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Overview

This textbook is to support a course which aims to provide the student
with the skills required to program in assembly language. The 386 pro-
cessor has been chosen because it is common and commercially relevant.
Although this course will concentrate on the 386 processor, many of the
skills acquired will have wider application.

The course will cover the following major topics:

e 386 architecture

Instructions

— Integers

— Register Set

— Memory Organization

— Memory Hierarchy
e Flow Charts and Pseudo Code

— High and Low Level Concepts
— Flow Chart Elements

— Pseudo Code Elements

— Top Down Approach

— Documentation



Overview

¢ Basic Operations

— Arithmetic
— Jumps

— Alternation

e Control Structures

Pre-Test Loops

— Post-Test Loops
If-Then

— If-Then-Else
If-Then-Elself-Else

— Switch

¢ Subroutines (introduction)
— Call and Return

¢ Addressing Techniques

— Indexing
— Indirection

— Pointers
e Subroutines (advanced)

— Pass by Register
Pass by Stack

— Pass by Reference
Pass by Value
Returning Results

— Stack Frames



e Data Structures

— Vectors

Arrays
Records
— Dope Vectors

— Trees
¢ Block Structured Languages

— Scope

— Implementation

The course assumes a familiarity with at least one high level language.
The majority of the examples using high level languages are written in
the ‘C’ programming language. When ‘C’ does not have an appropriate
language concept then the Pascal language will be used.
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Introduction

A knowledge of assembly language programming is useful in many areas
of computer science. Key among these areas are program optimization
both at the user and compiler levels, code generation for compilers, and
interfacing hardware.

A processor executes ‘machine code’. Assembly language has a one-
to-one mapping between its instructions and machine code instructions.

Although it is likely that many students will not be writing com-
pilers or device drivers, all programmers should have an interest in the
efficiency of the code they write. An understanding of the low level
implementation of the code written in a high level language assists the
design of programs in high level languages when speed is required.

With the improvement of compiler technology it is no longer neces-
sary to write routines in assembly language to obtain good performance.
However, it is still possible to replace critical routines in a program with
carefully constructed assembly language programs to give peak perfor-
mance. Typically these assembly language routines will reflect some
additional knowledge about the problem that cannot be made available
to the compiler.

Knowledge of computer architecture is also extremely valuable in
optimising programs which run on that architecture. Thus computer
architecture knowledge has practical value for programmers as well as
being an important area of the discipline of Computer Science.
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Chapter 1

Processor Architecture

This book focuses on the Intel 80386 computer architecture as an exam-
ple of a popular modern computer system.

The Intel 386 and 486 processors are closely related. The 486 in-
cludes an internal cache, a few additional instructions, and a floating
point unit. The differences between the processors mainly concern the
systems programmer, as the most significant differences relate to cache
management and bus locking.

1.1 Instructions

Computer instruction sets may be divided into categories by varying
criteria. Typically the divisions are based on the type of operation,
privilege levels, and the type of arguments.

Some of the types of operations are:

Flow of Control Instructions that may cause a change in the order
of execution of instructions in a program. For example: Jumps,
Conditional Jumps, and Subroutine Calls

Integer Instructions which manipulate integers. For example: arith-
metic instructions and logical instructions on integers.
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Floating Point Instructions that manipulate floating point values. For
example: arithmetic instructions and logical instructions on floats.

Input Output Instructions that manipulate the IO address space.

String Operate on variable length vectors of similar items. For example:
Memory Copying, and String Compares.

Divided by privilege:

Non-Privileged: Non-Privileged instructions may be executed by any
process. Typically this group of instructions include arithmetic,
logical, and most flow of control instructions.

Privileged: Privileged instructions must be executed by processes run-
ning at an appropriate privilege level and may include input/output
instructions, instructions which alter the privilege level, and in-
structions related to external events (eg. interrupts).

Using argument types:

Memory to Memory: Operations which take an argument from mem-
ory, transform it, and record the result in memory.

Memory to Register: Operations which take an argument from mem-
ory, transform it, and record the result in a processor register.

Register to Memory: Operations which take an argument from a pro-
cessor register, transform it, and record the result in memory.

Register to Register: Operations which take an argument from a pro-
cessor register, transform it, and record the result in a processor
register.
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and in a segmented architecture:

Single Segment: For arithmetic or logical instructions: Instructions
which take data from one segment, and transform it. The result
may either be left in a register or the result may be written into
the same segment as the source.

For instructions which control the order of execution of a program: In-
structions which may cause control to be transferred to code in the
same segment.

Multi Segment: Instructions that either transfer data between seg-
ments, or may cause code to be executed in another segment.

The 386/486 has a segmented architecture which supports the ma-
jority of the classes of instructions described above. A key feature of
the architecture of the 386/486 is that, except for string instructions,
the 386/486 does not support memory to memory operations. This
implies that moving data from one location to another typically involves
a memory to register move followed by a register to memory move. Al-
though this may seem to be inefficient, but it can be easily shown that
there are few occasions where the optimal coding of an algorithm includes
memory to memory operations. Typically the result of an operation is
used in the next phase of the program, in addition to being stored in
memory. By retaining the result in a register the result is readily avail-
able for subsequent operations.

1.2 Integers

The 386/486 supports 3 sizes of integers: 8 bits, 16 bits and 32 bits. The
GNU As assembler defines the sizes as byte (8 bits), word or short (16
bit), and int or long (32 bit).

The 386/486 uses a little endian encoding of its integers. In a little
endian system the low order byte is stored at the low address in memory.
A big endian system stores the high order bits at the low address. (figure
1.1)
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The hexadecimal number 5A4B3C2D may be represented in a computer’s
memory in two ways:

Little Endian:

m+3 m+2 m+1 m
5A 4B 3C 2D

Big Endian:

m+3 m+2 m+1 m
2D 3C 4B 5A

Figure 1.1: Big and Little Endian Number Representation

The size of the operand of an instruction is determined by appending
either a ‘b’ (8 bit), ‘w’ (16 bit), or an ‘I’ (32 bit) to the mnemonic.

The GNU As assembler uses the conventions of the ‘C’ programming
language to represent numbers. Hexadecimal numbers are prefaced by
0x, octal values by 0 and decimals begin with any digit other than zero.

1.3 Registers

The 386/486 is unusual among the current generation of microproces-
sors as it is not a general register processor. Specific registers on the
486 are dedicated to performing specific functions. This is unusual as it
increases the difficulty in optimizing code, often requiring that informa-
tion be shuffled between registers or out to memory before performing
an operation.

The term ‘general register’ has several meanings. When this term is
applied to the 386/486 it is taken to mean one of the set of registers %eax,
Y%ebx, %ecx, and %edx. In wider usage ‘general register’ implies that the
processor does not have registers tied to specific functions. However, the
registers on a 386,486 are assigned specific functions for given operations,
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implying that the 386/486 is not a ‘general register processor’.

The register set of the 386/486 may be accessed in 8 bit, 16 bit and 32
bit size units. The names of the major units and an example of deriving
the subunits names are shown in figure 1.2.

The registers are named according to function. The general registers
are %eax, %ebx, %ecx, and %edx. They are known respectively as the
accumulator, base register, count register and data register. The index
registers %esi and %edi are known as the source index register and the
destination index register. The pointer registers %ebp and %esp are
called the base pointer and the stack pointer. The segment registers %cs,
%ds, %es, %ss, are known as the code segment register, the data segment
register, the extra segment register, and the stack segment register. The
two additional segment registers %fs and %gs are not named.

Although specific functions are assigned to the general registers and
the indexes for a few functions, for other operations they may be used
interchangeably.

In addition to these registers the 386/486 has a flag register. This
register contains a set of bits which are set according to changes in the
state of the processor, and arithmetic operations.

The flag register known as eflags. The definition of the bits of the
eflags register are illustrated in figure 1.3.

1.4 Memory Organization

Each address in the 386/486 consists of 2 parts: segment and offset. The
segment component of the address is loaded into a segment register, and
instructions either explicitly mention a segment register, or implicitly
use a segment register when accessing memory. The offset component
specifies the distance into the segment of the memory location that is
to be referenced. Figure 1.4 shows the most general representation of
segmentation.

A segment is a contiguous region in memory. Segments may be dis-
joint or overlap other segments. In addition a segment may be a subset
or superset of other segments. A segment is defined by a base, an extent
and a set of rights that users of the segment may exercise.
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31

o

Y%eax ‘ | | ‘

%ebx ‘ | ‘
Gecx | L1 |
Y%edx ‘ | | ‘

%esi ‘ | ‘

%)Cdi ‘ ‘

%esp ‘ | ‘
%ebp ‘ | ‘

—_

s [ ]
Yoss I:l
it [ ]

Figure 1.2: The 386/486 register set
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LDl Ll e [ [ ] ffor pod e se oo oo o] o]

AC Alignment Check

VM Virtual 8086 Mode
RF Resume Flag

NT Nested Task Flag
IOPL I/0 Privilege Level
OF Opverflow Flag

DF Direction Flag

IF Interrupt Enable Flag
TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Carry Flag
PF Parity Flag

CF Carry Flag

Figure 1.3: The EFLAGS register
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—————————————

Segment 3

Segment, 2

Segment 1

_____________

Figure 1.4: Segmentation
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For simplicity the examples and exercises given in this course will
be conducted in ‘32 bit flat mode’. This is the Intel terminology for a
386/486 processor where all the segment registers have been loaded with
descriptors for the complete logical address space of the system. The
programimer perceives the memory as a 4 Gigabyte contiguous array of
bytes. Offsets, relative to any segment, map to the same location and
value in memory. Offsets, in this mode, are equivalent to the absolute
addresses.

1.5 Memory Hierarchy

For the application programmer using an assembler there exists a two
stage memory hierarchy: Registers and Main Memory. Access to regis-
ters is significantly faster than access to main memory. However, there
are a strictly limited number of registers available to the programmer.
By storing frequently used values in registers a program’s execution time
may be reduced significantly.
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Chapter 2

Representation and
Organization

A computer program is a specific representation of an algorithm writ-
ten in a programming language. The abstraction - algorithm - may be
expressed in many ways. Two will be considered in this chapter: Flow
Charts and Pseudo Code. The balance of the chapter will be devoted to
describing the structure of programs and documentation.

