‘L’ are local labels and are not visible at link time.
In addition there are ten local symbol names ‘0’ to ‘9’. These are reusable within
a program, and references may be made to the nearest forward (‘f’) or backward
(‘b’) reference by writing labelf or labelb, respectively.

In hand coded assembler, the practice of using local symbols and local labels
is strongly discouraged as it makes assembly code signigicantly more difficult to
read and debug. Macros are the single exception to this rule. Local symbols
simplify the writing of macros by allowing relatively context insensitive macros
to be written which contain loops.

In addition to their significant role in macros, local symbols and local labels
are typically heavily used in the output of compilers.

Memory is declared and initialized using the assembler directives .byte, .word,
.int, and .long where bytes are 8 bits in length, words 16 bits, and integers and
longs 32 bits in length. The declarations must be followed by a list of numbers,
and these numbers are placed into memory to initialize the memory locations. If
no numbers follow the declaration then, no space is reserved by the declaration.

The following code fragment illustrates the reservation of memory and initial-
ization of memory locations:
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.long 5 /* reserves 32 bits and places 5 in it */

.long 5, 7 /% reserves two longs and places 5 and 7 in them */
.byte 4, 6 /x reserves two bytes and places 4 and 6 in them */
.long /* reserves no space x/

Strings may be stored in memory using the .ascii and .asciz assembler direc-
tives. These directives store a series of bytes with the values of the string that
follows the directive into memory. The .asciz form appends a byte containing a
zero to the end of the string.

The following two lines of code are examples of the use of the .ascii and .asciz
directives.

.asciz ‘A string terminated by a NULL’’
.ascii ‘‘A string not terminated’’

Immediate constants are formed by prepending a ‘$’ to a label or a value.
This construct may be used to get the address of a label, typically before passing
that address to a subroutine. For example:

movl $10, %eax /* Copy 10 to EAX x/
movl $s1, %eax /* Copy the address of label sl into EAX */

A final note, GNU As uses the AT&T format for instructions. This format
places the destination in the rightmost operand. The majority of 386/486 assem-
blers use the Intel format which places the destination in the leftmost operand.

3.2 Operations

3.2.1 Assignment

The fundamental assignment operation provided by the 386/486 is the mov in-
struction. This operation copies data from source to destination without altering
the source or the flag registers.

The following lines of code illustrate the syntax of assignment operations
under GNU As.

movl 10, %eax /* Copy contents of address 10 into EAX */

movl $10, %eax /* Put the value 10 into register EAX */

movl Jebx, %eax /* Copy the value of EBX to EAX */

movb %edx, 10 /* Copy the low byte of EDX to location 10 */

3.2.2 Arithmetic

The 386/486 supports a wide range of arithmetic and bitwise logical operations
on integers. The operations include: add, bitwise and, divide, integer divide,
integer multiply, multiply, negate, bitwise not, bitwise or, rotate, shift, subtract
and bitwise exclusive or. The format for these operations is typically: op sre, dst
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where the result is calculated by dst = dst op src. The most notable exception
to this formating is the integer multiply instruction which has a three-operand
form. A detailed description of the multiply instruction is found in appendix B.
A set of two-operand form examples are below:

addl 10, Y%eax /* Add the contents of address 10 to EAX */

subl $10, %eax /* Subtract 10 from EAX x/

xorl Y%ebx, %eax /x EAX = EAX xor EBX x/

addb %edx, 10 /* add the low byte of EDX to location 10 */

3.2.3 Jumps

The 386/486 supports a large number of types of jumps and subroutine calls.
The five forms are defined as:

Absolute - Jump to a specified location

Relative - Jump to a location calculated by adding a signed offset to the address
of the instruction following the jump instruction.

Intersegment - Jump to a location in another segment.
Indirect - Jump to a location given in either a register or a memory location.

Indirect Intersegment - Jump to a location defined by a segment offset pair
given in memory location.

In this book we will be developing only single code segment programs, and
the assembler will treat the jump or call mnemonic as a relative jump, or call of
a sufficiently large magnitude.

jmp exit /* Jump to the label exit */

call subone /* call the function beginning at subone */
are examples of the syntax of relative jumps. Jumps to absolute addresses may be
formed by prefixing the address with a “*’. Otherwise, the assembler will choose
program counter relative addressing.

3.2.4 Alternation

The 386/486 implements alternation through the use of conditional jumps. The
conditions used to determine whether to jump or not are based on combinations
of bits in the EFLAGS register. It is necessary for the programmer to ensure that
the appropriate bits are set in the EFLAGS register before using the conditional
jump instruction to test for the condition. A typical example would be:

cmpl $0, %eax /* Set flags in EFLAGS */

je zero /* Jump to zero if EAX equals zero */

jmp nonzero /* Not zero, jump to nonzero */
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The compare instruction (cmp) performs the subtraction EAX — 0. Setting
the required flags in EFLAGS but otherwise not altering any registers. Je tests
the zero flag (zf) in EFLAGS, if the flag is set a jump occurs to the label zero.

The test and cmp operations set flag bits without altering either memory
or general register contents. Arithmetic and bitwise logical operations alter both
the flag bits and the destination of the operand of the instruction. As these
operations affect the EFLAGS register conditional jumps may be used to detect
the results of these operations.

The operations mov, jmp and call do not typically affect flag bits.

A notable feature of the architecture of the 386/486 is that all conditional
jumps are implemented as relative jumps.
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Chapter 4

Control Structures

This chapter will illustrate typical control structures found in assembly language
programs. The control structures shown in this chapter may be nested, but they
should not be overlapped, when writing structured programs.

Although there are several methods of implementing the conditional struc-
tures, only one method is shown and described as an example. Provided only one
method of implementing conditionals is used within a program, it is possible to
construct structured programs which are easily readable.

29
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4.1 Pre-Test Loops

Pre-test loops test that a condition is satisfied before entering the body of the

loop. This class of loop is represented by the while ..

the while loop in C.

Operation
%J

5

Example:

while z not equal 0 do

a=a+a
z=2z-1
ploop:
cmpl $0, z /* test if z is zero */
je eloop

movl a, %eax /* let a equal a + a */
addl %eax, a
dec z /* subtract 1 from z */
jmp ploop

eloop: /* exit the loop */

. do in pseudo code and
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4.2 Post-Test Loops

31

Post-test loops test that a condition is satisfied after executing the body of the

loop. This class of loop is represented by the repeat ...
and the do .

.. while loop in C.

.

Operation

S

Example:

repeat
a=a+a
z=z-1

until z equal O

ploop:

eloop:

movl a, %eax
addl %eax, a
dec 7

cmpl $0, z

je eloop

jmp ploop

/* let a equal a + a */

/* subtract 1 from z */
/* test if 7 is zero */

/* exit the loop */

until in pseudo code
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4.3 If-Then

The If ... Then conditional may be expressed in assembly language by testing
for the negation of the condition. If the negation is true then the consequence -
the then clause - is skipped.

Operation

=

Example:

if z equal O then
a=1

cmpl $0, z  /* test if z is zero */
jne ethen
movl $1, a /* let a equal 1 */
ethen: /* exit the conditional */
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4.4 TIf-Then-Else

The If ... Then ... Else conditional is expressed in assembly language as a test
for the condition: If the condition is met, then a jump to the ‘true’ code is made,
otherwise the ‘false’ code is executed.

True

False

Operation | | Operation

—

Example:

if z equal O then

a=1
else

a=2
cmpl $0, z  /* test if z is zero */
je then
movl $2, a /* let a equal 2 */
jmp ethen

then:

movl $1, a /* let a equal 1 */
ethen: /* exit the conditional */
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4.5 If-Then-Elself-Else

TheIf... Then ... Elself ... Else conditional is a combination of the techniques
for If ... Then and If ... Then ... Else.

Operation | | Operation
]

O

Example:

if z equal O then
a=1

elseif z equal 1 then
a=2

else

cmpl $0, z  /* test if z is zero */
jne eifl
movl $1, a /* let a equal 1 */
jmp eelse
eifl:  cmpl $1,z /* test if z is one */
jne else
movl $2, a /* let a equal 2 */
jmp eelse
else:  movl $3,a /* let a equal 3 */
eelse: /* exit the conditional */
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4.6 Switch

The switch or case statement may be implemented in two ways: the first is to
use the If ... Then ... Elself ... Else construct (see Section 4.5). The second
method is to use a jump table. A vector of jump addresses is calculated for each
possible input value, and the input values are used as an index into the table.
This technique provides quick execution. This technique is similar to that used
for dope vectors (see Section 8.4).
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Chapter 5

Subroutines - Introduction

The subroutine is the primary mechanism used in structured programming to
allow the division of large programs into more managable smaller parts. This
chapter will introduce the concepts of a subroutine, and a ‘process’ or ‘system’
stack.

A subroutine is defined as a section of program code which may be invoked
with a set of parameters, perform an action and which may return a result.

The stack data structure is comprised of a list of elements which may only
be accessed from one end. There are two operations defined over a stack. The
first operation is PUSH, this inserts an element at the head of the stack. The
second operation POP, removes an element from the head of the stack. The
‘system’ or ‘process’ stack is provided by the operating system, and it is operated
on by processor operations that use a stack. The operations push and pop are
provided by the 386/486, and operate on the register %esp, also known as the
stack pointer.

The system stack on the 386/486 grows downwards in memory. Each time
an item is pushed onto the stack the stack pointer is decremented. As items are
removed from the stack the stack pointer is incremented.

The 386/486 provides two operations to support subroutines. The first opera-
tion CALL (call) causes the address of the instruction following the call instruc-
tion to be pushed onto the system stack, and control to be passed to the address
contained in the operand of the call instruction. The RETURN instruction (ret)
pops an address of the stack and transfers control to that address.

The intrinsic mechanisms provided by the processor allow for nested subrou-
tine calls. Nested subroutine calls are calls on subroutines from within a sub-
routine. The stack provides a history of the return addresses of the subroutine
calls.

Figure 5.1 ilustrates the basic stack subroutine relationship for the following
program assembled into addresses 100019 to 1023.
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1000 start: call subone

1005 jmp exit /* exit the program */
1010 subone: call a /* subroutine subone*/
1015 call b

1020 ret

1021 a: ret /* subroutine a */
1022 b: ret /* subroutine b */

Call Sequence Process Stack

start
jt:one 1005
o e
o fH
T 1005

Figure 5.1: Nested Subroutines and the System Stack



Chapter 6

Addressing Techniques

Memory may be referred to by 3 distinct methods known as addressing modes:
direct, indexed and indirect. These modes may be combined to form more
complex addressing mechanisms. This chapter will define the 3 addressing modes
and each mode’s availability on the 386/486, and relate the concepts of non-direct
addressing to pointers in high level languages.

6.1 Addressing Modes

6.1.1 Direct Addressing

Direct addressing was introduced in section 3.1. Direct addressing is the sim-
plest mode. Essentially direct addressing returns the value found in the memory
location specified in the instruction.

6.1.2 Indexed Addressing

Indexed addressing takes a start address and an offset, and returns the contents
of the memory location with the address resulting from the addition.

The 386/486 supports indexed addressing using registers to represent the base
address and the index. The AT&T syntax for indexed memory references is:

segment : disp(base, index, scale)

The index index is multiplied by the scale factor scale and summed with the
displacement disp and the offset base to give the address of the memory location
relative to the segment segment. (See figure 6.1). In addition to the restriction
requiring base and index to be registers, scale is required to have only the values
1, 2, 4, 8 or none.
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The syntax of indexed access may be explicitly written as:

) %eax %oeax
%cs %oebx %oebx
%ods No Displacement Yoecx Yoecx 1
Y%es ¢ : < 8— Bit Displacement 3 ({§ %edr 3,9 %edz »,< 2 )
%oss 32 — Bit Displacement Y%oesi Yoesi 4
%fs %edi %edi 8
| %gs Y%ebp Y%ebp
L %esp ) | %esp )

The effective address of the memory location is calculated using the formula:

( — ) ( — )
s %eax %eax
Uds . %oebx %oebx —
Yhes No Displacement Yoecx Yoecx 1
s +<{ 8 — Bit Displacement 3 +< %edxr 3 +< Y%edxr 3 x{ 2
% s 32 — Bit Displacement Yoesi Yoesi 4
| %gs Y%oedi Y%oedi 8
’ Yoebp Yoebp
( Joesp ) ( Toesp )

If the segment modifier is not included then the instruction uses the default
segment. If the displacement is not included then a displacement of zero is
assumed.

Not all arguments of the index syntax are required to be present. Valid forms
of the index syntax are:

base, index, scale) Complete form

base, index) Scale defaults to 1

(

(

(base) Index defaults to 0
(,index, scale) Base defaults to 0
(

,index,) Base defaults to zero and scale defaults to 1

6.1.3 Indirect Addressing

Indirect addressing consits of extracting the address of the destination location
from the location named in the instruction. Thus a location contains the address
of the location containing the required value.
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r - — 1 ]
Displacement
Segment
Index * Scale
Base
. - — _ _ |

Figure 6.1: Indexed Addressing

Address | Memory

1000
1004 2008 —
1008
1012

2000
200
2008 45 |«
2012

If location 100/ is accessed indirectly the value returned will be 45 as location
100/ contains the address of location 2008 which contains the value 45.

Figure 6.2: Indirect Addressing
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This is ilustrated in figure 6.2.

The 386/486 provides minimal support for indirect addressing. Specifically,
it is available for mov and jump commands, however, only moves to and from the
register %eax are supported.

Some versions of the GNU As assembler do not correctly support access via
indirect addressing. Practical work in this course will not use indirect addressing.