2.1 Representation

2.1.1 Flow Charts

The flow chart is a method of pictorially representing an algorithm. It
represents the ‘flow of execution’ or the ‘sequence of operations’ in a
codified form. The basic elements of a flow chart are shown in figure 2.1.
Arrow heads are used to represent the path through the chart, however,
in the absence of arrows, it is assumed that vertical lines are traversed
in the downward direction.

In recent years the flow chart has come to be regarded as a poor
method of representing algorithms. Some of the reasons for this are:

17
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Process

Input/Output

Decision

Q Connector

Figure 2.1: The elements of a flow chart
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e A flow chart can become too complex to be easily interpreted.

e A flow chart does not clearly distinguish between the structural
elements of a high level language. (do loops, while loops, for loops,
and conditionals are all represented by the same construct in a flow
chart)

e The majority of programmers no longer work in assembly language.

For the assembly language programmer the majority of these reasons
are not valid. The complexity of a flow chart can be managed by the
person drawing the flow chart. Problems can be broken down into in-
dependent subsections of manageable size, flow charts can be drawn for
these parts and a flow chart can be drawn to show how the subsections
should be executed. The majority of assembly languages support only
the structural elements that may be represented easily in a flow chart.

2.1.2 Pseudo Code

Pseudo codeis a form of structured English used to represent algorithms.
Keywords are used with descriptions of actions and conditions to form
a representation of an algorithm. Pseudo code is more efficient for rep-
resenting algorithms than English alone, as the narrative description is
too verbose, and often ambiguous.
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The keywords used in Pseudo Code are typically:
e start ... stop

o if ... then ... else

e repeat ... until

e while ... do

Indentation is used to group operations, and comments are enclosed
by ¢{’ and ‘}".

2.2 Program Structure

An algorithm in its most abstract form describes the steps in performing
an operation without being concerned with the detail of a particular im-
plementation. This is a high level view of a problem. A low level view
consists of the details required for a specific implementation. Assembly
language programming consists of implementing high level concepts in
a low level representation. To assist in this process a Top Down Ap-
proach may be taken.

Assembly language programming requires strict attention to the struc-
turing of programs. If the structure of programs is ignored then main-
tenance and debugging are made more complex. In addition, the read-
ability of the program code is reduced.

2.2.1 The Top Down Approach

The top down approach consists of breaking a problem up into parts.
The parts are broken up into smaller components until a sufficiently
simple task is found, such that it can be implemented in a straight
forward manner in the application language. This approach is also known
as Stepwise Refinement.

The advantages of this approach are that it allows the programmer
to solve manageable problems and then connect these solutions to solve
a larger problem. If a fault is discovered in one of the components of the
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solution then only a subset of the components of the program needs to
be examined and corrected. In addition if another programmer needs to
modify the existing code then he/she need only understand the abstract
meanings of the lower level modules, so that they can give attention to
the area requiring modification without requiring full understanding of
the details of the complete program.

2.3 Documentation

Programs are documented both internally and externally. Internal doc-
umentation consists of comments in the program code. A comment
describes the purpose of a piece of code with relation to the problem,
not what the code does at a low level. For example the comment “adds
one to register EAX” is considerably less useful than the comment “setup
to examine next array element” although they both describe the line of
code:

addl $1, %eax

The C commenting style /* ... */ is used in GNU As.

External documentation consists of a description of how the program
works in abstract terms (an algorithm), notes about any short comings or
limitations of the program, and details of unusual or in-obvious features
of the code.

Both internal and external documentation are required to fully doc-
ument a program. In assembly language programming, good documen-
tation practices are required as, often, the structure and meaning of a
piece of code cannot be easily determined from the code itself.
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Chapter 3

Basic Operations

Imperative programming languages support several fundamental classes
of operations. This chapter discusses a subset of the operations available
on the 386/486 divided into four classes: assignment, arithmetic, jumps
and alternation. The definitions of the four classes are:

Assignment - Storing values.
Arithmetic - Operations on numbers.

Jumps - Causing the executing of an instruction other than the instruc-
tion immediately following the current instruction.

Alternation - Causing the executing of an instruction other than the
instruction immediately following the current instruction based on
some condition.

However, before discussing the basic operations, the concepts of val-
ues and addresses are introduced and the syntax for the GNU As assem-
bler for simple accesses to memory is covered. The concepts of indexing
and indirection will be dealt with in chapter 7.

23
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3.1 Basic Memory Access

A colorful metaphor used for the memory of a computer is a bank of
pigeonholes where letters are placed for collection by guests at a hotel.
Each pigeonhole has a room number on it to uniquely identify it to the
clerk at the desk, and it has space for only one message.

Using this metaphor, the address of a memory location is the room
number. The address is unique in the computer. The contents of a mem-
ory location or its value, is the message contained within the pigeonhole.
As only one message can fit at a time, a new message must displace any
message that is already there.

The metaphor can be further extended if the clerk is allowed to write,
next to the room number on the pigeonholes a number of names. This is
similar to the concept of labels. Hence Mr Smith can get his message, by
saying ‘I am Mr Smith may I have my message please’ or ‘The message
for room 101 please’.

An example of a short assembly language program:

start:
movl di, %eax /* Get value of datal */
addl d2, %eax /* Add value of data2 to datal */
addl $2, Yeax /* Add 2 to the sum */
movl %eax, 100 /* Store result at location 100 */
jmp exit

sl:

di: .long 4

d2: .long 5

This short assembly language program illustrates the concepts of
using and declaring labels, using addresses, and constants. The label d1
is assigned to a long integer which initially contains the value 4. d2 is
assigned to a long integer which initially contains the value 5. The result
of the arithmetic operations is placed at address 100. It is also clear that
if the program is run before the contents of dI or d2 are changed then
the result stored at location 100 will be 11.

The declaration of a label under GNU As consists of a name followed
by a colon. Several labels may refer to the one location. Thus in the
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above example s1 is a synonym for d1.

Labels beginning with an ‘L’ are local labels and are not visible at
link time. In addition there are ten local symbol names ‘0’ to ‘9’. These
are reusable within a program, and references may be made to the near-
est forward (‘f”) or backward (‘b’) reference by writing labelf or labelb,
respectively.

In hand coded assembler, the practice of using local symbols and local
labels is strongly discouraged as it makes assembly code signigicantly
more difficult to read and debug. Macros are the single exception to this
rule. Local symbols simplify the writing of macros by allowing relatively
context insensitive macros to be written which contain loops.

In addition to their significant role in macros, local symbols and local
labels are typically heavily used in the output of compilers.

Memory is declared and initialized using the assembler directives
.byte, .word, .int, and .long where bytes are 8 bits in length, words 16
bits, and integers and longs 32 bits in length. The declarations must be
followed by a list of numbers, and these numbers are placed into memory
to initialize the memory locations. If no numbers follow the declaration
then, no space is reserved by the declaration.

The following code fragment illustrates the reservation of memory
and initialization of memory locations:

.long 5 /* reserve 32 bits and put 5 in it */

.long 5, 7 /* reserve 2 longs and put 5 and 7 in them */
.byte 4, 6 /* reserve 2 bytes and put 4 and 6 in them */
.long /* reserves no space */

Strings may be stored in memory using the .ascii and .asciz assem-
bler directives. These directives store a series of bytes with the values
of the string that follows the directive into memory. The .asciz form
appends a byte containing a zero to the end of the string.

The following two lines of code are examples of the use of the .ascii
and .asciz directives.

.asciz ‘‘A string terminated by a NULL’’
.ascii ‘‘A string not terminated’’

Immediate constants are formed by prepending a ‘$’ to a label or a
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value. This construct may be used to get the address of a label, typically
before passing that address to a subroutine. For example:

movl $10, %eax /* Copy 10 to EAX x/
movl $s1, jeax /* Copy address of label sl into EAX */

A final note, GNU As uses the AT&T format for instructions. This
format places the destination in the rightmost operand. The majority
of 386/486 assemblers use the Intel format which places the destination
in the leftmost operand.

3.2 Operations

3.2.1 Assignment

The fundamental assignment operation provided by the 386/486 is the
mov instruction. This operation copies data from source to destination
without altering the source or the flag registers.
The following lines of code illustrate the syntax of assignment oper-

ations under GNU As.

movl 10, Yeax /* Copy content of address 10 to EAX */

movl $10, %eax  /* Put the value 10 into register EAX */

movl %ebx, %eax /* Copy the value of EBX to EAX */

movb %edx, 10 /* Copy low byte of EDX to location 10 */

3.2.2 Arithmetic

The 386/486 supports a wide range of arithmetic and bitwise logical
operations on integers. The operations include: add, bitwise and, divide,
integer divide, integer multiply, multiply, negate, bitwise not, bitwise or,
rotate, shift, subtract and bitwise exclusive or. The format for these
operations is typically: op src, dst where the result is calculated by
dst = dst op src. The most notable exception to this formating is the
integer multiply instruction which has a three-operand form. A detailed
description of the multiply instruction is found in appendix B. A set of
two-operand form examples are below:
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addl 10, %eax /* Add contents of address 10 to EAX */
subl $10, %eax /* Subtract 10 from EAX */

xorl %ebx, %eax /*x EAX = EAX xor EBX */

addb Yedx, 10 /* add low byte of EDX to location 10 */

3.2.3 Jumps

The 386/486 supports a large number of types of jumps and subroutine
calls. The five forms are defined as:

Absolute - Jump to a specified location

Relative - Jump to a location calculated by adding a signed offset to
the address of the instruction following the jump instruction.

Intersegment - Jump to a location in another segment.

Indirect - Jump to a location given in either a register or a memory
location.

Indirect Intersegment - Jump to a location defined by a segment
offset pair given in memory location.

In this book we will be developing only single code segment programs,
and the assembler will treat the jump or call mnemonic as a relative
jump, or call of a sufficiently large magnitude.

jmp exit /* Jump to the label exit */
call subone /* call the function beginning at subone */

are examples of the syntax of relative jumps. Jumps to absolute ad-
“ Otherwise,

the assembler will choose program counter relative addressing.

dresses may be formed by prefixing the address with a

3.2.4 Alternation

The 386 /486 implements alternation through the use of conditional jumps.
The conditions used to determine whether to jump or not are based on
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combinations of bits in the EFLAGS register. It is necessary for the
programmer to ensure that the appropriate bits are set in the EFLAGS
register before using the conditional jump instruction to test for the
condition. A typical example would be:

cmpl $0, Jeax /* Set flags in EFLAGS */
je zero /* Jump to zero if EAX = zero */
jmp nonzero /* Not zero, jump to nonzero */

The compare instruction (cmp) performs the subtraction EAX — 0.
Setting the required flags in EFLAGS but otherwise not altering any
registers. Je tests the zero flag (zf) in EFLAGS, if the flag is set a jump
occurs to the label zero.

The test and cmp operations set flag bits without altering either
memory or general register contents. Arithmetic and bitwise logical op-
erations alter both the flag bits and the destination of the operand of the
instruction. As these operations affect the EFLAGS register conditional
jumps may be used to detect the results of these operations.

The operations mov, jmp and call do not typically affect flag bits.

A notable feature of the architecture of the 386/486 is that all con-
ditional jumps are implemented as relative jumps.



Chapter 4

Control Structures

This chapter will illustrate typical control structures found in assembly
language programs. The control structures shown in this chapter may
be nested, but they should not be overlapped, when writing structured
programs.

Although there are several methods of implementing the conditional
structures, only one method is shown and described as an example. Pro-
vided only one method of implementing conditionals is used within a
program, it is possible to construct structured programs which are eas-
ily readable.
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4.1 Pre-Test Loops

Pre-test loops test that a condition is satisfied before entering the body
of the loop. This class of loop is represented by the while ... do in
pseudo code and the while loop in C.

Operation
%J

=~

Example:

while z not equal 0 do
a=a+a
z=z-1

cmpl $0, z /* test if z is zero */
je eloop
movl a, %eax /*let a equal a + a */
addl %eax, a
dec 7 /* subtract 1 from z */
jmp ploop

eloop: /* exit the loop */
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4.2 Post-Test Loops

Post-test loops test that a condition is satisfied after executing the body
of the loop. This class of loop is represented by the repeat ... until in
pseudo code and the do ... while loop in C.

Operation

S

Example:

repeat
a=a+a
z=z-1

until z equal O

ploop:
movl a, %eax /* let a equal a + a */
addl %eax, a

dec z /* subtract 1 from z */
cmpl $0, z /* test if z is zero */
je eloop

jmp ploop

eloop: /* exit the loop */
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4.3 If-Then

The If ... Then conditional may be expressed in assembly language by
testing for the negation of the condition. If the negation is true then the
consequence - the then clause - is skipped.

@ True

False

Operation

Example:

if z equal 0 then
a=1

cmpl $0, z /¥ test if z is zero */
jne ethen
movl $1,a  /* let a equal 1 */
ethen: /* exit the conditional */
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4.4 If-Then-Else

The If ... Then ... Else conditional is expressed in assembly language
as a test for the condition: If the condition is met, then a jump to the
‘true’ code is made, otherwise the ‘false’ code is executed.

True

False

Operation Operation

Example:

if z equal O then

a=1
else

a=2
cmpl $0, z /¥ test if z is zero */
je then
movl $2,a  /* let a equal 2 */
jmp ethen

then:

movl $1,a  /*let a equal 1 */
ethen: /* exit the conditional */
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4.5 If-Then-Elself-Else

The If ... Then ... Elself ... Else conditional is a combination of the
techniques for If ... Then and If ... Then ... Else.

True
Not Cond

False True

Operation

Operation Operation

]

O

Example:

if z equal O then

a=1
elseif z equal 1 then
a=2

else
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cmpl $0, z /¥ test if z is zero */

jne eifl
movl $1,a  /* let a equal 1 */
jmp eelse
eifl:  cmpl $1,z /* test if z is one */
jne else
movl $2,a  /* let a equal 2 */
jmp eelse
else:  movl $3,a /* let a equal 3 */
eelse: /* exit the conditional */

4.6 Switch

The switch or case statement may be implemented in two ways: the first
is to use the If ... Then ... Elself ... Else construct (see Section 4.5).
The second method is to use a jump table. A vector of jump addresses is
calculated for each possible input value, and the input values are used as
an index into the table. This technique provides quick execution. This
technique is similar to that used for dope vectors (see Section 9.4).
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Chapter 5

Subroutines -
Introduction

The subroutine is the primary mechanism used in structured program-
ming to allow the division of large programs into more manageable
smaller parts. This chapter will introduce the concepts of a subroutine,
and a ‘process’ or ‘system’ stack.

A subroutine is defined as a section of program code which may be
invoked with a set of parameters, perform an action and which may
return a result.

The stack data structure is comprised of a list of elements which may
only be accessed from one end. There are two operations defined over a
stack. The first operation is PUSH, this inserts an element at the head
of the stack. The second operation POP, removes an element from the
head of the stack. The ‘system’ or ‘process’ stack is provided by the
operating system, and it is operated on by processor operations that use
a stack. The operations push and pop are provided by the 386/486,
and operate on the register %esp, also known as the stack pointer.

The system stack on the 386/486 grows downwards in memory. Each
time an item is pushed onto the stack the stack pointer is decremented.
As items are removed from the stack the stack pointer is incremented.
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The 386/486 provides two operations to support subroutines. The
first operation CALL (call) causes the address of the instruction follow-
ing the call instruction to be pushed onto the system stack, and control
to be passed to the address contained in the operand of the call instruc-
tion. The RETURN instruction (ret) pops an address of the stack and
transfers control to that address.

The intrinsic mechanisms provided by the processor allow for nested
subroutine calls. Nested subroutine calls are calls on subroutines from
within a subroutine. The stack provides a history of the return addresses
of the subroutine calls.

Figure 5.1 ilustrates the basic stack subroutine relationship for the
following program assembled into addresses 100019 to 10234.

1000  start: call subone

1005 jmp exit /¥ exit the program */
1010 subone: call a /* subroutine subone*/
1015 call b

1020 ret

1021  a: ret /* subroutine a */

1022 b: ret /* subroutine b */



Call Sequence

start

e

subone

Process Stack

1005

1005
1015

1005
1020

1005

Figure 5.1: Nested Subroutines and the System Stack
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Chapter 6

Macros

One of the many uses of the subroutine construct (introduced in chapter
5) is to allow a piece of code to be invoked more than once. Macros per-
form a similar role in that they allow the programmer to include a piece
of code many times within a single program without the need to explic-
itly rewrite the code. This facility is used to enhance the readability and
maintainability of code.

This chapter will introduce the macro concept and discuss the m4
macro package. A macro is defined as follows:

A macro is a string in which particular sites in the string
are marked so that other strings can be inserted at those sites

A macro processor takes an input file and performs substitutions on
the input text to produce output text. This process is known as macro
expansion. All the actions of the macro processor occur at the source
code level.

Both subroutines and macros provide mechanisms for constructing
modular code. However, there are significant differences between the two
approaches. Because macros are expanded before the code is assembled
they have the advantage that they do not incur the overheads of a call
and a return. The cost of a call is the time taken to write the address
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of the return location onto the stack. For a return the cost is the time
taken to retrieve the return location from the stack.

Using macros can result in a ‘code explosion’. As each use of a macro
generates the code contained within the macro the size of the assembled
program increases proportionately. The use of large numbers of macros
can result in a great increase in a program’s size.

Subroutines have the additional advantage of supporting recursion.
As macros do not make use of the stack they cannot be used to implement
recursive routines.

6.1 Using M4 with GNU As

This section will provide a minimal introduction to some functions of
the m4 macro processor and how those functions are used with GNU
As.

Three m4 instructions will be used:
¢ changequote

¢ include

o define

¢ undefine

Before m4 macro processor can be used to process an assembly lan-
guage file it is necessary to change the macro processor’s quote characters
from and ‘ ¢’ to characters which are not used by the assembler.
This is accomplished through the changequote instruction. A suitable
choice of alternate characters would be:

[

changequote([,])

which changes the macro processor’s opening quotation character to ‘[’
and the closing quotation character to ‘]".

The include instruction is used to include the contents of another
file at the current location. This is typically used to import definitions
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which are common to a number of separately assembled modules. The
instruction:

include(seg.h)

would include the file ‘seg.h’ at the current location.

The define instruction is used to create new macros. The format of
the instruction is

define(name, replacement)

Each instance of name is replaced by replacement in the text pro-
cessed by the macro processor. The macro name is only recognized
when it is surrounded by non-alphanumerics. The code

changequote([,])
define(N, [1])
addl N, di

addl NN, %eax

produces

addl 1, di
addl NN, %eax

after being run through the m4 macro processor.

The use of arguments in macros allows different invocations of the
macro to have different results. Within the replacement section of the
macro each occurrence of $n is replaced by the nth argument when
the macro is used. Only the first nine arguments are accessible and any
arguments which are not supplied are replaced with an empty string. The
arguments of a macro are drawn from a comma separated list contained
in parenthesis immediately following the macro name. NOTE: no space
is permitted between the macro name and the opening parenthesis. The
code
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changequote ([,])
define(pushb, [movb $1, Yeax
movb %eax, (%esp)

decl %espl)

pushb(dl)

pushb(d2)

produces

movb di, %eax
movb Y%eax, (%esp)
decl Yesp

movb d2, %eax
movb Yeax, (%esp)
decl Yesp

after being run through the m4 macro processor.

The undefine instruction is used to prevent further substitutions us-
ing a macro. The following code fragment is an example of the use of
undefine:

undefine ([pushb])

Note that quote characters are used around the macro name to ensure
that the macro is not expanded by the macro processor.

6.2 Additional Reading

Further information relating to the m4 macro processor can be found
in Kernighan, Brian W., Ritchie, Dennis M., The M4 Macro Processor,
Bell Laboratories.



Chapter 7

Addressing Techniques

Memory may be referred to by 3 distinct methods known as addressing
modes: direct, indexed and indirect. These modes may be combined
to form more complex addressing mechanisms. This chapter will define
the 3 addressing modes and each mode’s availability on the 386/486,
and relate the concepts of non-direct addressing to pointers in high level
languages.

7.1 Addressing Modes

7.1.1 Direct Addressing

Direct addressing was introduced in section 3.1. Direct addressing is the
simplest mode. Essentially direct addressing returns the value found in
the memory location specified in the instruction.