6.2 Pointers

In a high level language, a pointer is a variable that contains an identifier that
allows access to either a data item or a procedure. Pointers are typically composed
of the address of an object.

The assembly language concept of non-direct access is similar. The address
of an item is used to refer to the item. This concept can be extended to describe
each element of an object as a data item at an offset from the base of the object.

6.2.1 ‘C’ to Assembler Examples

Several examples of ‘C’ programming constructs will be presented with trans-
lations into assembly language showing how non-direct access may be used to
implement the constructs of a high level language, and how indexing construct
in assembly language may be used.

Arrays

int array[10];
/¥ ... %/

array [4]++;
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Assembler

array: .fill 10, 4, O
/x ... %/

movl $4, Jeax
incl array(,%eax,4)

The array consists of 4 byte objects. Ten sets of 4 byte objects initialized to
zero are created by the assembler directive .fill. The register %eax is loaded with
index value 4 and the operation is performed after indexing into the array.

The following routine performs a similar task except on character size objects.
To take account of the size change it is necessary to alter both the size of the
memory operand and the scale factor.

C
char array[10];
/¥ ... %/
array [4]++;
Assembler

array: .fill 10, 1, O
/* ... %/

movl $4, Jeax
incb array(,%eax,1)
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Structures

C

struct point
{
int x;
int y;
char color;
};

struct point first;
/¥ ... %/

first.x = 1;
first.y = 2;
first.color = 0;

Assembler

/* point consists of 2 * 4 byte fields followed by
/* a 1 x 1 byte field */
first: .space 9, 0

/% ... %/

/* get address of structure into a register */
movl $first, Y%eax

/* offset of x = 0 %/

movl $1, 0(%eax)

/* offset of y = 4 %/

movl $2, 4(%eax)

/* offset of color = 8 x/

movb $0, 8(%eax)
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Arrays of Structures

C

struct atom
{
short id;
char x;
char y;
};
struct atom cloud[1000];

/x ... %/

cloud[4].id = 4;
cloud[4] .x = 2;
cloud[4].y = 1;

Assembler

/* atom consists of 1 * 2 byte fields followed by
/* a 2 x 1 byte field */
cloud: .fill 1000, 4

/% ... %/

/* get address of structure into a register */
movl $cloud, %eax

/* set up index value */

movl $4, Y%ebx

/* offset of id = 0 */

movb $4, (Y%eax,%ebx,4)

/* offset of x = 2 %/

movl $1, 2(%eax,%ebx,4)

/* offset of y = 3 */

movl $2, 3(%eax,%ebx,4)
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Chapter 7

Subroutines - Advanced

Chapter 5 introduced the basic concepts of the ‘system’ or ‘process’ stack, and the
subroutine, these concepts will be expanded upon in this chapter by introducing
techniques for parameter passing, local variables, and returning results.

7.1 Parameter Passing

The parameters of a subroutine are the values that are passed to a subroutine for
it to operate on. There are two basic methods of passing parameters - by stack
and by register - which may be combined to yield hybrid methods.

Parameters may be divided into the two classes, reference parameters and
value parameters.

This section will cover the definition, implementation and characteristics of
passing methods and parameter types.

7.1.1 Pass by Register

This is the simplest form of parameter passing. The information to be passed to
the subroutine is loaded into registers and the subroutine called.
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movl $1, Y%eax
movl $2, Y%ebx
call trivadd

/% ... %/
trivadd:

addl %ebx, %eax

ret

The advantage of this form is that it permits the subroutine direct access to
the parameters in registers. As registers are the fastest form of storage available
to the processor this permits fast subroutines to be written.

Pure register passing is limited in the number and type of values that can
be passed to a subroutine. This limitation is imposed by the number and size
of available registers. There are additional costs in using register based passing.
These result from the need to save values that were previously in registers before
setting up for a call. Restoring the registers is necessary if the values are to be
used after returning from the call.

7.1.2 Pass by Stack

Passing values using the stack permits greater flexibility than passing by register.
Provided there is sufficient space on the stack, any type and number of values
may be transferred as parameters to a subroutine using stack based passing.

Parameters are pushed onto the stack before the subroutine is called. In-
dexed addressing relative to the stack pointer is used to recover the values of the
parameters

pushl $1
pushl $2
call trivadd
add $8, %esp

/% ... %/

trivadd:
movl 4(%esp), %ebx
movl 8(%esp), %eax
addl Y%ebx, %eax
ret

The stack can be represented diagramatically:
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Yesp+12
Y%esp+8
Yesp+4
Y%esp+0

1
2
ret addr

49

+— Yoesp

Parameters passed to a function may be of varying sizes. The following pro-
gram fragment shows an implementation of a function which takes a long integer,
followed by a word-sized integer, followed by another long integer.

pushl $1
pushw $2
pushl $3
call oddadd

addl $10, Y%esp

/*

oddadd:

movzwl 8(%esp), %eax

addl 4(%esp), heax
addl 10(%esp), %eax

ret

The stack diagram indicates the offsets and sizes of the parameters relative
to the value of the stack pointer when the function is called.

Yesp+14
Yesp+10
Y%esp+8
Yesp+4
Y%esp+0

1
2
3
ret addr

4 bytes
2 bytes
4 bytes
+ %esp 4 bytes

In both the examples given above, the stack pointer was adjusted to point
to the position it held before the parameters were pushed onto the stack. It is
important to ensure that the stack pointer is pointing to a valid return address
when a return is executed. Failure to do so will result in either an access violation
or a jump to a location in memory where there may not be valid code.

Pass by stack has speed penalty in access to the parameters. The parameters
mut be saved on the stack and later accessed by the subroutine. This time penalty
aside, access by stack, provides a consistent, flexible mechanism for accessing
subroutine parameters.
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7.1.3 Pass by Value and Pass by Reference

In the preceeding examples all parameters passed have been passed by value That
is the value of the parameter is either loaded into a register (for pass by register)
or pushed onto the stack (for pass by register). Parameters may also be passed
by reference, that is the address of an item may be passed to a function, and
operations may be conducted on the item insitu in memory.

The ‘C’ programming language only provides passing by value. Programmers
in ‘C’ must pass pointers to objects they wish to modify using a subroutine
Pascal provides both pass by value and pass by reference. The following is an
example Pascal code fragment:

procedure addtwo(var result: integer; pl, p2: integer);
begin

result := pl + p2;
end;

{ ...}

addtwo (res, 2, 4);

Translated into assembly language:

addtwo:
movl 4(%esp), %eax /* get p2 */
addl 8(%esp), %heax /* add pl */
movl 12(%esp), %edx /* get the address of result */
movl %eax, (%edx) /* store the result */
ret
/% .. %/
pushl $result
pushl $2
pushl $4

call addtwo
add $12, Yesp

For small data items passing by value has the advantage of providing a copy of
the value to the subroutine which it may alter without destroying the value used
by the calling routine. If the data item is sufficeintly large, then the convenience
gained is offset by the overhead of copying the data item.
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7.1.4 Returning Results

The results of a function may be returned by using either a register or by a
reference to memory. Returning results by reference is equivalent to passing an
additional pass by reference parameter to a function, and using that parameter
for the return value.

7.1.5 Local Variables and Stack Frames

A local variable is a variable that is not visible to the caller of a subroutine but is
visible to the subroutine. Local variables serve the dual purposes of reducing the
amount of global storage space required for a program and providing a private
storage area that a subroutine can use. Local variables are created when they
are required and persist until the function exits. This ensures that the variable
only consumes space when the variable is in use. Recursive routines often require
a quantity of storage space in which the current state is stored. Local variables
are created with each instance of a subroutine, and provide a natural location in
which to store intermediate results.

Local variables are created in assembly language by reserving space on the
stack after the parameters. A ‘C’ program fragment that generates a Fibonacci
sequence as an example of a recursive program with local variables is shown
below.

void fib(int a, int b)
{

int c;

printf("/%d ", a);

c =a+b;

if (c > 50)
return;

fib(b, c);

}

/x ... %/

fib(1,1);
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An assembly language fragment using local variables reserved on the stack
directly following the parameters of the function:

fib:
subl $4, Jesp /* reserve space for c */
movl 12(%esp), %eax /* recover the a parameter */
call print_num /* call fictitious print routine */
movl 8(%esp), %ebx /* recover the b parameter */
movl Y%eax, 0(%esp) /* store a in c */
addl Y%ebx, 0(%esp) /* add b */
movl O(%esp), ’%hecx /* move value ¢ into %ecx */
cmpl $50, 0(%esp) /* test against 50 */
jge skip
pushl %ebx /* call fib =/
pushl Jecx
call fib
addl $8, %esp /* fix the stack pointer */
skip:
addl $4, Y%esp /* remove C from stack */
ret
/¥ .. %/
pushl $1 /x £ib(1,1) */
pushl $1
call fib

addl $8, %esp

A Stack frame is a data structure on the system stack, and which provides
a consistent method for representing subroutines. It allows the easy creation of
local variables, and permits the use of the stack instructions push and pop.

A stack frame may be created using either the enter instruction or by pushing
the appropriate values directly onto the stack. Stack frames are destroyed by the
leave instruction.
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The simplest form of the 386/486 stack frame is:

OzFFFFFFFF

Parameters

Return Address
Old %ebp + %ebp

Local Variables
+— Yesp

Stack ...

0z00000000

A stack frame uses the base pointer to keep track of the division between
a functions parameters and the functions local variables. The use of the base
pointer also allows the deallocation of the local variable space and any stack
space used by a subroutine on exiting the routine.

Local variables may be accessed using negative offsets from the base pointer
and parameters are accessible using positive offsets. Use of push and pop do not
affect the base pointer, so the offsets are not affected by normal activity on the
stack.

The code that forms a simple stack frame with space bytes of local variables
is:

pushl %ebp
movl %esp, ’%ebp
subl $space, hesp

This is equivalent to the command enter $space, $0. The leave instruction
may be emulated by the code:

movl %ebp, ’%esp
popl %ebp

Leave, restores the base pointer to its previous values.
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The example Fibonacci program rewritten to use a simple stack frame:

fib:
pushl %ebp /* create stack frame */
movl Y%esp, %ebp
subl $4, Yesp /* reserve space for c */
movl 12(%ebp), ’eax /* recover the a parameter */
call print_num /* call ficticious print routine */
movl 8(%ebp), %ebx /* recover the b parameter */
movl Yeax, -4(%ebp) /* store a in c */
addl %ebx, -4(%ebp) /* add b */
movl -4(%ebp), ’%ecx /* move value ¢ into %ecx */
cmpl $50, -4(%ebp) /* test against 50 */
jge skip
pushl %ebx /* call fib =/
pushl Yecx
call fib
addl $8, %esp /* fix the stack pointer */
skip:
movl Y%ebp, %esp /* destroy stack frame */
popl Y%ebp
ret
/¥ .. %/
pushl $1 /x £ib(1,1) */
pushl $1
call fib

addl $8, %esp
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Using enter and leave:

fib:
enter $4, $0 /* reserve space for c */
movl 12(%ebp), ’eax /* recover the a parameter */
call print_num /* call fictitious print routine */
movl 8(%ebp), J%ebx /* recover the b parameter */
movl %eax, -4(%ebp) /* store a in c */
addl %ebx, -4(%ebp) /* add b */
movl -4(%ebp), ‘ecx /* move value c into %ecx */
cmpl $50, -4(%ebp) /* test against 50 */
jge skip
pushl %ebx /* call fib */
pushl %ecx
call fib
addl $8, %esp /* fix the stack pointer */
skip:
leave /* destroy stack frame */
ret
/% ... %/
pushl $1 /* fib(1,1) */
pushl $1
call fib

addl $8, Y%esp



56

CHAPTER 7. SUBROUTINES - ADVANCED



Chapter 8

Data Structures

The choice of the method of representation of data in a program has a major
effect on the performance of the program. Data structures determine the upper
bound of the efficiency of operations on data by an algorithm. Because of the
importance of the method of storage of data, this chapter will be devoted to
discussing the implementation of some data structures in assembly language.

8.1 Vectors

A vector is a one dimensional array. The assembly language representation of
an array consists of a set of equal size objects consecutive in memory. Elements
of this set are accessed by multiplying the index of the required element by the
size of the element and adding this to the base address of the array. The general
representation is shown in figure 8.1.

The vector was introduced in the section on indexed addressing (6.1.2). Code
was introduced into that section which used the inbuilt index granularities of 1,
2, 4, and 8 bytes. An example of a generalized indexing scheme which can be
used for other element sizes follows.

vector|a..b] of elements

la bl
I PR I
1 base

addrs = ((index — a) * sizeof (element)) + base
Figure 8.1: General Representation of a Vector
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/* calculate offset from base */

movl $index, %ebx

subl $first, %hebx

movl $size, %eax

/* note that this multiply destroys the contents of Jjedx */
/* and leaves the result in Jjeax */

mull %ebx

/* add base to offset Jeax points to beginning of item */
addl $base, %eax

/* access first word of element */

movl O(%eax), Y%ecx

8.2 Arrays

Vectors are a restricted form of the general concept of an array. An array may
have more than one dimension, hence, it may be indexed by more than one
parameter.

The memory of a computer may be viewed as a one dimensional array of
storage locations. Multi-dimensional arrays may be considered as an array of
an array of one less dimension. By applying this view recursively until a repre-
sentable vector has been reached allows an array of any number of dimensions to
be constructed.

Two dimensional arrays will be used as an example of constructing multi-
dimensional arrays. The concepts used in constructing and describing two dimen-
sional arrays may be extended by induction to other multi-dimensional arrays.