7.1.2 Indexed Addressing

Indexed addressing takes a start address and an offset, and returns the
contents of the memory location with the address resulting from the
addition.
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The 386/486 supports indexed addressing using registers to represent
the base address and the index. The AT&T syntax for indexed memory
references is:

segment : disp(base, index, scale)

The index index is multiplied by the scale factor scale and summed
with the displacement disp and the offset base to give the address of the
memory location relative to the segment segment. (See figure 7.1). In
addition to the restriction requiring base and index to be registers, scale
is required to have only the values 1, 2, 4, 8 or none.

The syntax of indexed access may be explicitly written as:

( 3\ 4 3\
( ) %eax %eax
%cs %eba %eba
%ds No Disp. Y%ecz Y%ecx 1
%es 3 8 Bit Disp. ({ %edr 3, %edz »,< 2 3)
Y%oss 32 Bit Dusp. %eesi Yoest 4
%fs %edi %edi 8
| %ogs ) Y%oebp Yoebp
| %esp ) | Yesp )

The effective address of the memory location is calculated using the
formula:

( ( 3
Yies Yoeax %eax
% ds ) . Yoebx Y%ebx —
Yes N o Dz‘s?p. Yoecx %oecx 1
Uss + 8 Bz‘t thsp. + %Pdr + %ed.? * 2
%fs 32 Buit Dausp. %esz. %esz. 4
%gs Yoedi %oedi 8
%ebp %oebp
| Teesp | %oesp )

If the segment modifier is not included then the instruction uses the
default segment. If the displacement is not included then a displacement
of zero is assumed. If the scale is not included then a scale of 1 is assumed.
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Not all arguments of the index syntax are required to be present.
Valid forms of the index syntax are:

(base,index, scale) Complete form
(base,index) Scale defaults to 1
(base) Index defaults to 0

(,index, scale) Base defaults to 0

(,index,) Base defaults to zero and scale defaults to 1

r— — — 7
Displacement
Segment
Index * Scale
Base
L - — — 4 _

Figure 7.1: Indexed Addressing
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7.1.3 Indirect Addressing

Indirect addressing consists of extracting the address of the destination
location from the location named in the instruction. Thus a location
contains the address of the location containing the required value.

This is illustrated in figure 7.2.

Address | Memory

1000
1004 2008 | —
1008
1012

2000
200/
2008 45 -
2012

If location 1004 is accessed indirectly the value returned will be 45 as
location 1004 contains the address of location 2008 which contains the
value 45.

Figure 7.2: Indirect Addressing

The 386/486 provides minimal support for indirect addressing. Specif-
ically, it is available for mov and jump commands, however, only moves
to and from the register %eax are supported.

Some versions of the GNU As assembler do not correctly support
access via indirect addressing. Practical work in this course will not use
indirect addressing.



7.2. POINTERS 49

7.2 Pointers

In a high level language, a pointer is a variable that contains an identifier
that allows access to either a data item or a procedure. Pointers are
typically composed of the address of an object.

The assembly language concept of non-direct access is similar. The
address of an item is used to refer to the item. This concept can be
extended to describe each element of an object as a data item at an
offset from the base of the object.

7.2.1 *‘C’ to Assembler Examples

Several examples of ‘C’ programming constructs will be presented with
translations into assembly language showing how non-direct access may
be used to implement the constructs of a high level language, and how
indexing construct in assembly language may be used.

Arrays

int array[10];
VAR

array[4]++;
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Assembler
array: .fill 10, 4, O
/* ... %/

movl $4, Jeax
incl array(,’eax,4)

The array consists of 4 byte objects. Ten sets of 4 byte objects
initialized to zero are created by the assembler directive .fill. The register
%eax is loaded with index value 4 and the operation is performed after
indexing into the array.

The following routine performs a similar task except on character
size objects. To take account of the size change it is necessary to alter
both the size of the memory operand and the scale factor.

C
char array[10];
VA S ¥
array [4]++;
Assembler

array: .fill 10, 1, O
/* ... %/

movl $4, %eax
incb array(,’%eax,1)
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Structures

C

struct point
{
int x;
int y;
char color;
};

struct point first;
VAT ¥

first.x = 1;
first.y = 2;
first.color = 0;

Assembler

/* point consists of 2 * 4 byte fields followed by
/* a1 x 1 byte field */
first: .space 9, 0

/% ... x/

/* get address of structure into a register */
movl $first, %eax

/* offset of x = 0 %/

movl $1, 0(%eax)

/* offset of y = 4 */

movl $2, 4(%eax)

/* offset of color = 8 %/

movb $0, 8(%eax)

51



52 CHAPTER 7. ADDRESSING TECHNIQUES

Arrays of Structures

C
struct atom
{
short id;
char x;
char y;
};
struct atom cloud[1000];
/* ... x/
cloud[4].id = 4;
cloud[4] .x = 2;
cloud[4].y = 1;
Assembler

/* atom consists of 1 * 2 byte fields followed by
/* a 2 x 1 byte field */
cloud: .fill 1000, 4

/% ... x/

/* get address of structure into a register */
movl $cloud, %eax

/* set up index value */

movl $4, %ebx

/* offset of id = 0 */

movb $4, (%eax,%ebx,4)

/* offset of x = 2 x/

movl $1, 2(%eax,%ebx,4)

/* offset of y = 3 x/

movl $2, 3(%eax,%ebx,4)



Chapter 8

Subroutines - Advanced

Chapter 5 introduced the basic concepts of the ‘system’ or ‘process’
stack, and the subroutine, these concepts will be expanded upon in this
chapter by introducing techniques for parameter passing, local variables,
and returning results.

8.1 Parameter Passing

The parameters of a subroutine are the values that are passed to a sub-
routine for it to operate on. There are two basic methods of passing
parameters - by stack and by register - which may be combined to yield

hybrid methods.

Parameters may be divided into the two classes, reference parameters
and value parameters.

This section will cover the definition, implementation and character-
istics of passing methods and parameter types.
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8.1.1 Pass by Register

This is the simplest form of parameter passing. The information to
be passed to the subroutine is loaded into registers and the subroutine
called.

movl $1, %eax
movl $2, %ebx
call trivadd

/* ... x/
trivadd:

addl %ebx, %eax

ret

The advantage of this form is that it permits the subroutine direct
access to the parameters in registers. As registers are the fastest form
of storage available to the processor this permits fast subroutines to be
written.

Pure register passing is limited in the number and type of values
that can be passed to a subroutine. This limitation is imposed by the
number and size of available registers. There are additional costs in
using register based passing. These result from the need to save values
that were previously in registers before setting up for a call. Restoring
the registers is necessary if the values are to be used after returning from
the call.
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8.1.2 Pass by Stack

Passing values using the stack permits greater flexibility than passing by
register. Provided there is sufficient space on the stack, any type and
number of values may be transferred as parameters to a subroutine using
stack based passing.

Parameters are pushed onto the stack before the subroutine is called.
Indexed addressing relative to the stack pointer is used to recover the
values of the parameters.

pushl $1
pushl $2
call trivadd
add $8, Yesp

/* ... x/

trivadd:
movl 4(%esp), %ebx
movl 8(%esp), %eax
addl %ebx, Y%eax
ret

The stack can be represented diagramatically:

Yoesp+12

Yesp+8 1

Yoesp+4 2

Y%esp+0 | ret addr | < %esp

Parameters passed to a function may be of varying sizes. The fol-
lowing program fragment shows an implementation of a function which
takes a long integer, followed by a word-sized integer, followed by another
long integer.
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pushl $1

pushw $2

pushl $3

call oddadd
addl $10, %esp

/* ... x/

oddadd:
movzwl 8(lesp), Jeax
addl 4(%esp), %heax
addl 10(%esp), %eax
ret

The stack diagram indicates the offsets and sizes of the parameters
relative to the value of the stack pointer when the function is called.

Kesp+14

Yhesp+10 1 4 bytes
Yoesp+8 2 2 bytes
Yoesp+4 3 4 bytes
Yesp+0 | ret addr | « %esp 4 bytes

In both the examples given above, the stack pointer was adjusted
to point to the position it held before the parameters were pushed onto
the stack. It is important to ensure that the stack pointer is pointing to
a valid return address when a return is executed. Failure to do so will
result in either an access violation or a jump to a location in memory
where there may not be valid code.

Pass by stack has speed penalty in access to the parameters. The
parameters mut be saved on the stack and later accessed by the sub-
routine. This time penalty aside, access by stack, provides a consistent,
flexible mechanism for accessing subroutine parameters.
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8.1.3 Pass by Value and Pass by Reference

In the preceeding examples all parameters passed have been passed by
value That is the value of the parameter is either loaded into a register
(for pass by register) or pushed onto the stack (for pass by register).
Parameters may also be passed by reference, that is the address of an
item may be passed to a function, and operations may be conducted on
the item insitu in memory.

The ‘C’ programming language only provides passing by value. Pro-
grammers in ‘C’ must pass pointers to objects they wish to modify using
a subroutine. Pascal provides both pass by value and pass by reference.
The following is an example Pascal code fragment:

procedure addtwo(var result: integer; pl, p2: integer);
begin

result := pl + p2;
end;

{...}

addtwo(res, 2, 4);
Translated into assembly language:

addtwo:
movl 4(%esp), %eax /* get p2 x/
addl 8(%esp), eax /* add pl */
movl 12(%esp), %edx /* get the addrs of result */
movl %eax, (%hedx) /* store the result */
ret

VAT V4
pushl $result
pushl $2
pushl $4

call addtwo
add $12, %esp
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For small data items passing by value has the advantage of providing
a copy of the value to the subroutine which it may alter without destroy-
ing the value used by the calling routine. If the data item is sufficeintly
large, then the convenience gained is offset by the overhead of copying
the data item.

8.1.4 Returning Results

The results of a function may be returned by using either a register or
by a reference to memory. Returning results by reference is equivalent
to passing an additional pass by reference parameter to a function, and
using that parameter for the return value.