There are two ways of linearizing a multidimensional array. The first is to
store the first row of the array in memory followed by each subsequent row. This
is known as row-major form. The second method stores the columns in order,
and is known as column-major form. (See figure 8.2 for a pictorial form).

The following section of code provides access to a row-major form 2 dimen-
sional array of arbitrary sized items represented by the Pascal like declaration:

arr : arrayla..b,c..d) of element



8.2. ARRAYS 59

Two Dimensional Array:

Row Major Form:

row 1 row 2

Column Major Form:

column 1 column 2 column 3
N N ——

Figure 8.2: Major Forms

/* calculate size of a row */

movl $b, %ebx

subl $a, %ebx

movl $size, %eax

/* note that this multiply destroys the contents of Jedx */
/* and leaves the result in Jjeax */

mull %ebx

/* work out the relative row index */

movl $rowidr, %ebx

subl $a, %ebx

/* calculate the row offset */

/* note that this multiply destroys the contents of Jjedx */
mull %ebx

/* store result in %ecx */

movl %eax, %ecx

/* calculate column offset */

movl $colidr, %hebx

subl $c, %ebx

movl $size, %eax

/* note that this multiply destroys the contents of Jjedx */
mull %ebx

/* add in stored result and base to get pointer to start of */
/* element [rowidx, colidx] */

addl %ecx, %eax

addl $arr, Yeax



60 CHAPTER 8. DATA STRUCTURES

8.3 Records

A record is a synonym for structure in the context of computer languages. Struc-
tures are manipulated by adding an offset to the base address of the structure to
yield the address of the element of the structure to be altered. Examples may be
found in Chapter 6.

8.4 Dope Vectors

A dope vector is a one dimensional array containing the starting addresses of
other objects. Multi-Dimensional arrays can be constructed using dope vectors
which involves the storing the starting addresses of an array of lower dimension
in the dope vector (see figure 8.3).

Dope Vector  Array Vectors

NN

Figure 8.3: A dope vector

The sample code manipulates a four by four array of long words stored in
row-major form using a dope vector implementation:
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/* declarations for array in row major form */
dpv: .long rO, rl, r2, r3

r0: .fill 10, 4, O

ri: .fill 10, 4, O

r2: .fill 10, 4, O

r3: .fill 10, 4, O

/% ... %/

/* retrieve address of row */
movl $rowidr, %ebx

movl dpv(,%ebx,4), %edx

/* retrieve value at column */
movl $colidr, %hebx

movl (%edx, %ebx, 4), Yeax

8.5 Trees and Graphs

Tree and graph structures are built in assembly language in a manner similar
to that used in the ‘C’ programming language. Essentially a node consists of
a structure containing some data and a number of pointers to other nodes. By
connecting the nodes together a tree or a graph can be built
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Chapter 9

Block Structured Languages

Block structured languages allow nesting and scoping of subroutines and vari-
ables. Pascal supports these features, unlike the ‘C’ programming language. The
following simple Pascal program illustrates the concept of block structuring.

program blocks(input, output);

procedure a;
var
v: integer;

procedure disp;
begin
writeln(’a’, v);

end;
begin

v :=1;

disp;

v o= 2;

disp;
end;

procedure b;
var
v: integer;

procedure disp;
begin
writeln(’b’, v);
end;
begin
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v := 1;
disp;
v o= 2;
disp;
end;
begin
a;
b;
end.

The program’s output is ‘al a2 bl b2’. The structure of a block structured
program may be drawn:

program blocks;
var v: integer;
procedure a;
procedure disp;

procedure b;
procedure disp;

In Pascal, the scope of a variable is the region in which it is accessible by name
to a subroutine. Variables declared in blocks of which the current subroutine is
a strict subset are within the scope of the current function.

The scope of a subroutine in Pascal is the region in which a function or
procedure may be called by name. Procedures and functions in the current block
and blocks which are one level above the current block and contained by the
current block are accessible.

Block structured languages are supported in assembler by providing backward
links in the stack frame to earlier stack frames. The enter instructions second
parameter, level, determines the number of stack frame pointers that are inserted
into the current stack frame to the previous stack frame. Figure 9.1 shows an
example of the appearance of the stack with back pointers. The example shows
the invocation of disp by procedure a

By following back the chain of back pointers it is possible to access any variable
in the scope of the current function.
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Old EBP
v: Integer;
Ret Addrs
Old EBP
Frame -1
Frame 0
Ret Addrs
Old EBP
Frame -1 procedure disp
Frame -2
Frame 0

program blocks

procedure a

Figure 9.1: Stack Frames in a Block Structured Language
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Appendix A

AT&T Syntax

A.1 Register Set

The 80386/80486 provides a set of general registers, segment registers, debug
registers and control registers. The name and size is recorded for each register
directly accessible using an AT&T type assembler. Note that all register names
are preceeded by a percent sign.
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General Purpose Registers:

APPENDIX A. AT&T SYNTAX

Register | Width | Type

Name (bits)

Yoeax 32 General Purpose Register
Yoax 16 Least 16 bits of %eax
Y%ah 8 Greatest 8 bits of %ax
Yoal 8 Least 8 bits of %ax
Y%ebx 32 General Purpose Register
%obx 16 Least 16 bits of %ebx
%bh 8 Greatest 8 bits of %bx
%bl 8 Least 8 bits of %bx

Yoecx 32 General Purpose Register
Y%ocx 16 Least 16 bits of %ecx
%ch 8 Greatest 8 bits of %cx
%ocl 8 Least 8 bits of %cx

Yoedx 32 General Purpose Register
%odx 16 Least 16 bits of %edx
%dh 8 Greatest 8 bits of %dx
%dl 8 Least 8 bits of %dx
%ebp 32 Base Pointer

%bp 16 Least 16 bits of %ebp
Yoesi 32 Source Index

Yosi 16 Least 16 bits of %esi
Yoedi 32 Destination Index

%di 16 Least 16 bits of %edi
Yoesp 32 Stack Pointer

%osp 16 Least 16 bits of %esp

Segment Registers:

Register | Width | Type
Name (bits)

%ocs 16 Code Segment
%ds 16 Data Segment
Yoes 16 Extra Segment
Yoss 16 Stack Segment
%ofs 16 Segment

%ogs 16 Segment
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Debug Registers:

Register | Width | Type

Name (bits)

%dr0 32 Breakpoint 0 Linear Address - Debug Register
%drl 32 Breakpoint 1 Linear Address - Debug Register
%dr2 32 Breakpoint 2 Linear Address - Debug Register
%dr3 32 Breakpoint 3 Linear Address - Debug Register
%dr6 32 Debug Control Register

%dr7 32 Debug Control Register

Test Registers:

Register | Width | Type

Name (bits)

%otr3 32 Test Register
%otrd 32 Test Register
%otr5 32 Test Register
%otr6 32 Test Register
%otr'7 32 Test Register

Floating Point Stack Registers:
Register | Type

Name
Yost Top of NPU stack
%st(0) | Top of NPU stack
%st(1) | NPU stack register
%st(2) | NPU stack register
%st(3) | NPU stack register
%st(4) | NPU stack register
%st(5) | NPU stack register
%st(6) | NPU stack register
(7)

NPU stack register

A.2 Flags

The 80386 provides a flag register known as EFLAGS. This register contains bits
which are set by the processor after arithmetic operations or which reflect the
current state of the processor.

31 0

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |AC|VMIRF| 0 |NF| IOPL |OF|DF|IF|TF|SF|ZF| 0 |AF| 0 |PF| 1 |CF|

The flags are:
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AC Alignment Check!.
VM Virtual 8086 Mode
RF Resume Flag

NT Nested Task Flag
IOPL IO Privelege Level (2 bits)
OF Overflow Flag

DF Direction Flag

IF Interrupt Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Carry Flag
PF Parity Flag

CF Carry Flag

A.3 Assembler Syntax

This section is specific to the Free Software Foundation’s GNU AS assembler.
Many of the other AT&T type assemblers use a similar set of operations, typi-
cally a subset of these.

A.3.1 General Layout

The assembler input is free form, requiring only that statements be separated by
either a newline character or a semicolon. Character constants are not terminated
by a newline or semicolon (‘;') character. A statement may be continued over
more than one line by placing a backslash (‘\’) before the newline character.

Symbols may be made up of alphabetics, digits, ‘', ‘$’ and ‘.. Symbols are
case significant. The special symbol ‘.” refers to the current address that is being
assembled to.

Strings are delimited by double-quote character (7).

Numbers follow the conventions of C:

I'Not available on the 80386
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Decimal Any number not beginning with a zero eg. 10.
Hexadecimal A number beginning with ‘0x’ eg. Oxa.

Octal A number beginning with zero eg. 012.
Special characters follow the conventions of C:

\b Backspace

\f Formfeed

\n Newline

\r Carriage Return

\t Tab

\ooo where o is an octal digit An octal character code.
\\ The ‘\’ character.

\” The "’ characther

Labels are a symbol followed immediately by a colon (‘).

A.3.2 Operands

Immediate operands are numbers which do not represent memory locations.
These are prefaced in AT&T type assemblers by a dollar sign (‘$’).

Absolute references are prefaced by an asterix (‘*’) to differentiate them from
relative references.

The size of operands are determined explicitly by the instruction, not by
reference to the size of the object refered to. Opcode suffixes are added to indicate
the size of the operation.

b Byte (8-bit)
w Word (16-bit)
1 Long (32-bit)

A.3.3 Comments
There are two forms of comments:

e C type: Comments may be multiline and are delimited by ‘/* and “*/’.

e Line Comment type: All characters from ‘#’, the line comment character,
to the next newline are ignored.
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A.3.4 Expressions

The following operators are available:
— Two’s complement negation.
" One’s complement negation.

x Multiplication.

/ Division.

% Modulo.

< or << Left shift.

> or >> Right shift.

| Bitwise Or.

& Bitwise And.

" Bitwise Xor

! Bitwise Or Not.

+ Add.

— Subtract.

A.3.5 Assembler Directives

.abort Stop assembly immediately

.align boundary, pad Adjust the location counter to the next boundary exactly
divisible by 2bvndery If pad is present then this value of the bytes used in
filling to the next boundary.

.ascii strings Reserves space for and stores strings.

.asciz strings Reserves space for and stores strings with an additional zero byte
at the end of each string.

.byte expressions Comma separated expressions are stored into the next byte.

.comm symbol, length Declares a named common area of at least length bytes
size.

.data subsegment Assembles following statements at the end of data subsegment
subsegment. The default subsegment is 0.
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.double flonums Comma separated floating point numbers are stored into the
64-bit floating point form.

file string The string becomes the name of the new logical file.

Al repeat, size, value Creates a block of repeat objects of size bytes containing
value.

float flonums Comma separated floating point numbers are stored into the 32-
bit floating point form.

.globl symbol Makes symbol visible to the linker.

.nt ezpressions Comma separated expressions are stored into the next 32 bits.

Jdcomm symbol, length Declares a local common area of at least length bytes
size. At run time the bytes of this area start off zeroed. This area is not
visible to the linker.

Jine number Assigns a logical line number to the statements following.

Jong ezpressions Comma separated expressions are stored into the next 32 bits.

.octa bignums Comma separated big numbers are stored into the next 16 bytes.

.org lc, fill Advances the segments location counter to [c using fill as padding.

.quad bignums Comma separated big numbers are stored into the next 8 bytes.

.set symbol, expression Sets the value of symbol to expression.

.short expressions Comma separated expressions are stored into the next 16 bits.

.single flonums Comma separated floating point numbers are stored into the
32-bit floating point form.

.space size, fill Fills an area of size bytes with the value fill. If fill is omitted
then the area is filled with zeros.

.text subsegment Assembles following statements at the end of text subsegment
subsegment. The default subsegment is 0.

.word ezxpressions Comma separated expressions are stored into the next 16 bits.
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A.3.6 Memory References

Direct memory references may be made by using either a symbol, a numeric
constant or an expression.

The AT&T syntax for indirect memory references is:

segment : disp(base, index, scale)

This may be explicitly written as:

f ) %eax %eax
%cs %ebx %ebx
Yods No Displacement Yoecx Yeecx 1
%es 4 8— Bit Displacement 3 (X %edx 3 ,¢ %edr »,¢ 2 3)
%oss 32 — Bit Displacement Yoesi Yoesi 4
%fs %edi %edi 8
| %gs Y%oebp Y%oebp
[ Yesp [ Yesp
The effective address of a memory location is calculated:
( — ) ( — )
3 Yoeax Yoeax
( %cs
s . Y%oebx %ebx -
Yies No Displacement Yoecx Yoecx 1
s +<{ 8 — Bit Displacement 3 +< %edr 3 +< Y%edxr 3 x{ 2
%fs 32 — Bit Displacement Yoesi %oesi 4
| %gs Y%oedi Y%oedi 8
’ Yoebp Yoebp
[ Toesp ) | %esp
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If the segment modifier is not included then the instruction uses the default
segment. If the displacement is not included then a displacement of zero is
assumed. The valid forms of the index section are:

(base, index, scale)
(base, index)
(base)

(,index, scale)

(,index)
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Appendix B

Instruction Set

B.1 Layout

The instructions to be used in these lab classes are provided in this chapter.
The description of each instruction is divided into 6 components. The ADD
instruction is presented, with commentary, as an example.

Each instruction is documented for an AT&T style of assembler.

B.1.1 Title lines
ADD Add

This line contains the mnemonic for the instruction on the left hand side and
a description of the function of the instruction at the right.

B.1.2 Type & Compatibility

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

This set of boxes classifies the type of the instruction and the processors with which
the instruction is compatible.
The type compatibility boxes are:

Flow Flow of Control - Instructions which may cause execution to change to a location
other than the next instruction.

Int Integer - Instructions that operate on integer values.
Float Floating Point - Instructions which operate on floating point numbers.

Multi Multi-Segment - Instructions which operate on more than one segment.

7
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The operating system box (OpSys) is checked if the instruction is not used by
applications programs.
The processor compatability boxes are:

386 180386 - This box is checked if this instruction is available on the 386 processor.

387 180387 - This box is checked if this instruction is available on the 387 numeric
processing unit (NPU). The floating point coprocessor for the 386.

486 180486 - This box is checked if this instruction is available on the 486 processor.

B.1.3 Formats

Formats:
AT&T
ADD imm, mem
ADD reg, mem
ADD imm, reg
ADD mem, reg
ADD reg, reg

The AT&T column is used for AT&T type assemblers. Listed in the column is
the mnemonic for the instruction and the valid types of operands for that instruction.
The operand types are:

imm An immediate value.

m14/28byte The address of a memory location extending over 14 or 28 bytes
m16int The address of a memory location that represents a 16 bit integer.
ml6real The address of a memory location that represents a 16 bit real.
m2byte The address of a memory location extending over 2 bytes.

m32int The address of a memory location that represents a 32 bit integer.
m32real The address of a memory location that represents a 32 bit real.
m64int The address of a memory location that represents a 64 bit integer.
m64real The address of a memory location that represents a 64 bit real.
m80dec The address of a memory location that represents a 80 bit decimal.
m80real The address of a memory location that represents a 80 bit real.
m94/108byte The address of a memory location extending over 94 or 108 bytes.
mem The address of a memory location.

ofs A signed offset from the current memory location.
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ptr A pointer. The address of a value which consists of a selector and a the address
of a memory location.

reg Any register.

regl6 A 16 bit register.
reg32 A 32 bit register.

sreg A segment register.

ST The top of the NPU stack.

ST(i) The ith element of the NPU stack.

B.1.4 Psuedo Instructions

Pseudo:
AT&T

ADD srcl, dst
The instruction is followed by pseudo operands. The pseudo operands are used in
the description of the instruction that follows this section. The pseudo instruction and
operands is used to group different versions of the same instruction which have the
same form.

B.1.5 Description

Description
This instruction adds two integers - srcl and dst - leaving the result

in dst. The flags are set accordingly. If src! is an immediate byte

value then it is sign extended to the size of dst before the addition.
This section contains a short description of the function of the instruction and any

warnings relavent to its use.

B.1.6 Flags

Flags:
OF SF 7F AF PF
M M M M M
CF TF IF DF NT
M

This section lists the flags consulted or altered by the instruction.
The codes are:

Blank Flag is unaffected by instruction.
T Flag is tested by instruction.

M Flag is modified by instruction depending on the operands.
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1 Flag is set by instruction.
0 Flag is cleared by instruction.

U The instruction’s effect on the state of the flag is undefined.
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B.2 Instructions

AAA ASCII Adjust after Addition

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

AAA

Pseudo:
AT&T

AAA

Description
This instruction is used after an ADD instruction which takes two

byte size unpacked BCD numbers as its operands and leaves the byte
size result in the %al register. The AAA instruction adjusts %al to
contain the correct unpacked BCD result.

If CF or the lower nibble of %al is greater than 9 then %al is in-
cremented by 6, %ah is incremented by 1 and CF and AF are set.
Otherwise, CF and AF are cleared. In both cases the top 4 bits of
%al are cleared.

Flags:
OF SF ZF AF PF
U U U ™ U
CF TF IF DF NT
M
AAD ASCII Adjust AX before Division
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
AAD
Pseudo:
AT&T
AAD
Description
This instruction is used to generate a binary number from a two byte
unpacked BCD number. The result of the operation is to set %al to
%al + (10 x %ah) and clear %ah.
Flags:
OF SF ZF AF PF
U M M U M
CF TF IF DF NT
U
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AAM ASCII Adjust AX after Multiply

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

AAM

Pseudo:
AT&T

AAM

Description
This instruction is used after a MUL instruction operating on two

byte size unpacked BCD numbers that leaves the byte size result in
the %az register. The AAM instruction sets %al to %al mod 10 and
%ah to %al/10.

Flags:
OF SF ZF AF PF
U M M U M
CF TF IF DF NT
U
AAS ASCII Adjust AL after Subtraction
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
AAS
Pseudo:
AT&T
AAS
Description
This instruction is used after a SUB instruction which takes two byte
size unpacked BCD numbers as its operands and leaves the byte size
result in the %al register. The AAS instruction adjusts %al to con-
tain the correct unpacked BCD result.
If CF then %ah is decremented and CF and AF are set. Otherwise,
CF and AF are cleared. In both cases the top 4 bits of %al are
cleared.
Flags:
OF SF ZF AF PF
U U U ™ U
CF TF IF DF NT
M
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ADC Add With Carry

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

ADC imm, mem
ADC reg, mem
ADC imm, reg
ADC mem, reg
ADC reg, reg

Pseudo:
AT&T

ADC srcl, dst

Description
This instruction adds two integers - srcl and dst - and CF leaving

the result in dst. The flags are set accordingly. If srcl is an imme-
diate byte value then it is sign extended to the size of dst before the

addition.
Flags:
OF SF 7ZF AF PF
M M M M M
CF TF IF DF NT
T™M

ADD Add
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

ADD imm, mem
ADD reg, mem
ADD imm, reg
ADD mem, reg
ADD reg, reg

Pseudo:
AT&T

ADD srcl, dst

Description
This instruction adds two integers - srcl and dst - leaving the result

in dst. The flags are set accordingly. If src! is an immediate byte
value then it is sign extended to the size of dst before the addition.

Flags:
OF SF 7F AF PF
M M M M M
CF TF IF DF NT
M
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Logical AND

Flow

Int | Float | Multi | TO OpSys 386 | 387 | 486

X X X

Formats:
AT&T

AND imm, mem
AND reg, mem
AND imm, reg
AND mem, reg
AND reg, reg

Pseudo:
AT&T

AND srcl, dst
Description

Flags:

This instruction performs a logical AND on each bit of two integers
- srcl and dst - leaving the result in dst. CF and OF are cleared and
PF, SF, and ZF are set according to the result.

OF SF ZF AF PF

0 M M U M
CF TF IF DF NT
0

ARPL Adjust RPL Field Selector

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

ARPL mem, reg
ARPL reg, mem

Pseudo:
AT&T
ARPL srcl, dst
Description
This instruction is used in operating system software to prevent code
requesting greater privelege than it is allowed. dst contains the value
of a selector, srcl is word size register. If the lower two bits of dst is
less than src! then ZF is set and the lower two bits of dst is made
equal to the lower two bits of srcl. Otherwise, ZF is cleared.
Flags:

OF SF 7F AF PF
M

CF TF IF DF NT
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BOUND Check Array Index Against Bounds

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

BOUND mem, reg

Pseudo:
AT&T

BOUND srcl, src2

Description
This instruction is used to check a signed array index is between an

upper and lower bound specified in a memory block. The array index
src2 is checked against the bounds in the memory block pointed to
by src1. The format of the memory block is 2 consecutive 16 bit
signed integers. The lower bound occurs first followed by the upper
bound. If src2 is not between the lower bound and the upper bound
plus the number of bytes occupied for the operand size then interrupt
5 is generated.

Flags:
OF SF 7F AF PF
CF TF IF DF NT
BSF Bit Scan Forward
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BSF mem, reg
BSF reg, reg
Pseudo:
AT&T
BSF srcl, dst
Description
This instruction scans the bits of src! from the LSB upwards. If all
the bits are 0 then ZF is set. Otherwise, ZF is cleared and dst is set
to the index of the least set bit.
Flags:
OF SF 7F AF PF
U U M U U
CF TF IF DF NT
U
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BSR Bit Scan Reverse
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BSR mem, reg
BSF reg, reg
Pseudo:
AT&T
BSR srcl, dst
Description

This instruction scans the bits of srcl from the MSB downwards. If
all the bits are 0 then ZF is set. Otherwise, ZF is cleared and dst is
set to the index of the greatest set bit.

Flags:
OF SF ZF AF PF
U U M U U
CF TF IF DF NT
U

BSWAP Byte Swap

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X

Formats:
AT&T

BSWAP reg

Pseudo:
AT&T

BSWAP dst

Description
This instruction swaps the top and middle nibles of dst. The result

is the conversion of a 32 bit big endian number to a little endian
number or vice versa. WARNING: The result of this operation is

undefined on a 16 bit operand.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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BT Bit Test
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BT imm, reg
BT imm, mem
BT reg, reg
BT reg, mem
Pseudo:
AT&T
BT srcl, src2
Description
This instruction stores bit srcl of src¢2 in CF.
Flags:
OF SF 7F AF PF
U U U U U
CF TF IF DF NT
M
BTC Bit Test and Complement
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BTC imm, reg
BTC imm, mem
BTC reg, reg
BTC reg, mem
Pseudo:
AT&T
BTC srcl, dst
Description
This instruction stores bit src1 of dst in CF and then complements
the bit in dst.
Flags:
OF SF 7F AF PF
U U U U U
CF TF IF DF NT
M
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BTR Bit Test and Reset
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BTR imm, reg
BTR imm, mem
BTR reg, reg
BTR reg, mem
Pseudo:
AT&T
BTR srcl, dst
Description
This instruction stores bit src! of dst in CF and then sets the bit in
dst to 0.
Flags:
OF SF ZF AF PF
U U U U U
CF TF IF DF NT
M
BTS Bit Test and Set
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
BTS imm, reg
BTS imm, mem
BTS reg, reg
BTS reg, mem
Pseudo:
AT&T
BTS srcl, dst
Description
This instruction stores bit srcl of dst in CF and then sets the bit in
dst to 1.
Flags:
OF SF ZF AF PF
U U U U U
CF TF IF DF NT
M




B.2. INSTRUCTIONS

CALL Call Procedure or Function

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X
Formats:
AT&T
CALL reg
CALL mem
CALL ofs
CALL ptr
Pseudo:
AT&T
CALL dst
Description
This instruction pushes the current location onto the stack and then
jumps to dst. In the case of near destinations (reg, mem, ofs) only
the IP or EIP is pushed onto the stack. Far calls (ptr) push CS be-
fore TP or EIP.
Far calls may be used to access routines at a higher protection level
through call gates or a task gate.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

89
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CBW Convert Byte to Word
CBTW  Convert Byte to Word (AT&T Only)
CWDE  Convert Word to Doubleword
CBTL Convert Byte to Long (AT&T Only)
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
CBW
CBTW
CWDE
CBTL
Pseudo:
AT&T
CBW
CBTW
CWDE
CBTL
Description
CBW places the sign extended form of the %al register into %az.
CWDE places the sign extended form of the %azr register into
%eax. AT&T compilers provide to additional synonyms: CBTW
and CBTL.
Flags:
OF SF ZF AF PF

CF TF IF DF NT
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CLC Clear Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
CLC
Pseudo:
AT&T
CLC
Description
This instruction sets CF to 0.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
0
CLD Clear Direction Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
CLD
Pseudo:
AT&T
CLD
Description
This instruction sets DF to 0.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
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CLI Clear Interrupt Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

CLI

Pseudo:
AT&T

CLI

Description
If the current privelege is equal to or more priveleged than IOPL

then this instruction sets IF to 0.

Flags:
OF SF 7F AF PF
CF TF IF DF NT
0

CLTS Clear Task-Switched Flag in CRO

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

CLTS

Pseudo:
AT&T

CLTS
Description
This instruction sets TS in %cr0 to 0.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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CMC Complement Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
CMC
Pseudo:
AT&T
CMC
Description
This instruction complements CF.
Flags:
OF SF 7F AF PF
CF TF IF DF NT
M
CMP Compare Two Operands
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
CMP imm, mem
CMP reg, mem
CMP imm, reg
CMP mem, reg
CMP reg, reg
Pseudo:
AT&T
CMP srcl, src2
Description
This instruction performs the function src2 — srcl setting the flags
in accordance with the result. The result of the subtraction is NOT
stored.
Flags:
OF SF 7F AF PF
M M M M M
CF TF IF DF NT
M
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CMPS Compare String Operands
CMPSB Compare String Operands
CMPSW Compare String Operands
CMPSD Compare String Operands

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

CMPS mem, mem
CMPSB
CMPSW
CMPSD

Pseudo:
AT&T

CMPS srcl, src2
CMPSB
CMPSW
CMPSD

Description
This instruction compares two elements of a string pointed to by the

source and destination registers.

The no operand form of the instruction subtracts %es:(%edi) from
%ds:(%esi) and sets the flags appropriately. The result of the sub-
traction is NOT stored. The registers %esi and %edi are incremented
by the number of bytes of the operand size if DF is 0. If DF is 1 then
the source and destination registers are decremented by the number
of bytes of the operand size.

The two operand form of the instruction operates similarly. The
length of the operands is determined by the size of src2 and the
segment refered to by the source index is determined by the segment
prefix of src2. If no segment prefix is given then %ds is assumed.

Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M T
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CMPXCHGompare and Exchange

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T

CMPXCHG reg, reg
CMPXCHG reg, mem

Pseudo:
AT&T

CMPXCHG srcl, dst
Description
This instruction compares the accumulator - %al, %az, %eax - with
dst. The flags are set in accordance with the result of the comparison.
If ZF is set then srcl is copied into dst. Otherwise, dst is copied into
the accumulator.

Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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Convert Word to Doubleword

CWTD  Convert Word to Doubleword (AT&T Only)

CDQ Convert Doubleword to Quadword
CLTD Convert Long to Quadword (AT&T Only)
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
CWD
CDhQ
Pseudo:
AT&T
CWD
CWTD
CDQ
CLTD
Description
CWD places the sign extended form of the %az register in the register
pair %dz:%ax. CDQ places the sign extended form of the %eaz
register in the register pair %edz:%eazr. AT&T
compilers provide to additional synonyms: CWTD and CLTD.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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DAA Decimal Adjust AL after Addition

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

DAA

Pseudo:
AT&T

DAA

Description
This instruction is used after an ADD instruction which takes two

byte size packed BCD numbers as its operands and leaves the byte
size result in the %al register. The DAA instruction adjusts %al to
contain the correct packed BCD result.

Flags:
OF SF 7F AF PF
U M M ™ M
CF TF IF DF NT
™
DAS Decimal Adjust AL after Subtraction
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
DAS
Pseudo:
AT&T
DAS
Description
This instruction is used after a SUB instruction which takes two
byte size packed BCD numbers as its operands and leaves the byte
size result in the %al register. The DAS instruction adjusts %al to
contain the correct packed BCD result.
Flags:
OF SF 7F AF PF
U M M ™ M
CF TF IF DF NT
™
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DEC Decrement by 1

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

DEC mem
DEC reg

Pseudo:
AT&T

DEC dst
Description
This instruction subtracts 1 from ds¢t. Note that CF is not affected
by this instruction.
Flags:

OF SF ZF AF PF
M M M M M

CF TF IF DF NT
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DIV Unsigned Divide
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

DIV mem, %al
DIV mem, %ax
DIV mem, %eax
DIV reg, %al
DIV reg, %ax
DIV reg, %eax
DIV mem

DIV reg

Pseudo:

AT&T
DIV srcl, dst
DIV srcl

Description

This instruction performs unsigned division on the extended register
pair of dst by dividing by src! leaving the result in the extended
register pair dst. The extended register pairs of the accumulators
are: %eds:%eax for %eax; %dx:%ax for %ax; and %ax for %al.

The single operand form of this instruction divides the extended
register pair of the accumulator - determined by the size of the size
modifier of the opcode - by srei.

Flags:

OF SF ZF AF PF
U U U U U
CF TF IF DF NT
U
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ENTER Make a Stack Frame
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

ENTER imm, imm

Pseudo:
AT&T

ENTER rsv, vl

Description
This instruction creates a stack frame suitable for many high level

languages. The two operands are: rsv the number of bytes to reserve
for local variables, and vl the lexical nesting level of the procedure.
If Il is zero then the operations performed are:

e push the current base pointer

e set the base pointer to equal the frame pointer (the value of
the stack pointer after the base pointer was pushed)

e subtract rsv from the current stack pointer.
If lvl is not zero then the operations performed are:
e push the current base pointer
e push /vl modulo 32 minus one links to previous stack frames

e push the frame pointer (the value of the stack pointer after the
base pointer was pushed)

e set the base pointer to equal the frame pointer
e subtract rsv from the current stack pointer.

Note: The frame pointer is a name for a value of the stack pointer.

The frame pointer is NOT a register.
Flags:

OF SF ZF AF PF

CF TF IF DF NT




B.2. INSTRUCTIONS 101

F2XM1 Compute 2% —1

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

F2XM1

Pseudo:
AT&T

F2XM1
Description
This instruction computes 2°7 — 1 where —1 < ST < 1 and places

the result in ST.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FABS Absolute Value

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FABS

Pseudo:
AT&T

FABS
Description
This instruction computes |ST| and places the result in ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FADD Add
FADDP Add
FIADD Add

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FADD m32real
FADD m64real
FADD ST(i), ST
FADD ST, ST(i)
FADDP ST, ST(i)
FADD

FIADD m32int
FIADD m16int

Pseudo:
AT&T

FADD srcl
FADD srcl, dst
FADDP srcl, dst
FADD

FIADD srcl

Description
These instructions add dst and srcl. The result is placed in dst.

The no operand form and FADDP are equivalent and both pop ST
off the FPU stack after completing the addition. The one operand

form adds ST to srcl.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FBLD Load Binary Coded Decimal

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FBLD m&0dec

Pseudo:
AT&T

FBLD srcl

Description
This instruction takes a BCD number - src! - and converts it into

an extended-real format number. The result is pushed onto the FPU

stack.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FBSTP  Store Binary Coded Decimal and Pop

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FBSTP m80dec

Pseudo:
AT&T

FBSTP dst

Description
This instruction takes ST and converts it to a packed decimal integer.

The result is stored at src! and the FPU stack is poped. If ST is not
an integer then it is rounded in accordance with RC in the control

word.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FCHS Change Sign

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FCHS
Pseudo:
AT&T
FCHS
Description
This instruction computes —ST' and places the result in ST.
Flags:
OF SF ZF AF PF
CF TF IF DF NT

FCLEX  Clear Exceptions
FNCLEX Clear Exceptions

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FCLEX
FNCLEX

Pseudo:
AT&T

FCLEX
FNCLEX

Description
These instructions clear the exception flags, the exception status flag

and the busy flag of the FPU status word. FCLEX checks for un-
masked error conditions before acting. FNCLEX acts irrespective of

existing error conditions.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FCOM

Compare Real

FCOMP Compare Real
FCOMPP Compare Real

Flow

Int | Float | Multi | IO

X

Formats:

AT&T

FCOM m32real
FCOM m64real
FCOM ST(i)
FCOMP m32real
FCOMP m64real
FCOMP ST(i)
FCOMP
FCOMPP

Pseudo:

AT&T
FCOM srcl
FCOM
FCOMP srcl
FCOMP
FCOMPP

Description

These instructions compare two real numbers: ST and src1. The no
operand form compares ST and ST(1). The FPU flags Cy, Cs, C3
are set in accordance with the result (as shown in the table below).
FCOMP and FCOMPP pop the FPU stack on completion of the

comparison.
CoC2C3
ST > srcl 000
ST < srcl 100
ST = srcl 001
Not Comparable 111

Flags:

OpSys

386

387

486

OF SF

ZF

AF

PF

CF TF

IF

DF

NT
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FCOS Cosine

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FCOS

Pseudo:
AT&T

FCOS
Description
This instruction computes cos(ST) where ST is in radians and
—203 « ST < 253, The result is placed in ST.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FDECSTPDecrement Stack-Top Pointer

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FDECSTP

Pseudo:
AT&T

FDECSTP

Description
This instruction decrements the FPU stack pointer. If the FPU stack

pointer is pointing to ST(0) then FDECSTP changes the FPU stack

pointer to point to ST(7).
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FDIV Divide
FDIVP Divide
FIDIV Divide
Flow | Int | Float | Multi | IO
X
Formats:
AT&T

FDIV m32real
FDIV m64real

FDIV ST(i), ST
FDIV ST, ST(i)
FDIVP ST, ST(i)

FDIV

FIDIV m32int
FIDIV m16int

Pseudo:

Descr

Flags:

AT&T

FDIV srcl

FDIV srcl, dst

FDIVP srcl, dst

FDIV

FIDIV srcl

iption

These instructions divide dst by srcl. The result is placed in dst.
The no operand form and FDIVP are equivalent and both pop ST
off the FPU stack after completing the division. The one operand
form divides ST by srcf.

OpSys

386

387

486

OF

SF

ZF

AF

PF

CF

TF

IF

DF

NT
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FDIVR Reverse Divide
FDIVPR Reverse Divide
FIDIVR Reverse Divide

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FDIVR m32real
FDIVR m64real
FDIVR ST(i), ST
FDIVR ST, ST(i)
FDIVRP ST, ST(i)
FDIVR

FIDIVR m32int
FIDIV ml6int

Pseudo:
AT&T

FDIVR srcl
FDIVR srcl, dst
FDIVRP srcl, dst
FDIVR

FIDIVR srcl

Description
These instructions divide src1 by dst. The result is placed in dst.

The no operand form and FDIVRP are equivalent and both pop ST
off the FPU stack after completing the division. The one operand

form divides src1 by ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FFREE Free Floating-Point Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FFREE ST(i)

Pseudo:
AT&T

FFREE dst
Description
This instruction sets the tag of the destination register to empty.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FICOM Compare Integer
FICOMP Compare Integer

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FICOM m1l6real
FICOM m32real
FICOMP ml6int
FICOMP m32int

Pseudo:
AT&T
FICOM srcl
FICOMP srcl
Description
These instructions compare two integer numbers: ST and srcl. The
FPU flags Cy, Cy, Cs5 are set in accordance with the result (as shown
in the table below). FICOMP pops the FPU stack on completion of
the comparison.
CoC2C5
ST > srcl 000
ST < srel 100
ST = srcl 001
Not Comparable 111
Flags:

OF SF 7F AF PF

CF TF IF DF NT




B.2. INSTRUCTIONS 111

FILD Load Integer

Flow | Int | Float | Multi | TO [ OpSys | 386 | 387 | 486
X X X
Formats:
AT&T

FILD m16int
FILD m32int
FILD m64int

Pseudo:
AT&T
FILD srcl
Description
This instruction converts srcl to extended-real format and pushes it
onto the FPU stack.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

FINCSTP Increment Stack-Top Pointer

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FINCSTP

Pseudo:
AT&T

FINCSTP

Description
This instruction increments the FPU stack pointer. If the FPU stack

pointer is pointing to ST(7) then FINCSTP changes the FPU stack

pointer to point to ST(0).
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FINIT Initialize Floating-Point Unit
FNINIT Initialize Floating-Point Unit

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FINIT
FNINIT

Pseudo:
AT&T

FINIT
FNINIT
Description

These instructions set the FPU into the state:

e Round to nearest

e Mask all exceptions

64-bit precision

All exception flags clear

Stack register set to top of stack.
e All stack registers tagged empty.
e Instruction and data error pointers cleared.

The FINIT form checks for unmasked floating point errors before
acting. The FNINIT instruction acts without checking for error con-

ditions.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FIST Store Integer
FISTP Store Integer
Flow | Int | Float | Multi | IO OpSys
X
Formats:
AT&T

FIST m16int
FIST m32int
FISTP ml6int
FISTP m32int
FISTP m64int

Pseudo:
AT&T

FIST dst
FISTP dst
Description

These instructions convert ST into a signed integer and store the
result in dst. The FISTP form pops the FPU stack after storing the

386

387

486

result.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
FLD Load Real
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FLD m32real
FLD m64real
FLD m80real
FLD ST(i)

Pseudo:
AT&T

FLD srcl
Description

This instruction pushes the real number srcl onto the FPU stack.

Flags:

OF SF ZF AF

PF

CF TF IF DF

NT
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FLD1 Load Constant +1.0
FLDL2T Load Constant log, 10
FLDL2E Load Constant log,e
FLDP1 Load Constant 7
FLDLG2 Load Constant log;,2
FLDLN2 Load Constant log, 2
FLDZ Load Constant +0.0

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FLDtt
Pseudo:
AT&T
FLDtt
Description
These instructions push a real number constant onto the FPU stack.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

FLDCW Load Control Word

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FLDCW m2byte

Pseudo:
AT&T

FLDCW srcl

Description
This instruction sets the FPU control word to the contents of the

memory location srcl.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FLDENYV Load FPU Environment

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FLDENV m14/28byte
Pseudo:
AT&T
FLDENYV srcl
Description

This instruction loads the FPU environment with the contents of the
memory block at srcl.

The structure of the memory block consists of an FPU control word,
an FPU status word, a tag word, and the data and instruction er-
ror pointers. The size of the environment depends on the default
operand size and the current processor operating mode. Typically,
the data loaded by this instruction has been stored by an FSTENV

or FNSTENYV instruction.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FMUL Multiply
FMULP Multiply
FIMUL  Multiply

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FMUL m32real
FMUL m64real
FMUL ST(i), ST
FMUL ST, ST(i)
FMULP ST, ST(i)
FMUL

FIMUL m32int
FIMUL m1l6int

Pseudo:
AT&T

FMUL srcl
FMUL srcl, dst
FMULP srcl, dst
FMUL

FIMUL srcl

Description
These instructions multiply dst and src1. The result is placed in dst.

The no operand form and FMULP are equivalent and both pop ST
off the FPU stack after completing the addition. The one operand

form multiplies ST by srcl.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FNOP No Operation

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FNOP
Pseudo:
AT&T
FNOP
Description
This instruction performs no operation.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

FPATAN Partial Arctangent

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FPATAN

Pseudo:
AT&T

FPATAN
Description
This instruction computes arctan(ST(1)/ST) and places the com-
puted value (in radians) in ST(1). ST is then popped.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FPREM Partial Remainder

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FPREM

Pseudo:
AT&T

FPREM

Description
This instruction computes the remainder from the division of ST by

ST(1). The result is stored in ST. Note that the sign of ST is not

altered by this operation.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FPREM1 Partial Remainder

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FPREM1

Pseudo:
AT&T

FPREM1

Description
This instruction computes the remainder from the division of ST by

ST(1). The result is stored in ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FPTAN Partial Tangent

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FPTAN

Pseudo:
AT&T

FPTAN
Description
This instruction computes tan(ST) where —2%3 < ST < 263 and

places the computed value in ST. 1.0 is then pushed onto the stack.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FRNDINTRound to Integer

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FRNDINT

Pseudo:
AT&T

FRNDINT

Description
This instruction rounds ST to an integer. The method of rounding

is determined by RC in the FPU control word.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FRSTOR Restore FPU State

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FRSTOR m94/108byte

Pseudo:
AT&T

FRSTOR srcl

Description
This instruction restores the FPU state from a memory block located

at srcl.