8.1.5 Local Variables and Stack Frames

A local variable is a variable that is not visible to the caller of a sub-
routine but is visible to the subroutine. Local variables serve the dual
purposes of reducing the amount of global storage space required for
a program and providing a private storage area that a subroutine can
use. Local variables are created when they are required and persist until
the function exits. This ensures that the variable only consumes space
when the variable is in use. Recursive routines often require a quantity
of storage space in which the current state is stored. Local variables
are created with each instance of a subroutine, and provide a natural
location in which to store intermediate results.

Local variables are created in assembly language by reserving space
on the stack after the parameters. A ‘C’ program fragment that gen-
erates a Fibonacci sequence as an example of a recursive program with
local variables is shown below.
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void fib(int a, int b)
{

int c;

printf("}d ", a);
c = a + b;

if (¢ > 50)
return;
fib(b, c);
}
/*x ... %/
fib(1,1);

59

An assembly language fragment using local variables reserved on the
stack directly following the parameters of the function:

fib:
subl $4, %esp
movl 12(%esp), %eax
call print_num
movl 8(%esp), %ebx
movl %eax, 0(%esp)
addl %ebx, 0(%esp)
movl 0(%esp), %ecx
cmpl $50, 0(%esp)
jge skip
pushl %ebx
pushl %ecx
call fib
addl $8, Yesp
skip:

addl $4, Yesp
ret

/%
/%
/%
/%
/%
/%
/%
/*

/%

/*

/%

reserve space for c */
recover the a parameter */
call fake print routine */
recover the b parameter */
store a in ¢ */

add b */

move value c¢ into Jecx */
test against 50 */

call fib */

fix the stack pointer */

remove C from stack */
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/x ... %/

pushl $1 /* fib(1,1) */
pushl $1

call fib

addl $8, Yesp

A Stack frame is a data structure on the system stack, and which
provides a consistent method for representing subroutines. It allows
the easy creation of local variables, and permits the use of the stack
instructions push and pop.

A stack frame may be created using either the enter instruction or
by pushing the appropriate values directly onto the stack. Stack frames
are destroyed by the leave instruction.

The simplest form of the 386/486 stack frame is:

0zFFFFFFFF
Parameters
Return Address
0O1d %ebp + %ebp
Local Variables
+— %esp
Stack ...
0z00000000

A stack frame uses the base pointer to keep track of the division
between a functions parameters and the functions local variables. The
use of the base pointer also allows the deallocation of the local variable
space and any stack space used by a subroutine on exiting the routine.
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Local variables may be accessed using negative offsets from the base
pointer and parameters are accessible using positive offsets. Use of push
and pop do not affect the base pointer, so the offsets are not affected by
normal activity on the stack.

The code that forms a simple stack frame with space bytes of local
variables is:

pushl %ebp
movl %esp, Yebp
subl $space, %esp

This is equivalent to the command enter $space, $0. The leave
instruction may be emulated by the code:

movl Y%ebp, %esp
popl ’ebp

Leave, restores the base pointer to its previous values.
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The example Fibonacci program rewritten to use a simple stack
frame:

fib:

skip:

/* ...

pushl %ebp

movl
subl
movl
call
movl
movl
addl
movl
cmpl

hesp, hebp

$4, Jesp
12(%ebp), Yeax
print_num
8(%ebp), %ebx
heax, -4(%ebp)
hebx, -4(%ebp)
-4 (%ebp), Yecx
$50, -4(%ebp)

jge skip
pushl %ebx
pushl %ecx

call
addl

movl

popl
ret

*/

fib
$8, hesp

%ebp, hesp
%ebp

pushl $1
pushl $1

call
addl

fib
$8, lesp

/%

/%
/%
/%
/%
/%
/%
/*
/%

/%

/%

/*

/%

create stack frame */

reserve space for c */
recover the a parameter */
call fake print routine */
recover the b parameter */
store a in c¢ */

add b */

move value c into Jecx */
test against 50 */

call fib */

fix the stack pointer */

destroy stack frame */

fib(1,1) */
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Using enter and leave:

fib:

enter $4, $0
12(%ebp), %eax
call print_num
movl 8(%ebp), %ebx
movl Y%eax, —4(%ebp)
addl %ebx, —4(%ebp)
movl -4(%ebp), %ecx
cmpl $50, -4(%ebp)
jge skip
pushl %ebx
pushl %ecx
call fib
addl $8, Yesp

movl

skip:
leave
ret

/x ... %/

pushl $1
pushl $1
call fib
addl $8, Yesp

/%
/%
/%
/%
/%
/*
/%
/%

/*

/*

/%

/%

63

reserve space for c */
recover the a parameter */
call fake print routine */
recover the b parameter */
store a in c */

add b */

move value ¢ into %ecx */
test against 50 */

call fib */

fix the stack pointer */

destroy stack frame */

fib(1,1) */
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Chapter 9

Data Structures

The choice of the method of representation of data in a program has
a major effect on the performance of the program. Data structures
determine the upper bound of the efficiency of operations on data by an
algorithm. Because of the importance of the method of storage of data,
this chapter will be devoted to discussing the implementation of some
data structures in assembly language.

9.1 Vectors

A vector is a one dimensional array. The assembly language represen-
tation of an array consists of a set of equal size objects consecutive in
memory. Elements of this set are accessed by multiplying the index of
the required element by the size of the element and adding this to the
base address of the array. The general representation is shown in figure
9.1.

The vector was introduced in the section on indexed addressing (7.1.2).
Code was introduced into that section which used the inbuilt index gran-
ularities of 1, 2, 4, and 8 bytes. An example of a generalized indexing
scheme which can be used for other element sizes follows.
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vector[a..b] of elements

la bl
(11 __[T]
1 base

addrs = ((index — a) * sizeof (element)) + base

Figure 9.1: General Representation of a Vector

/* calculate offset from base */

movl $indexr, %ebx

subl $first, %ebx

movl $size, fheax

/* note that this multiply destroys the contents of jedx */
/* and leaves the result in %eax */

mull %ebx

/* add base to offset %eax points to beginning of item */
addl $base, %eax

/* access first word of element */

movl 0(%eax), %ecx

9.2 Arrays

Vectors are a restricted form of the general concept of an array. An array
may have more than one dimension, hence, it may be indexed by more
than one parameter.

The memory of a computer may be viewed as a one dimensional
array of storage locations. Multi-dimensional arrays may be considered
as an array of an array of one less dimension. By applying this view
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Two Dimensional Array:

Row Major Form:

Column Major Form:

column 1 column 2 column 3

N~ ——

Figure 9.2: Major Forms

recursively until a representable vector has been reached allows an array
of any number of dimensions to be constructed.

Two dimensional arrays will be used as an example of constructing
multi-dimensional arrays. The concepts used in constructing and de-
scribing two dimensional arrays may be extended by induction to other
multi-dimensional arrays.

There are two ways of linearizing a multidimensional array. The
first is to store the first row of the array in memory followed by each
subsequent row. This is known as row-major form. The second method
stores the columns in order, and is known as column-major form. (See
figure 9.2 for a pictorial form).

The following section of code provides access to a row-major form 2
dimensional array of arbitrary sized items represented by the Pascal like
declaration:
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*/

9.3
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arr : arrayla..b,c..d] of element
/* calculate size of a row */
movl $b, %ebx
subl $a, %ebx
movl $size, heax
/* note that this multiply destroys the contents of %edx */
/* and leaves the result in %eax */
mull %ebx
/* work out the relative row index */
movl $rowidxr, %hebx
subl $a, ’%ebx
/* calculate the row offset */
/* note that this multiply destroys the contents of %edx */
mull %ebx
/* store result in %ecx */
movl %eax, hecx
/* calculate column offset */
movl $colidz, ‘%hebx
subl $c, %ebx
movl $size, Yheax
/* note that this multiply destroys the contents of %edx */
mull %ebx
/* add in stored result and base to get pointer to start of

/* element [rowidx, colidx] */

addl %ecx, %eax
addl $arr, ‘eax

Records

A record is a synonym for structurein the context of computer languages.
Structures are manipulated by adding an offset to the base address of
the structure to yield the address of the element of the structure to be
altered. Examples may be found in Chapter 7.
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9.4 Dope Vectors

A dope vector is a one dimensional array containing the starting ad-
dresses of other objects. Multi-Dimensional arrays can be constructed
using dope vectors which involves the storing the starting addresses of
an array of lower dimension in the dope vector (see figure 9.3).

Dope Vector Array Vectors

NN

Figure 9.3: A dope vector

The sample code manipulates a four by four array of long words
stored in row-major form using a dope vector implementation:
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/* declarations for array in row major form */
dpv: .lomng r0, rl, r2, r3

r0: .fill 10, 4, 0

ri: .fill 10, 4, O

r2: .fill 10, 4, 0

r3: .fill 10, 4, 0

/* ... *x/

/* retrieve address of row */
movl $rowidr, %hebx

movl dpv(,%ebx,4), %edx

/* retrieve value at column */
movl $colidr, Yebx

movl (%edx, %ebx, 4), jeax

9.5 Trees and Graphs

Tree and graph structures are built in assembly language in a manner
similar to that used in the ‘C’ programming language. Essentially a node
consists of a structure containing some data and a number of pointers
to other nodes. By connecting the nodes together a tree or a graph can
be built.



Chapter 10

Block Structured
Languages

Block structured languages allow nesting and scoping of subroutines and
variables. Pascal supports these features, unlike the ‘C’ programming
language. The following simple Pascal program illustrates the concept
of block structuring.
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program blocks (input, output);

procedure a;
var
v: integer;

procedure disp;
begin
writeln(’a’, v);
end;
begin
v :=1;
disp;
v o= 2
disp;
end;

procedure b;
var
v: integer;

procedure disp;
begin
writeln(’b’, v);

end;
begin
v :=1;
disp;
v o= 2;
disp;
end;
begin
a;
b;
end.

The program’s output is ‘al a2 bl b2’. The structure of a block
structured program may be drawn:
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program blocks;
var v: integer;

procedure a;

procedure disp;

procedure b;

procedure disp;

In Pascal, the scope of a variable is the region in which it is accessible
by name to a subroutine. Variables declared in blocks of which the
current subroutine is a strict subset are within the scope of the current
function.

The scope of a subroutine in Pascal is the region in which a function
or procedure may be called by name. Procedures and functions in the
current block and blocks which are one level above the current block and
contained by the current block are accessible.