The structure of the memory block consists of an FPU control word,
an FPU status word, a tag word, the data and instruction error point-
ers, and the stack registers ST to ST(7). The size of the environment
depends on the default operand size and the current processor op-
erating mode. Typically, the data restored by this instruction has
been stored by an FSAVE or FNSAVE instruction.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSAVE Store FPU State
FNSAVE Store FPU State

Flow | Int | Float | Multi | IO [ OpSys | 386 | 387 | 486
X X X
Formats:
AT&T

FSAVE m94/108byte
FNSAVE m94/108byte

Pseudo:
AT&T

FSAVE dst
FNSAVE dst

Description
This instruction stores the FPU state from a memory block located

at dst. The FPU is then initialized.

The structure of the memory block consists of an FPU control word,
an FPU status word, a tag word, the data and instruction error point-
ers, and the stack registers ST to ST(7). The size of the environment
depends on the default operand size and the current processor oper-
ating mode. Typically, the data stored by this instruction is restored
by an FRSTOR instruction.

The FNSAVE form does not check for unmasked floating point errors

before acting. The FSAVE form checks for errors before acting.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSCALE Scale

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FSCALE
Pseudo:
AT&T
FSCALE
Description
This instruction computes ST x 257() and stores the result in ST.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

FSIN Sine

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FSIN

Pseudo:
AT&T

FSIN
Description
This instruction computes sin(S7T) where ST is in radians and
—203 « ST < 253, The result is placed in ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSINCOS Sine and Cosine

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FSINCOS
Pseudo:
AT&T
FSINCOS
Description
This instruction computes sin(ST) and cos(ST) where ST is in radi-
ans and —253 < ST < 293, The result of the sine function is placed
in ST and then the result of the cosine operation is pushed onto the
FPU stack.
Flags:
OF SF 7F AF PF
CF TF IF DF NT
FSQRT Square Root
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FSQRT
Pseudo:
AT&T
FSQRT
Description
This instruction computes v/ST and places the result is ST.
Flags:
OF SF 7F AF PF
CF TF IF DF NT
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FST Store Real
FSTP Store Real
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FST m32real
FST m64real
FST ST(i)
FSTP m32real
FSTP m64real
FSTP m80real
FSTP ST(i)

Pseudo:
AT&T

FST dst
FSTP dst

Description
These instructions store ST in dst. FSTP pops the FPU stack after
performing the store operation.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSTCW Store Control Word
FNSTCW Store Control Word

Flow | Int | Float | Multi | IO [ OpSys | 386 | 387 | 486
X X X
Formats:
AT&T

FSTCW m2byte
FNSTCW m2byte

Pseudo:
AT&T

FSTCW dst
FNSTCW dst
Description
This instruction stores the FPU control word at the memory location

dst.
Flags:

OF SF ZF AF PF

CF TF IF DF NT




126 APPENDIX B. INSTRUCTION SET

FSTENV Store FPU Environment
FNSTENVStore FPU Environment

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FSTENV m14/28byte
FNSTENV m14/28byte

Pseudo:
AT&T

FSTENV dst
FNSTENYV dst

Description
These instructions store the FPU environment in the memory block

at dst and then masks all floating point exceptions.

The structure of the memory block consists of an FPU control word,
an FPU status word, a tag word, and the data and instruction er-
ror pointers. The size of the environment depends on the default
operand size and the current processor operating mode. Typically,
the data stored by this instruction is restored by an FLDENYV in-
struction.

The FNSTENV form does not check for unmasked floating point
errors before acting. The FSTENYV form checks for errors before
acting.

Flags:

OF SF 7F AF PF

CF TF IF DF NT




B.2. INSTRUCTIONS

FSTSW  Store Status Word
FNSTSW Store Status Word

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
FSTSW m2byte
FSTSW

FNSTSW m2byte
FNSTSW %ax

Pseudo:
AT&T

FSTSW dst
FSTSW
FNSTSW dst

Description
These instructions store the FPU status word in dst.

The FNSTSW form does not check for unmasked floating point errors

before acting. The FSTSW form checks for errors before acting.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSUB Subtract
FSUBP Subtract
FISUB Subtract

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FSUB m32real
FSUB m64real
FSUB ST(i), ST
FSUB ST, ST(i)
FSUBP ST, ST(i)
FSUB

FISUB m32int
FISUB m16int

Pseudo:
AT&T

FSUB srcl
FSUB srcl, dst
FSUBP srcl, dst
FSUB

FISUB srcl

Description
These instructions subtracts srcl from dst. The result is placed in

dst. The no operand form and FSUBP are equivalent and both pop
ST off the FPU stack after completing the subtraction. The one

operand form subtracts srcl from ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FSUBR Reverse Subtract
FSUBPR Reverse Subtract
FISUBR Reverse Subtract

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

FSUBR m32real
FSUBR m64real
FSUBR ST(i), ST
FSUBR ST, ST(i)
FSUBRP ST, ST(i)
FSUBR

FISUBR m32int
FISUBR m16int

Pseudo:
AT&T

FSUBR srcl
FSUBR srcl, dst
FSUBRP srcl, dst
FSUBR

FISUBR srcl

Description
These instructions subtracts dst from src1. The result is placed in

dst. The no operand form and FSUBRP are equivalent and both
pop ST off the FPU stack after completing the subtraction. The one

operand form subtracts ST from src1 and places the result in ST.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FTST Test
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X

Formats:
AT&T

FTST

Pseudo:
AT&T

FTST

Description
This instruction compares ST to 0.0. The FPU flags Cy, C5y, Cs are

set in accordance with the result (as shown in the table below).

CoCoC3
ST > 0.0 000
ST < 0.0 100
ST =0.0 001
Not Comparable 111

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FUCOM Unordered Compare Real
FUCOMP Unordered Compare Real
FUCOMPPRInordered Compare Real

Flow | Int | Float | Multi

I0

X

Formats:

AT&T
FUCOM ST(i)
FUCOM
FUCOMP ST(i)
FUCOMP
FUCOMPP

Pseudo:

AT&T
FUCOM srcl
FUCOM
FUCOMP srcl
FUCOMP
FUCOMPP
Description

Flags:

These instructions compare two real numbers: ST and src1. The no
operand form compares ST and ST(1). The FPU flags Cy, Cs, Cs
are set in accordance with the result (as shown in the table below).
FUCOMP and FUCOMPP pop the FPU stack on completion of the

comparison.

OpSys

386

387

486

Co(C2C5
ST > srcl 000
ST < srcl 100
ST = srcl 001
Not Comparable 111
OF SF ZF AF PF
CF TF IF DF NT
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FWAIT Wait

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FWAIT

Pseudo:
AT&T

FWAIT
Description
This instruction checks for pending unmasked floating point excep-
tions before proceeding.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

FXAM Examine

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FXAM

Pseudo:
AT&T

FXAM

Description
This instruction sets the FPU flags in accordance with the type of

object in ST:

CyCsyC
Unsupported | 000
NaN 100
Normal 010
Infinity 110
Zero 001
Empty 101
Denormal 011

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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FXCH Exchange Register Contents

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FXCH ST(i)
FXCH

Pseudo:
AT&T

FXCH dst
FXCH
Description
This instruction swaps ST and dst. The no operand form of the
instruction swaps ST and ST(1).
Flags:

OF SF 7F AF PF

CF TF IF DF NT

FXTRACTExtract Exponent and Significand

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FXTRACT

Pseudo:
AT&T

FXTRACT
Description
This instruction computes the exponent of ST and the significand of
ST. The exponent is stored in ST and the significand is pushed onto

the FPU stack.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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FYL2X  Compute y x log, x

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FYL2X

Pseudo:
AT&T

FYL2X
Description
This instruction computes ST(1) xlog, ST, places the result in ST (1)

and pops the FPU stack. Note: ST must not be negative.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

FYL2XP1 Compute y X log,(z + 1)

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

FYL2XP1

Pseudo:
AT&T

FYL2XP1

Description
This instruction computes ST (1) x logy (ST + 1.0), places the result

in ST(1) and pops the FPU stack. Note: ST must have the property
—(1-(v2/2)) < ST <Vv2-1.

OF SF ZF AF PF

Flags:

CF TF IF DF NT
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HLT Halt
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

HLT

Pseudo:
AT&T

HLT

Description
This instruction places the processor into a HALT state. No instruc-

tions are executed until either an enabled interrupt, an NMI or a
processor reset occurs. If execution is resumed by an interrupt, then

Fl the address of the instruction after the HLT is stored on the stack.
ags:

OF SF 7F AF PF

CF TF IF DF NT
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IDIV Integer Divide
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
IDIV mem
IDIV reg

IDIV mem, %ax
IDIV reg, %ax
IDIV mem, %eax
IDIV reg, %eax

Pseudo:
AT&T
IDIV srcl
IDIV srcl, dst
Description
This instruction performs a signed division on the extended register
pair of dst by dividing by srcl leaving the quotient of the result in
the lower half of the extended register pair dst and the remainder in
the upper half of the extended register pair dst. The extended reg-
ister pairs of the accumulators are: %edz:%eax for %eax; %dx:%ax
for %az; and %azx for %al.
The single operand form of this instruction divides the extended
register pair of the accumulator - determined by the size of the size
modifier of the opcode - by srei.
Note: that the remainder has the sign as the dividend and that the
magnitude of the remainder is always less than the magnitude of the
divisor.
Flags:
OF SF 7F AF PF
U U U U U
CF TF IF DF NT
U
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IMUL

Integer Multiply

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

X

Formats:

AT&T

IMUL mem

IMUL reg

IMUL reg, reg

IMUL mem, reg
IMUL imm, reg
IMUL imm, reg, reg
IMUL imm, mem, reg

Pseudo:

AT&T

IMUL srcl

IMUL srcl, dst

IMUL srcl, src2, dst
Description

Flags:

This instruction performs a signed multiplication on two integer val-
ues.

The single operand form multiplies the lower half of the extended
register pair of the accumulator by srcl leaving the result in the ex-
tended register pair of the accumulator. The extended register pairs
of the accumulators are: %edz:%eax for %eax; %dx:%azx for %ax;
and %ax for %al.

The two operand form multiplies dst by srcl and leaves the result in
dst.

The three operand form multiplies src2 by src! leaving the result in
dst.

OF SF ZF AF PF
M U U U U
CF TF IF DF NT
M
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IN Input from Port
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
IN imm, %al

IN imm, %ax
IN imm, %eax
IN %dx, %al

IN %dx, %ax
IN %dx, %eax

Pseudo:
AT&T
IN srcl, dst
Description
This instruction transfers a byte, word or double word from a port
in the 10 address space. Only the first 256 ports may be accessed
using an immediate constant. The ports from 255 to 65535 must be
accessed by loading %dz with the port number.
Flags:
OF SF 7F AF PF
CF TF IF DF NT
INC Incrememnt by 1
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
INC mem
INC reg
Pseudo:
AT&T
INC dst
Description
This instruction adds 1 to dst. Note that CF is not affected by this
instruction.
Flags:
OF SF 7F AF PF
M M M M M

CF TF IF DF NT
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INS
INSB

Input from Port to String
Input from Port to String

INSW Input from Port to String

INSD Input from Port to String
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

INS %dx, reg
INS %dx, mem
INSB

INSW

INSD

Pseudo

AT&T

INS srcl, dst

INSB

INSW

INSD
Description

Flags:

These instructions transfer a byte, word or double word from a port
in the IO address space to %es: %edi. Only the first 256 ports may be
accessed using an immediate constant. The ports from 255 to 65535
must be accessed by loading %dx with the port number.

In the two operand form the size of the transfer is determined by the
size of dst. The no operand form implicitly determines the size of

the operation.

After the transfer is completed and if DF is 0 then %edi is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

OF SF ZF AF PF
CF TF IF DF NT
T

139



140 APPENDIX B. INSTRUCTION SET

INT Call Interrupt Procedure
INTO Call Interrupt Procedure
INT3 Call Interrupt Procedure

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

INT imm
INT3
INTO

Pseudo:
AT&T

INT dst
INT3
INTO

Description
These instructions generate an interrupt via software. In the case

of the one operand form interrupt dst is generated. INT3 generates
interrupt 3. INTO generates interrupt 4 if the overflow flag is set.

Flags:
OF SF ZF AF PF
T
CF TF IF DF NT
0 0

INVD Invalidate Cache
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

INVD

Pseudo:
AT&T

INVD

Description
This instruction flushes the internal cache and issues a special bus

cycle which indicates that external caches should be flushed. Note:

Data in external write-back caches is discarded.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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INVLPG Invalidate TLB Entry

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X

Formats:
AT&T

INVLPG mem

Pseudo:
AT&T

INVLPG srcl

Description
This instruction invalidates an entry in the translation look aside

buffer (TLB) if it maps the address of src1.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

IRET Interrupt Return
IRETD  Interrupt Return

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

IRET
IRETD

Pseudo:
AT&T

IRET
IRETD

Description
These instructions return the flow of control, at the end of an inter-

rupt handler, to the location where the interrupt occured.

This instruction may be used to change privelege level and task.

Flags:
OF SF ZF AF PF
R R R R R
CF TF IF DF NT
R R R R T
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JA Jump if above (CF =0-ZF =0)
JAE Jump if above or equal (CF = 0)
JB Jump if below (CF =1)
JBE Jump if below or equal (CF =1+ ZF = 1)
JC Jump if carry (CF = 1)
JCXZ Jump if CX register is 0
JECXZ Jump if ECX register is 0
JE Jump if equal (ZF =1)
JZ Jump if zero (ZF =1)
JG Jump if greater (ZF =0-SF = OF)
JGE Jump if greater or equal (SF = OF)
JL Jump if less (SF # OF)
JLE Jump if less or equal (ZF =1+ SF # OF)
JNA Jump if not above (CF =1+ ZF =1)
JNAE Jump if not above or equal (CF =1)
JNB Jump if not below (CF = 0)
JNBE Jump if not below or equal (CF =0-ZF =0)
JNC Jump if not carry (CF = 0)
JNE Jump if not equal (ZF = 0)
JNG Jump if not greater (ZF =1+ SF # OF)
JNGE Jump if not greater or equal (SF # OF)
JNL Jump if not less (SF = OF)
JNLE Jump if not less or equal (ZF =0-SF = OF)
JNO Jump if not overflow (OF = 0)
JNP Jump if not parity (PF =0)
JNS Jump if not sign (SF = 0)
JNZ Jump if not zero (ZF = 0)
JO Jump if overflow (OF = 0)
JP Jump if parity (PF =1)
JPE Jump if parity even (PF =1)
JPO Jump if parity odd (PF = 0)
JS Jump if sign (SF =1)
JZ Jump if zero (ZF =1)
Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486

X X X
Formats:

AT&T
Jee ofs

Pseudo:

AT&T
Jee dst
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Description
These instructions test flags and generate a relative jump to the

current EIP if the condition is satisfied.

Flags:
OF SF ZF AF PF
T T T T
CF TF IF DF NT
T
JMP Jump
Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X X
Formats:
AT&T
JMP reg
JMP mem
JMP ofs
JMP ptr
Pseudo:
AT&T
JMP dst
Description
This instruction generates an unconditional jump to a memory loca-
tion. The memory location may be relative to the current location,
or absolute.
This instruction may be used to change privelege level or task.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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LAHF Load Flags into AH Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
LAFH
Pseudo:
AT&T
LAFH
Description
This instruction copies the low byte of the flags word to %ah.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
LAR Load Access Rights Byte
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
LAR reg, reg
LAR mem, reg
Pseudo:
AT&T
LAR srcl, dst
Description
This instruction loads a masked version of the access rights bits in-
dicated by the descriptor srci. If the descriptor is valid, within the
descriptor limits, and visible at the current privelege level then the
access rights byte masked by 00FxFF00 hex (where x is undefined) is
stored in dst and ZF cleared. Otherwise, ZF is set. If the destination
register is 16 bits wide then the lower 2 bytes of the masked access
rights are stored.
Flags:
OF SF ZF AF PF
M

CF TF IF DF NT




B.2. INSTRUCTIONS 145

LEA Load Efective Address
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
LEA mem, reg
Pseudo:
AT&T
LEA srcl, dst
Description
This instruction calculates the effective address of src! and stores it
in dst.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

LEAVE High Level Procedure Exit
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

LEAVE

Pseudo:
AT&T

LEAVE

Description
This instruction returns a stack to the state equivalent to the state

of the stack prior to the use of an ENTER instruction. It frees local
memory, removes links to prior lexical nesting levels and restores the
frame pointer. LEAVE moves %bp or %ebp to %sp or %esp and pops

the old frame pointer into %bp or %ebp.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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LGDT Load Global Descriptor Table Register
LIDT Load Interrupt Descriptor Table Register

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

LGDT mem
LIDT mem

Pseudo:
AT&T

LGDT srcl
LIDT srcl

Description
These instructions loads the appropriate descriptor table register

with base and limit from memory. LGDT loads the global descriptor
table register. LIDT loads the interrupt descriptor table register.

Flags:
OF SF 7F AF PF
CF TF IF DF NT
LDS Load Full Pointer
LES Load Full Pointer
LFS Load Full Pointer
LGS Load Full Pointer
LSS Load Full Pointer
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X
Formats:
AT&T
Lss mem, reg
Pseudo:
AT&T
Lss srcl, dst
Description
These instructions load the register dst from the effective address of
srcl and then loads the appropriate segment register (ss) from the
16 bits following the value transfered to the register dst.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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LLDT Load Local Descriptor Table Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

LLDT mem

Pseudo:
AT&T

LLDT srcl
Description
This instruction loads the local descriptor table register with a se-
lector, srci, from the GDT. If selector 0 is loaded then the local

descriptor table register is marked invalid.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

LMSW Load Machine Status Word

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

LMSW reg
LMSW mem

Pseudo:
AT&T

LMSW srcl

Description
This instruction loads the low 16 bits of CR0O with the contents of

srcl. This instruction is provided for compatibility with the 286.
Note that this instruction will not switch the processor out of pro-

tected mode.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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LOCK Assert LOCK# Signal Prefix
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

LOCK

Pseudo:
AT&T

LOCK

Description
This instruction causes the LOCK# signal of the 486 processor to

be asserted during the instruction that follows it. The LOCK prefix
may only be followed by the following:

Instruction Operating On
BTC, BTR, BTS reg/mem, mem
XCHG mem, reg
XCHG reg, mem
ADD, ADC, AND, OR, SBB, SUB, XOR | reg/imm, mem
DEC, INC, NEG, NOT mem

Flags:

OF SF 7F AF PF

CF TF IF DF NT
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LODS

Load String Operand

LODSB Load String Operand
LODSW Load String Operand
LODSD Load String Operand

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

X

Formats:

AT&T
LODS mem
LODS
LODSB
LODSW
LODSD

Pseudo:

AT&T
LODS srcl
LODSB
LODSW
LODSD
Description

Flags:

This instruction loads the accumulator from the memory location
pointed to by the source index register.

In the one operand form the size of the transfer is determined by the
size of src1. The no operand form implicitly determines the size of
the operation.

After the transfer is completed and if DF is 0 then %edi is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

OF SF 7F AF PF
CF TF IF DF NT
T

149



150 APPENDIX B. INSTRUCTION SET

LOOP Loop if ECX not equal to 0

LOOPE Loop if ECX not equal to 0 and ZF =1
LOOPZ Loop if ECX not equal to 0 and ZF =1
LOOPNE Loop if ECX not equal to 0 and ZF = 0
LOOPNZ Loop if ECX not equal to 0 and ZF = 0
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:

AT&T

LOOPc ofs
Pseudo:

AT&T

LOOPc dst
Description

This instruction decrements %ecz. It performs a relative jump to dst
if the condition is met.

Flags:
OF SF ZF AF PF
T
CF TF IF DF NT
LSL Load Segment Limit
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
LSL mem, reg
LSL reg, reg
Pseudo:
AT&T
LSL srcl, dst
Description
This instruction loads dst with the segment limit of the descriptor
indicated by src! provided that the descriptor is visible at the current
privelege level, valid, and within descriptor table limits.
Flags:
OF SF 7F AF PF
M

CF TF IF DF NT
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LTR Load Task Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

LTR reg
LTR mem

Pseudo:
AT&T

LTR srcl
Description
This instruction loads the task register with the contents of src1 and

marks the loaded TSS busy. A task switch does not occur.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

MOV Move Data

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

MOV imm, mem
MOV reg, mem
MOV imm, reg
MOV mem, reg
MOV reg, reg

Pseudo:
AT&T

MOV srcl, dst
Description
This instruction copies the contents of src1 to dst.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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MOV Move to/from Segment Registers

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X
Formats:
AT&T

MOV regl6, sreg
MOV sreg, regl6

Pseudo:
AT&T

MOV srcl, dst

Description
This instruction copies the contents of src! to dst. As the segment

registers are 16 bits in size, both operands must be 16 bits wide.
Note that in protected mode the segment registers are loaded with
descriptors and that the base and limits of the segments are found by
reference to the descriptor table. In real mode the segment register
contains the base address of the segment and the limit is fixed at 64

Kbytes.
Flags:

OF SF 7F AF PF
U U U U U
CF TF IF DF NT
U
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MOV Move to/from Special Registers

Flow | Int | Float | Multi | TO [ OpSys | 386 | 387 | 486
X X X
Formats:
AT&T

MOV reg32, %cr0/%cr2/%cr3

MOV reg32, %dr0/%drl/%dr2/%dr3
MOV reg32, %dr6/%dr7

MOV reg32, %trd/%tr5/%tr6/%tr7
MOV %cr0/%cr2/%cr3, reg32

MOV %dr0/%dr1/%dr2/%dr3, reg32
MOV %dr6/%dr7, reg32

MOV %trd/%trb/%tr6/%tr7, reg32

Pseudo:
AT&T
MOV srcl, dst
Description
This instruction copies the contents of srcl to dst. This instruction
can modify special registers. The special registers are used in testing
the processor, controlling the operating mode of the processor and
debugging support for the processor.
Flags:

OF SF ZF AF PF
U U U U U
CF TF IF DF NT
U
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MOVS Move Data from String to String
MOVSB Move Data from String to String
MOVSW Move Data from String to String
MOVSD Move Data from String to String

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

MOVS mem, mem
MOVSB
MOVSW
MOVSD

Pseudo:
AT&T

MOVS srcl, dst
MOVSB
MOVSW
MOVSD

Description
These instructions transfer a byte, word or double word from Z%esi

to %es:%edi.

In the two operand form the size of the transfer is determined by the
size of dst. A segment overide is possible for dst. The no operand
form implicitly determines the size of the operation.

After the transfer is completed and if DF is 0 then %ed: is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

Flags:
OF SF 7F AF PF
CF TF IF DF NT
T
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MOVSww Move with Sign-Extend (AT&T Only)

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOVSww mem, reg
MOVSww reg, reg

Pseudo:
AT&T

MOVSww srcl, dst

Description
These instructions move a value from src! to dst after sign extending

the value. The MOVSww instruction determines the conversion
based on the two size modifiers located at the end of the instruction.

The values of ww may be: bl, bw, and wl.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

MOVZww Move with Zero-Extend (AT&T Only)

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOVZX mem, reg
MOVZX reg, reg

Pseudo:
AT&T

MOVZww srcl, dst

Description
These instructions move a value from src! to dst after zero extending

the value. The MOVZww instruction determines the conversion
based on the two size modifiers located at the end of the instruction.

The values of ww may be: bl, bw, and wl.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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MUL Unsigned Multiplication of AL or AX or EAX

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

MUL reg
MUL mem

Pseudo:
AT&T

MUL srcl

Description
This instruction performs an unsigned multiplication on two integer

values. It multiplies the lower half of the extended register pair of
the accumulator by src! leaving the result in the extended register
pair of the accumulator. Under an AT&T assembler the extended
register pair is determined by the size modifier of the instruction. The
extended register pairs of the accumulators are: %edz: %eaz for 32-bit
modifier; %dx:%ax for 16-bit modifier; and %az for 8-bit modifier.

Flags:
OF SF ZF AF PF
M U U U U
CF TF IF DF NT
M
NEG Two’s Complement Negation
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
NEG reg
NEG mem
Pseudo:
AT&T
NEG dst
Description
This instruction calculates the two’s complement negation of the in-
teger dst.
Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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NOP No Operation
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
NOP
Pseudo:
AT&T
NOP
Description
This instruction performs no operation.
Flags:
OF SF 7F AF PF
CF TF IF DF NT
NOT One’s Complement Negation
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
NOT reg
NOT mem
Pseudo:
AT&T
NOT dst
Description
This instruction performs a logical NOT on each bit of the integer
dst.
Flags:
OF SF 7F AF PF

CF TF IF DF NT
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OR Logical Inclusive OR

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

OR imm, mem
OR reg, mem
OR imm, reg
OR mem, reg
OR reg, reg

Pseudo:
AT&T

OR srcl, dst

Description
This instruction performs a logical OR on each bit of two integers -

srcl and dst - leaving the result in dst. CF and OF are cleared and
PF, SF, and ZF are set according to the result.

Flags:
OF SF 7F AF PF
0 M M U M
CF TF IF DF NT
0
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ouT Output to Port
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

OUT %al, imm
OUT %ax, imm
OUT %eax, imm
OUT %al, %dx
OUT %ax, %dx
OUT %eax, %dx

Pseudo:

Descr

Flags:

AT&T

OUT srcl, dst

iption
This instruction transfers a byte, word or double word in the accu-
mulator to a port in the IO address space. Only the first 256 ports
may be accessed using an immediate constant. The ports from 255
to 65535 must be accessed by loading %dz with the port number.

OF SF 7F AF PF

CF TF IF DF NT
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OuUTS Output String to Port
OUTSB Output String to Port
OUTSW Output String to Port
OUTSD Output String to Port

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

OUTS reg, %dx
OUTS mem, %dx
OUTSD

OUTSW

OUTSD

Pseudo:

Descr

Flags:

AT&T

OUTS srcl, dst

OUTSB

OUTSW

OUTSD

iption
These instructions transfer a byte, word or double word to a port in
the 10 address space to %es:%edi. Only the first 256 ports may be
accessed using an immediate constant. The ports from 255 to 65535
must be accessed by loading %dx with the port number.

In the two operand form the size of the transfer is determined by the
size of dst. The no operand form implicitly determines the size of

the operation.