Block structured languages are supported in assembly language by
providing backward links in the stack frame to earlier stack frames. The
enter instruction’s second parameter, level, determines the number of
stack frame pointers that are inserted into the current stack frame to the
previous stack frame. Figure 10.1 shows an example of the appearance
of the stack with back pointers. The example shows the invocation of
disp by procedure a.

By following back the chain of back pointers it is possible to access
any variable in the scope of the current function.
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Old EBP
v: integer;
Ret Addrs
y Old EBP
Frame -1
Frame 0
Ret Addrs
y Old EBP
Frame -1 procedure disp
Frame -2
Frame 0

program blocks

procedure a

Figure 10.1: Stack Frames in a Block Structured Language
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Floating Point

In previous chapters we have covered the representation and operations
required for the manipulation of signed and unsigned integers. Although
a large class of mathematical problems can be solved directly using in-
tegers there is a larger class of problems that are best performed using
fractional representation. In this chapter two new representations will
be introduced: fixed point and floating point.

11.1 Decimal Representation

Before developing the binary scheme used in computers to represent
numbers the parallel concepts in the familiar decimal notation will be
covered. A decimal fixed point numbering scheme is frequently used for
the handling of money. For example a monetary system may be based
on the cent and a dollar is composed of one hundred cents. Thus we
perform all our operations in cents and scale the result to report the
result in dollars.

100 cents = 1 dollar

15 cents = 0.15 dollars

75
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The fixed point for our dollar representation is between the second and
third columns from the right.

A fixed point scheme performs well when the problem domain is based
on an indivisible quantity. In the case of our example system it is not
normally useful to speak about fractions of a cent.

Scientific notation is closely related to floating point arithmetic. A
number written in scientific notation consists of a number multiplied by
some power of 10. For example:

15% 10° = 15000000

15%x107% = .15

Scientific notation allows the representation of a wide range of values
compactly.

11.2 The Decimal / Binary Point

In decimal notation the fractional component of the number is written
beyond the decimal point. The columns beyond the decimal point rep-
resent fractions of powers of ten decreasing in size. For example:

21.2345649

may be written as

1 1 1

1 1
25104+ 1% 1+2% — + 3% — +4 5 6
N TR T +2* 75000 T °* 100000

10 100 " ** 1000

or

2510"4+1%10°4+2%10 ' +3%1024+4%x10 2 +5%10*+6%107°
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A similar representation is available for binary numbers. In the case
of a binary number, values beyond the binary point represent decreasing
fractions of powers of two. For example:

10.0110101,

may be written as

L2 0%l 0% & Th s I 0% o w0t g1
xE2H Ul gt lagtlrgtOxqgtirgg +0x g 1 15g

or
1240520 4042 ' 4152 24152 34042 4+ 15254052 0414277

11.3 Normal Numbers

A number stored in normal form has a value in the position before the
point other than zero, but no values in any more significant positions.
The following are normal decimal numbers:

1.310
1.05 % 10%1¢
1.4%10 %

All normalized binary numbers start with a 1 followed by the binary
point.

1.11001,

Normalizing numbers ensures that the number is both uniquely rep-
resented and represented in the most accurate form possible within the
representation.
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11.4 Floating Point Binary Numbers

A floating point binary number consists of several parts:

| S | exponent field | significand field |

where

Sign Bit A bit used to indicate the sign of the number. If the sign bit
is clear the number is positive otherwise the number is negative.

(5)
Exponent Field A number. The number may be biased. The value of

a biased number is given by value = biased number — bias. (E)

Significand Field / Mantissa Field An unsigned normalized num-
ber. (F)

In general the value of a floating point number may be calculated
using the formula:

—1%5 % F x2F

The following examples have an 7 bit significand a 4 bit exponent
with a bias of 8 and a single sign bit. The format of the number is the
sign bit followed by the exponent field followed by the significand.

52 E2 Fz S E10 F10 valuem
0 1000 1000000 | + O 1.0 1

1 1000 1000000 | - 0 1.0 -1

0 1000 1100000 | + O 1.5 1.5

1 0111 1110000 | - -1 1.75 | -0.875
0

1001 1110000 | + 1 1.75 3.5

11.5 Range and Precision

Range and precision are two parameters which describe a number rep-
resentation.
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e The range of a representation is defined as the greatest and least
value that can be represented. Ranges are typically symmetric
about zero.

e The precision of a representation is defined by the size of the steps
between adjacent values.

These quantities can be represented on a number line:
—— Accuracy
— <— Range

Min Max

Typically the range of a representation is specified in terms of the
maximum and minimum values represented by the exponent. In addi-
tion, the precision is often quoted as the number of bits required to state
the number represented by the significand.

If a number is stored in a normalized form it is possible to exploit
the property that it has a leading 1 by dropping the leading leading 1
and simply assuming that it is present. This effectively yields an extra
bit of precision.

11.6 Properties of Non-Integer Numbers

The fixed point and floating point representations of numbers allow the
representation of non-integer values. Each representation has differing
properties which affect its usefulness for a given task.

A fixed point representation:

e Has a reduced range of values in comparison to an integer of equiv-
alent size. This is due to the fixed point value being effectively a
scaled integer value.

e All combinations of bits represent a value of a fixed point number.
Hence there are no wasted bit combinations.

e The accuracy of a value is independent of its magnitude.
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A floating point representation:

e Typically has an increased range of values in comparison to an
integer of equivalent size.

e Not all bit combinations represent different numbers. For example
there are a large number of bit combinations which can be used to
represent zero.

e The accuracy of a value is dependent on the magnitude of the
number. This is due to the uneven spread of values on the number
line caused by steps in the exponent value doubling the separation
between adjacent values.

In addition to these features, a floating point representation can in-
clude additional values known as NalNs or Not ¢ Number and positive
and negative infinity. These values are not ordinary numbers and are
used as results when an exception would have to be raised if the NaNs
were not available.

11.7 Overflow and Underflow

There are two types of errors which are particularly significant in floating
point calculations: Overflow and Underflow.

Overflow The result of a calculation cannot be represented because
the calculated exponent is too large to be accommodated in the
exponent field.

Underflow The result of a calculation cannot be represented because
the calculated exponent is too small to be accommodated in the
exponent field.

11.8 Algorithms For Basic Operations

Addition and multiplication are basic operations required over numbers.
Fixed point addition is performed in the same way integer addition is
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carried out. Fixed point multiplication is the same as integer multiplica-
tion, with exception that the result is rescaled after the multiplication.

The algorithms for addition and multiplication over floating point
numbers are more complicated. Figure 11.1 and 11.2! illustrate algo-
rithms for performing these operations.

11.9 IEEE 754

The IEEE 754 Standard for binary floating point arithmetic describes
a set of formats and operations for floating point numbers. It should
be noted that there are both required and optional features specified in
the standard and that most of the current computers comply at least
partially with the standard.

A short summary of the major features of the standard is provided
here.

Single Single Extd* Double Double Extd*
Precision’ 24 > 32 53 > 64
Eraz 127 > 1023 1023 > 16383
Erin —126 < -1022 —-1022 < —16382
Exponent Bias 127 1023

"Includes assumed bit for normalized numbers.
Adapted from Hennessy, John L., Patterson, David A., Computer

Architecture: A Quantitative Approach, Morgan Kaufmann, 1990.
fExtended.

The form of the floating point number is:

| s | exponent field | significand field |

A convention is required to store the value zero. This is due to
the assumed leading bit for normalized numbers. The convention for
representing zero is for the exponent field and the significand to be set
to zero. In addition to this there are a number of classes of special

! Adapted from Hennessy, John L., Patterson, David A., Computer Organization
and Design: The Hardware/Software Interface, Morgan Kaufmann, 1994.
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Compare exponents.
Shift smaller number
right until its
exponent would equal
the larger exponent.

Add Significands
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Floating Point Addition

Normalize the sum:
Shift right
incrementing the
exponent or shift left
decrementing the
exponent

Overflow
or Underflow

Round significand to
appropriate number of
bits

Interrupt

Figure 11.1: Floating Point Addition
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Begin

Add biased exponents
and then subtract the
bias from the sum.

Multiply Significands

Floating Point Multiplication

Normalize the
product: Shift right
incrementing the
exponent or shift left
decrementing the
exponent

Overflow
or Underflow

Round significand to
appropriate number of
bits

Interrupt

Set sign of product:
negative if signs of
multiplicands are
different or positive if
the signs are the same.

Figure 11.2: Floating Point Multiplication
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values that are represented by setting the exponent field to zero or to all
ones. Included in these values are NalNs, positive and negative infinity
and denormal numbers. A denormal number (sometimes known as a
subnormal number) is represented as a number with a zero exponent
field and a non-zero significand. These numbers are used to represent
numbers which are smaller than the smallest representable normalized
number.

11.10 Additional Reading

Further information relating to floating point arithmetic can be found
in section 4.8 of Hennessy, John L., Patterson, David A., Computer
Organization and Design: The Hardware/Software Interface, Morgan
Kaufmann, 1994.
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The Processor

12.1 Data Paths

Instead of studying the detail of the 80386 processor’s data paths, the
simpler data paths of the 8086 will be covered. This simpler proces-
sor allows the general concepts of a microprocessor architecture to be
discussed without the need to cover the detail of the more complex pro-
cessor. This material will parallel the material applied to a simplified
MIPS processor found in chapter 5 of Hennessy, John L., Patterson,
David A., Computer Organization and Design: The Hardware/Software
Interface, Morgan Kaufmann, 1994.

12.1.1 Overview

The diagram in figure 12.1 illustrates the key data paths of the 8086
processor. Each component of the processor will be discussed and the
interactions of the components will be identified.

Components

ALU The arithmetic logic unit (ALU) of the processor performs arith-
metic and logical functions. The ALU has two bus inputs which are

85



86

16 bit
Addr bus

CHAPTER 12.

20 bit

Address & Data bus

THE PROCESSOR

Addrs &

Cs

DS

SS

ES

PC

Internal

Registers

[

Instruction

queue

16 bit
Address & Data Bus

Status

|

Data

Bus Interface Unit NS

Bus Ctrl

!