After the transfer is completed and if DF is 0 then %edi is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

OF SF ZF AF PF
CF TF IF DF NT
T
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POP Pop a Word from the Stack

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

POP reg
POP mem
POP sreg

Pseudo:
AT&T

POP dst

Description
This instruction copies the word or doubleword pointed to by %sp

or %esp in the stack segment to dst. It then adds 2 for a word or
a byte size operation to the stack pointer, or 4 for a doubleword to

the stack pointer.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

POPA Pop All General Registers
POPAD Pop All General Registers

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

POPA
POPAD

Pseudo:
AT&T

POPA
POPAD

Description
These instructions pop the following registers from the stack: %edi,

%esi, Y%ebp, %esp, %ebx, %edr, %ecx, and %ear. Note that the
value %esp found on the stack is disposed of, and does not alter

%esp.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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POPF Pop Stack into Flags Register
POPFD Pop Stack into Flags Register

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

POPF
POPFD

Pseudo:
AT&T

POPF
POPFD

Description
These instructions pop a 32 bit quantity off the stack into the

EFLAGS register.

Flags:
OF SF ZF AF PF
R R R R R
CF TF IF DF NT
R R R R R

PUSH Push Operand onto the Stack

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

PUSH reg

PUSH mem
PUSH sreg
PUSH imm

Pseudo:
AT&T

PUSH srcl

Description
This instruction copies dst into the word or doubleword pointed to

by %sp or %esp in the stack segment. It then subtracts 2 for a word
or a byte size operation from the stack pointer, or 4 for a doubleword

from the stack pointer.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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PUSHA Push All General Registers
PUSHAD Push All General Registers

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

PUSHA
PUSHAD

Pseudo:
AT&T

PUSHA
PUSHAD

Description
These instructions push the following onto the stack: %eaz, %ecz,

Y%edx, %ebz, the value of %esp before the instruction commenced,

%ebp, %esi, and %edi.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

PUSHF Push Flags Register onto the Stack
PUSHFD Push Flags Register onto the Stack

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

PUSHF
PUSHFD

Pseudo:
AT&T

PUSHF
PUSHFD
Description
These instructions push EFLAGS onto the stack.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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RCL Rotate (Carry Left)
RCR Rotate (Carry Right)
ROL Rotate (Left)
ROR Rotate (Right)
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
Rdd imm, mem
Rdd imm, reg

Rdd %cl, reg
Rdd %cl, mem

Pseudo:
AT&T
Rdd cnt, dst
Description
These instructions rotate the bits of dst by cnt. The RCx forms
rotate through the carry bit, enlarging the destination dst by one
bit. In the ROx form the bit shifted dst is stored in CF.
Flags:
OF SF 7F AF PF
M
CF TF IF DF NT
™
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REP
REPE

Repeat Following String Operation
Repeat While Equal Following String Operation

REPNE Repeat While Not Equal Following String Op-

eration
REPZ

Repeat While Equal Following String Operation

REPNZ Repeat While Not Equal Following String Op-

eration

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

X X

X X

Formats:

AT&T
REPcc

Pseudo:

AT&T
REPcc ins
Description

These instructions cause the following instruction ins to be repeated
while the condition is satisfied.

Flags:
OF SF ZF AF PF
CF TF IF DF NT
RET Return from Procedure or Function
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X
Formats:
AT&T
RET
RET imm
Pseudo:
AT&T
RET
RET cnt
Description
This instruction pops the value pointed to by the stack pointer into
EIP. If ¢nt is present then it is added to the stack pointer.
This instruction may cause the privelege level to change.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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SAHF Store AH into Flags

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
SAHF
Pseudo:
AT&T
SAHF
Description
This instruction copies %ah to the low byte of the flags word.
Flags:
OF SF 7F AF PF
R R R R
CF TF IF DF NT
R
SAL Shift Arithmetic Left
SAR Shift Arithmetic Right
SHL Shift Left
SHR Shift Right
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
Sdd imm, mem
Sdd imm, reg

Sdd %cl, reg
Sdd %cl, mem

Pseudo:
AT&T
Sdd cnt, dst
Description
These instructions shift the bits of dst by cnt. The bit shifted out
of dst is stored in CF. For SAL, SHL, and SHR zeros are shifted in
to fill the vacated bits. For SAR the top bit is duplicated into the
vacated bit.
Flags:
OF SF 7F AF PF
M M M U M
CF TF IF DF NT
M
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SBB Integer Subtraction with Borrow

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

SBB imm, mem
SBB reg, mem
SBB imm, reg
SBB mem, reg
SBB reg, reg

Pseudo:
AT&T

SBB srcl, dst

Description
This instruction adds CF to src! and then subtracts the result from

dst. Immediate operands are sign extended before the operation is

performed.
Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
™™
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SCAS Compare String Data
SCASB Compare String Data
SCASW Compare String Data
SCASD Compare String Data

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

SCAS mem
SCASB
SCASW
SCASD

Pseudo:
AT&T

SCAS srcl
SCASB
SCASW
SCASD

Description
These instructions subtract the byte, word or double word %es: %edi

from the accumulator.

In the one operand form the size of the transfer is determined by the
size of src1. The no operand form implicitly determines the size of
the operation.

After the transfer is completed and if DF is 0 then %ed: is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

Flags:
OF SF 7F AF PF
M M M M M
CF TF IF DF NT
M T
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if above (CF =0-ZF =0)

if above or equal (CF = 0)

if below (CF =1)

if below or equal (CF =1+ ZF =1)
if carry (CF =1)

if equal (ZF = 1)

if greater (ZF =04+ SF = OF)

if greater or equal (SF = OF)

if less (SF # OF)

if less or equal (ZF =1+ SF # OF)
if not above (CF =1)

if not above or equal (CF = 1)

if not below (CF =0)

if not below or equal (CF =0-ZF =0)
if not carry (CF = 0)

if not equal (ZF = 0)

if not greater (ZF =1+ SF # OF)
if not greater or equal (SF # OF)
if not less (SF = OF)

if not less or equal (ZF =0-SF = OF)
if not overflow (OF = 0)

if not parity (PF = 0)

if not sign (SF = 0)

if not zero (ZF = 0)

if overflow (OF = 1)

if parity (PF =1)

if parity even (PF =1)

if parity odd (PF = 0)

if sign (SF =1)

if zero (ZF =1)

10 OpSys 386 | 387 | 486

SETA Set byte
SETAE  Set byte
SETB Set byte
SETBE Set byte
SETC Set byte
SETE Set byte
SETG Set byte
SETGE Set byte
SETL Set byte
SETLE Set byte
SETNA Set byte
SETNAE Set byte
SETNB Set byte
SETNBE Set byte
SETNC Set byte
SETNE Set byte
SETNG Set byte
SETNGE Set byte
SETNL  Set byte
SETNLE Set byte
SETNO Set byte
SETNP Set byte
SETNS Set byte
SETNZ Set byte
SETO Set byte
SETP Set byte
SETPE  Set byte
SETPO Set byte
SETS Set byte
SETZ Set byte
Flow | Int | Float | Multi
X

Formats:

AT&T

SETcc reg

SETcc mem
Pseudo:

AT&T

SETcc dst

Description

These instructions store 1 in the byte dst if the condition is met,
otherwise a 0 is stored.
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Flags:
OF SF ZF AF PF
T T T T
CF TF IF DF NT
T

SGDT Store Global Descriptor Table Register
SIDT Store Interrupt Descriptor Table Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

SGDT mem
SIDT mem

Pseudo:
AT&T

SGDT dst
SIDT dst

Description
These instructions copy the appropriate descriptor table register to

the memory location dst.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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SHLD Double Precision Shift Left

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

SHLD imm, reg, reg
SHLD imm, reg, mem
SHLD %cl, reg, reg
SHLD %cl, reg, mem

Pseudo:
AT&T
SHLD cnt, srcl, dst
Description
This instruction shifts left the concatenated registers dst:srcl by cnt.
Flags:
OF SF 7F AF PF
U M M U M
CF TF IF DF NT
M

SHRD Double Precision Shift Right

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

SHRD imm, reg, reg
SHRD imm, reg, mem
SHRD %cl, reg, reg
SHRD %cl, reg, mem

Pseudo:
AT&T
SHRD cnt, srcl, dst
Description
This instruction shifts right the concatenated registers dst:srcl by
ent.
Flags:
OF SF 7F AF PF
U M M U M
CF TF IF DF NT
M
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SLDT Store Local Descriptor Table

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
SLDT mem
SLDT regl6
Pseudo:
AT&T
SLDT dst
Description
This instruction stores the local descriptor table register at dst.
Flags:
OF SF 7F AF PF
CF TF IF DF NT

SMSW Store Machine Status Word

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

SMSW mem
SMSW regl6

Pseudo:
AT&T

SMSW dst

Description
This instruction stores the low 16 bits of CRO at dst. This instruction
is provided for compatibility with the 286.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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STC Set Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
STC
Pseudo:
AT&T
STC
Description
This instruction sets CF to 1.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
1
STD Set Direction Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
STD
Pseudo:
AT&T
STD
Description
This instruction sets DF to 1.
Flags:
OF SF ZF AF PF

CF TF IF DF NT
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STI Set Interrupt Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

STI

Pseudo:
AT&T

STI
Description
If the current privelege is equal to or more priveleged than TOPL

then this instruction sets IF to 1.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
1
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STOS

STOSB

Store String Data
Store String Data

STOSW Store String Data
STOSD  Store String Data

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

X

Formats:

AT&T
STOS mem
STOSB
STOSW
STOSD

Pseudo:

AT&T
STOS dst
STOSB
STOSW
STOSD
Description

Flags:

These instructions transfers the byte, word or doubleword from the
accumulator to %es: %edi.

In the one operand form the size of the transfer is determined by the
size of src1. The no operand form implicitly determines the size of
the operation.

After the transfer is completed and if DF is 0 then %edi is incre-
mented. Otherwise %edi is decremented.

This instruction is typically used with a repeat prefix.

OF SF ZF AF PF
CF TF IF DF NT
T
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STR Store Task Register
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
STR mem
STR regl6
Pseudo:
AT&T
STR dst
Description
This instruction stores the task register at srci.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
SUB Integer Subtraction
Flow | Int | Float | Multi | TO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
SUB imm, mem
SUB reg, mem
SUB imm, reg
SUB mem, reg
SUB reg, reg
Pseudo:
AT&T
SUB srcl, dst
Description
This instruction subtracts src! from dst. Immediate operands are
sign extended before the operation is performed.
Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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TEST Logical Compare

Flow | Int | Float | Multi | IO
X

Formats:
AT&T

TEST imm, mem
TEST reg, mem
TEST imm, reg
TEST mem, reg
TEST reg, reg

Pseudo:
AT&T

TEST srcl, src2
Description

This instruction performs the function src2 AND srcl setting the
flags in accordance with the result. The result of the Logical AND

operation is NOT stored.

OpSys

386

387

486

Flags:
OF SF 7F AF PF
0 M M U M
CF TF IF DF NT
0

177



178

APPENDIX B. INSTRUCTION SET

VERR Verify a Segment for Reading
VERW Verify a Segment for Writing

Flow

Int | Float | Multi | IO OpSys 386 | 387 | 486

X X X

Formats:
AT&T

VERR reg
VERR mem
VERW reg
VERW mem

Pseudo:
AT&T

VERR srcl
VERW srcl
Description

Flags:

These instructions test whether a segment is accessible for a given
type of operation: reading (VERR) or writing (VERW). srcl is the
descriptor of the segment to be tested. If the segment is accessible
then the ZF flag is set otherwise ZF is cleared.

OF SF ZF AF PF
M
CF TF IF DF NT

WAIT Wait

Flow

Int | Float | Multi | IO OpSys 386 | 387 | 486

X X X

Formats:
AT&T

WAIT

Pseudo:
AT&T

WAIT
Description

Flags:

This instruction checks for pending unmasked floating point excep-
tions before proceeding.

OF SF ZF AF PF

CF TF IF DF NT
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WBINVD Write-Back Invalidate Cache

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
WBINVD
Pseudo:
AT&T
WBINVD
Description
This instruction flushes the internal cache and issues a special bus
cycle which indicates that external caches should write back their
contents to memory. A second special bus cycle is issued which
indicates that external caches should be flushed.
Flags:

OF SF 7F AF PF

CF TF IF DF NT

XADD Exchange and Add

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T

XADD reg, reg
XADD reg, mem

Pseudo:
AT&T

XADD srcl, dst
Description

Flags:

This instruction loads src1 from dst and stores the sum of the original
values into dst.

OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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XCHG Exchange Register/Memory with Register

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

XCHG reg, reg
XCHG reg, mem
XCHG mem, reg
Pseudo:
AT&T
XCHG srcl, dst
Description
This instruction swaps srcl and dst. If either src! or dst is a memory

location then the LOCK# bus signal is asserted.
Flags:

OF SF ZF AF PF

CF TF IF DF NT

XLAT Table Lookup Translation
XLATB Table Lookup Translation

Flow | Int | Float | Multi | 10 OpSys 386 | 387 | 486
X X X

Formats:
AT&T

XLAT mem
XLATB

Pseudo:
AT&T

XLAT srcl
XLATB

Description
These instructions are used to access information contained in a table

located at %ebx. %al is set to the value of the byte located at

%ebx+%al. The default segment for the table is %ds.
Flags:

OF SF 7F AF PF

CF TF IF DF NT
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XOR Logical Exclusive OR

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

XOR imm, mem
XOR reg, mem
XOR imm, reg
XOR mem, reg
XOR reg, reg

Pseudo:
AT&T

XOR srcl, dst

Description
This instruction performs a logical XOR on each bit of two integers

- srcl and dst - leaving the result in dst. CF and OF are cleared and
PF, SF, and ZF are set according to the result.

Flags:
OF SF ZF AF PF
0 M M U M
CF TF IF DF NT
0
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