8 bit

Control Unit

AH AL
BH BL
CH CL
DH DL

SP

BP

SI

DI

| Temporary Registers |

A
[TIIIIL] s Resicter

Figure 12.1: Block Diagram of the 8086 processor
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combined to produce an output. The function provided by the ALU is
determined by its control inputs. In addition to performing either an
arithmetic or logical function the ALU sets bits in the status register to
indicate features of the result.

Register File The 8086 block diagram shows two logically distinct
register files. A register file is a collection of registers. The first of
these is a register file containing the general registers, stack pointer,
base pointer, and the index registers. The second register file contains
the segment registers and the program counter.

Control Unit The control unit decodes the instruction stream and
co-ordinates the activities of the processor.

Buses A bus is a collection of conductors. Note that a conventional
bus may only be ‘driven’ by one device at a time, although many devices
may observe the state of the bus. A device is said to ‘drive the bus’ if it
is a source of current for the bus. To observe the value of the bus it is
necessary to sink or consume some current from the bus.

Other Elements

Instruction Queue The instruction queue buffers four bytes of in-
structions.

Temporary Registers These registers are used to hold data items to
be fed to the ALU.

Address Adder This is used to form the 20 bit address used by the
8086 to access memory.

Bus Interface Unit The bus interface unit fetches data and code from
memory. The bus interface unit also monitors the interrupt and
other control lines.
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12.1.2 Addressing

The 8086 supports a 20 bit address space by combining a 16 bit address
with a 16 bit segment register. The 16 bit segment register is left shifted
by 4 bits and is added to the 16 bit address to yield a 20 bit address.

LLL LT Segment

+ UL offset

LU Memory Address

This operation is required each time an address is to be output to
the bus.

12.1.3 Fetch-Execute Cycle

The basic operation of the 8086 is dominated by a single sequence of
operations. This sequence is known as the fetch and execute cycle. The
following descriptions give the flavor of the operations and how they
might be implemented. Note that this is not a precise description of
the operation of the 8086 chip. The invariant part of this cycle over all
instructions is:

1. Output PC to Address Adder
Output CS to Address Adder

2. Output 20 bit address to system bus
Increment PC

3. Store returned bytes in Instruction Queue

4. Decode first byte of instruction

The remaining steps of the cycle vary with the instruction. If the
instruction is a multi-byte instruction then further bytes are read from
the instruction queue.
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Two example the sequences will be illustrated: incrementing a regis-
ter and adding a register and an integer will be covered. These examples
exercise most of the data paths through the processor.

Increment AX:

5. Output enable AX onto the 16 bit Address & Data Bus
Input enable the ALU

Select increment funcion

6. Input enable AX onto the 16 bit Address & Data Bus
Add AX and location 1004 leaving the result in AX:
5. Output enable AX onto the 16 bit Address & Data Bus

Input enable a Temporary Register
6. Output 1004 to Address Adder
Output DS to Address Adder
7. Output 20 bit address to system bus
8. Store returned bytes in Instruction Queue
9. Output enable Instruction Queue
Input enable ALU
Select add funcion

10. Input enable AX onto the 16 bit Address & Data Bus

12.2 Control

There are two classes of design for the circuits that control the operation
of a processor or the control unit. The historically earlier ‘hard-wired
control units’ were replaced by ‘microprogrammed control units’ during
the 1970s and 1980s. With the advent of the RISC philosophy and the
demand for higher performance computers hard-wired control units and
hybrid control units have regained popularity.
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12.2.1 Microprogrammed Control Units

In a microprogrammed control unit an instruction is represented as a se-
ries of microinstructions. Each microinstruction consists of several fields.
These fields control the assertion of control signals and the selection of
the next microinstruction. A hardware register called the pPC' is used
to point to the next microinstruction to be executed.

Control Field | Sequence Field
000 1000000 001 000 000
001 0100000 010 000 000
010 0100000 000 010 000

Figure 12.2: An imaginary microinstruction format

The simplest form of a microprogrammed control unit (figure 12.2)
would operate as follows: The first microinstruction would assert a con-
trol line to cause the PC to be output. Subsequent microinstructions
would load the contents of the appropriate memory location to be loaded
into the microinstruction decode register. This value would be decoded
and cause the microprogram counter to be set. Upon completion of the
sequence a microprogram instruction would cause the uPC' to be set to
the begining of the fetch sequence.

Decisions are made in the microprogram by selecting which microin-
struction to go to next. This is done either by following on to the next
instruction or by skipping to another instruction based on an input line
to the control unit.

Vertical & Horizontal Microcode

Microprogrammed control units may be broken up into 2 classes:

Horizontal control units These resemble the simple control units in
that the microinstruction is wide and contains a bit for each control
line
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Vertical control units Are narrower than horizontal control units as
the instruction is divided into fields which are either decoded or
translated into the control signals.

12.2.2 Hard-wired Control Units

Hard-wired control units perform a similar function to microprogrammed
control units. Both types of control units output control signals in a
sequence to cause an action. The difference between the two forms of
control unit is found in the implementation. A hard-wired control unit
uses logic gates to generate the control signals.

12.3 Interrupts, Exceptions and Traps

This section is concerned with the interface between external events and
exceptional internal events and the flow of control within a processor.
The presence of interrupts both eases the task of the programmer by
allowing the programmer to ignore exceptional or external events within
the program and complicates the programmer’s task by requiring excep-
tional events to be handled in a transparent way.

12.3.1 Key Definitions

Interrupt Interrupts are a form of forced procedure call which are
caused by an event external to the program. Interrupts are asyn-
chronous to the program. Interrupts are typically caused by a
peripheral asserting a wire connected via some circuitry to an in-
terrupt pin on the processor.

Trap A trap is a form of forced procedure call which is caused by an
exceptional event within a program that has been detected by the
processor hardware. Traps are synchronous to the program. An
example of an event that might cause a trap would be arithmetic
overflow.
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Transparency Transparent code stores the necessary process state and
register values to ensure that when it returns the interrupted code
is unable to determine that an interruption has occurred

Critical Section A critical section is a section of code which must be
executed atomically.

12.3.2 Implementation

The typical implementation for a microprocessor based interrupt mech-
anism is for the processor to check for an external interrupt condition at
the end of or the beginning of an sequence that implements an instruc-
tiom.

In a microprogrammed control unit this would correspond to a branch
to the microcode to implement interrupts at the end of the sequence of
microinstructions that implements an instruction if an interrupt signal
is present.

This mechanism does not require the processor to restart an instruc-
tion part way through.

Interrupts are implemented as a forced procedure call. This means
that after the interrupt condition is noted at least the following actions
are required: a return address is stored and the interrupt routine called.

There are three major implementation forms:

e Mechanisms which use an interrupt vector

e Mechanisms which use vectored interrupts

e Mechanisms which use a status register

These mechanisms differ in the mechanism in which they convey to
the Interrupt Handler the cause of the interrupt.
Interrupt Vectors

The destination addresses for each type of interrupt are stored in a table.
When an interrupt occurs the processor makes a forced procedure call
to the location indicated in the interrupt vector.
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Vectored Interrupts

In a vectored interrupt system the location called by the processor is
determined by the cause of the interrupt. Typically this is implemented
as a set of addresses a fixed distance apart which the processor calls
when an interrupt occurs.

Status Register

In this case a processor jumps to a single address when any interrupt
occurs. It is the task of the interrupt handler to consult the status
register to determine the cause of the interrupt. This register is called
the cause register in the MIPS architecture.

Two Examples - 80386 & R4000

80386 The 80386 uses an interrupt vector with 256 entries. When an
interrupt occurs:

e push EFLAGS onto the stack

e push Instruction pointer onto the stack

e clear interrupt flag

e the processor jumps to the location indicated by the interrupt type
R4000 The R4000 uses a single entry point for interrupts. The exact
memory location of the interrupt entry point depends on the operating

mode of the processor.
When an interrupt occurs:

¢ the EPC (exception program counter) is loaded with the current
program counter value

¢ the bit in the Cause register corresponding to the interrupt value
is set

e the processor jumps to the interrupt handler
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12.3.3 Masks & Priorities

As an interrupt can effectively occur at any time within a program’s
execution they are essentially unpredictable. At times it is inconvenient
to have to handle an interrupt. An interrupt mask is used to prevent an
interrupt having an effect.

An interrupt mask is a set of bits which - if set - allow the interrupt
to be noticed by the processor.

Under what circumstances is it necessary to not notice an interrupt
immediately?

e While executing a time critical routine
¢ During the initial phase of handling another interrupt
e When handling a more important activity

The first two of these problems are solved by setting the mask to
prevent interruption while performing critical tasks. The second is solved
by introducing priorities.

In a priority based interrupt scheme each interrupt is allocated a
priority.

o If the currently executing interrupt handler has a lower priority
than a new interrupt then the currently executing interrupt handler
is pre-empted and the new one commenced.

e If the currently executing interrupt handler has a higher priority
than a new interrupt then the new interrupt is recorded and dealt
with when all higher priority interrupt handlers have completed.

12.3.4 Non-maskable Interrupts

Processors frequently have an interrupt that cannot be masked out or ig-
nored. This is typically used to indicate a failure in a critical component
of the computer. A classic example would be a power failure detection.
If the power fails the system should attempt to perform necessary house
keeping before function is fully lost.
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Only critical functions should use the NMI as there is no mechanism
to ensure the correct return from interrupt after an NMI.

12.3.5 Real time systems

A real time system needs to respond in a predictable way to any set
of input conditions. As noted in the section on masks a problem arises
when an interrupt pre-empts an interrupt in a stack based system. This
is caused by the requirement for saving state on the stack. Some real
time systems solve this problem by having an area of storage assigned
to each interrupt routine and storing the state in that region when an
interrupt occurs. This ensures that there is always a place for the state
to be stored that is rapidly accessible. In extremely critical applications
hardware assistance is provided for saving the state.

12.3.6 Interrupt Service Routines

An Interrupt Service Routine (ISR) performs the following operations
1. Save all registers
2. Save any status information relating to the cause of the interrupt
3. Enable higher priority interrupts
4. Perform required service
5. Clear the cause of the current interrupt
6. Return from interrupt

The first two tasks fall in a critical section. By ensuring that this in-
formation is correctly saved it is possible to be interrupted and returned
to transparently.

The mechanism described is sufficiently general and conservative to
be used on both normal and real time systems. In a normal system the
data in 1 and 2 would be stored upon the stack. In a real time system
the information would be stored in a location local to the ISR.
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A sample 80386 ISR

This routine handles the keyboard interrupt handler of a IBM-PC run-
ning in protected mode. This is a complete assembly language routine
for performing the task. It should be noted that this routine deals with
a number of issues specific to the IBM-PC architecture:

e The need to alter the segment registers for protected mode opera-
tiomn.

e The interaction with the keyboard controller.

e The need to reset the interrupt controller.

int33:
/* interrupts are already off */
/* store state */
pushal
push %ds
push Yes
/* switch to privileged mode */
mov $privds, %ax
mov %ax, %ds
mov %ax, hes
/* store cause of interrupt information */
/* scan the key */
inb $0x60, %al /* get char */
pushl %eax /* push key data onto stack */
inb $0x61, %al /* get control register */
movw %ax, Ahcx

orb 0x80, %al /* strobe bit high */
outb %al, $0x61
movw %cx, hax /* strobe bit low */

outb %al, $0x61

/* re-enable interrupts now critical work domne */

sti

/* call ‘C’ routine to handle remainder of processing */
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call _keyhandler

addl $4, %esp /* remove parameter */
/* reset interrupt controller chip */

mov $0x20, %eax /* eoi master */

outb %al, $0x20

/* restore state and complete interrupt */
pop %es

pop hds

popal

iret

12.4 Additional Reading

Further information relating to exceptions can be found in chapter 5
of Hennessy, John L., Patterson, David A., Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann, 1994.
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Chapter 13

Input /Output

The I/O systems of a computer are critical to the performance of a
computer. Relatively few jobs are completely CPU bound thus nearly
all jobs depend on the performance of the I/O system to account for some
fraction of their total performance. In this chapter we will look at the
general characteristics of input output devices. For detailed tabulations
of the characteristics of individual devices the reader is referred to the
contents of the additional reading section.

13.1 Types of Devices

There are two major classes of devices:

e Block Mode

e Stream Mode

Block Mode Transfers are made in blocks. A block is defined as a
regular structure with some maximum size and some minimum
size. Typically block mode devices employ blocks of exactly the
same size. If error detection is employed then processing of the
information within a block cannot commence until the full block is
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available. Examples of block mode devices: Disk drives & Network
Controllers.

Stream Mode This is a generalization of character mode. Information
is transferred in typically byte sized quantities and each item is
processable immediately on reception. Examples of stream mode
devices: Terminals & Serial devices.

Properties of Devices

Block mode devices place a lower load on the system resources on a per
byte basis. This is because the system needs only to notice and handle
a transfer on the completion of a block transfer. In contrast, a stream
mode device requires the system to intervene with the arrival of each
new item.

Block mode devices tend to have better error correction than stream
mode devices as stronger error detection and correction techniques can
be applied.

Software and hardware can convert the behaviour of a stream mode
input to partly resemble block mode input or vice versa. Although this
conversion is possible the properties of the underlying device cannot be
completely masked. In many cases attempting to a hide the mode of
access results in undesirable behaviour.

13.2 Interrupts & Polling

There are two major mechanisms available to the programmer for inter-
acting with external devices:

e Interrupts

¢ Polling

13.2.1 Interrupts

Interrupts an external event causes an interrupt the ISR deals with
the device.
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Each time an interrupt occurs the processor performs the sequence of
operations described in section 12.3. This sequence of events is known as
the overhead of the interrupt as it occurs each time an interrupt occurs
and does not directly contribute to the handling of the event.

13.2.2 Polling

Polling The processor regularly checks each device and notes the state
of the device. If the device requires servicing the required opera-
tions are carried out

For polling to work it is necessary to ensure that the polling loop
can be completed sufficiently quickly that the fastest device will not
have made more than one request in the time it takes to go round the
loop handling all possible requests. Failure to do this leaves the system
vulnerable to data overruns.

13.2.3 Comparison

Polling has a lower overhead than interrupts as the polling loop does
not need to perform the actions of an interrupt handler or the actions
forced by an interrupt. This indicates that a polled system can get
greater through put than an interrupt based system. Polling, however,
requires that system be dedicated to carrying out the polling loop and
that actions take known maximum times. This makes a polled system
inflexible. The requirement that the system be designed for the worst
case implies that in ordinary usage it is likely that there will be wasted
system resources.

13.3 DMA & Co-processors

A system architect may choose to reduce the load associated with a de-
vice by off laying part of the work onto a device external to the processor
but capable of accessing part or all of the system’s memory.
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13.3.1 DMA

A DMA or Direct Memory Access device is essentially a simple processor
attached to the memory bus of the system. DMA devices may be used
to accomplish several tasks:

e Memory to Memory - a DMA device can copy a block of memory
from one point in the system memory to another with minimal
processor intervention.

e Device to Memory - A DMA device can be used to interact with
a device to copy the results returned by the device into the sys-
tems memory. Both block mode and stream mode devices may be
interfaced this way.

As the DMA device shares the bus with the processor the action
of the DMA device affects the ability of the processor to interact with
memory. The DMA device and the processor arbitrate for the memory
bus. The effect of this is that neither processor nor DMA device can have
unrestricted use of the bus, but due to the burst nature of bus traffic
the delay introduced by the sharing of the bus is not proportional to the
usage of the bus.

The design and parameters of DMA devices vary from unit to unit,
however, there are common features to the designs.

The common operations to DMA controllers are the need to setup the
device to transfer and to inform the system that the transfer is complete.
The information required to setup the transfer is the source of the data,
the destination address and the size of the transfer. At the completion
of a DMA operation the processor is notified by an interrupt raised by
the DMA controller.

13.3.2 Co-processors

DMA devices are a special restricted form of co-processor. High per-
formance I/O devices may have significant autonomy. In this case the
device carries out a sequence of operations based on a sequence of high
level instructions passed from the main processor. Examples of this type
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of device are graphics co-processors which accept lists of operations to
carry out and intelligent serial interfaces which poll a large number of
serial ports and make available the ports information as blocks of char-
acters.

13.4 Architectural Consequences

The choice of the mechanism for handling I/O devices depends on a
number of factors:

e Mode of device

e Data rate

e Tolerable latency

e Available hardware

Where large amounts of data are to be transferred or a high data
rate is required either a block mode device or a DMA controller should
be provided. This reduces the load on the processor by ensuring that
the processor deals with large lumps of information. The alternative of
having to keep up with a large number of interrupts or a tight polling
loop would have a detrimental effect on the performance of the machine.

Where the volume of data is small or the data rate is low then the
processor can in general be used to handle the type of operation using
interrupts or polling started by a timer interrupt (A regular timer tick
interrupt occurs and the system polls the required devices).

If fast response to asynchronous inputs is required - low latency -
then interrupts should be used.

Frequently the type of access mechanism is determined by the exist-
ing hardware and the improvement of performance of using additional
hardware is traded for the reduced cost of using existing - less optimal -
hardware.
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13.5 Additional Reading

Further information relating to input output devices can be found in
chapter 8 of Hennessy, John L., Patterson, David A., Computer Orga-
nization and Design: The Hardware/Software Interface, Morgan Kauf-
mann, 1994.



Chapter 14

Memory

A major constraint on system performance is the rate at which data
can be accessed by the processor. The majority of the data used by the
processor is stored in the memory of the computer, hence the significance
of memory performance to overall system performance.

This chapter will discuss the principles and implementation of the
memory hierarchy.

14.1 Principles

Temporal Locality The principle of temporal locality states that if an
item has been accessed recently it is likely to be accessed in the
near future.

Spatial Locality The principle of spatial locality states that if an item
has been accessed it is likely that items close to it will be accessed
in the near future.
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14.2 Caching

Before applying the principles of temporal and spatial locality it is nec-
essary to observe that in general faster memory is more expensive than
slower memory. Using the principle of locality and organizing that re-
cently accessed items and adjacent items are moved to fast memory it
is possible to generate a memory system which has costs approaching
that of the slower memory but with performance approaching the faster
memory.
This is known as caching information.

14.2.1 Operation

Memory is accessed by naming an address and the memory unit or pro-
cessor transferring the contents of the location on the bus. A cache unit
sits between the processor. There are two distinct operations that the
cache deals with: processor reading memory and processor writing to
mermory.

If the processor is reading from memory: If the cache knows the
contents of the memory location then the cache returns the contents
of its copy of the memory location’s contents to the processor. If the
cache does not know the contents of the memory location then the cache
requests the memory to return the content of that location. When the
result arrives the cache stores the value in the cache and passes it through
to the processor.

If the processor is writing to memory: The cache stores a copy of the
location’s contents and subsequently passes the value through to memory
(not necessarily immediately)

There are two major variants of caches available which are distin-
guished by their behaviour on writes:

Write Through The data is written into the cache and into the next
stage of the memory hierarchy simultaneously.

Write Back The data is written into the cache only. Only when a cache
flush is issued is the data written to the next stage of the memory
hierarchy.
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14.2.2 Implementation

There are several implementations of caches one mechanism will be cov-
ered here as an illustration. Figure 14.1 illustrates a simple scheme. In
the scheme presented part of the address is used as an index into the
cache’s table. If the tag and the upper component of the address match
and the cache entry is valid then a cache hit is said to have occurred and
the value is returned to the processor or updated in the cache depending
on whether the operation is a read or a write.

Address

| | | | |
Tag Comp. Index Comp. Ofs

IndexValid Tag Data

@ Dia,ta

R
—

Cache Hit

Figure 14.1: Simple caching scheme
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14.3 Virtual Memory

Modern processors have an address space which is far larger than their
physical memory. Virtual memory is a mechanism which allows the ad-
dress space to be used and for the computer to have individual programs
which are greater than the total size of the computer memory.

There are two types of virtual memory implementations:

Paging Under paging the memory is divided into equal sized objects
know as pages which are paged into and out of the physical memory

to disk.

Segmentation Under segmentation objects called segments of a size se-
lected by the programmer are swapped into and out of the memory
of the computer to disk.

Both mechanisms employ an additional layer of translation to convert
an uttered address into a physical address.

A program larger than the physical memory is made possible as when
a program utters either the name of a segment not in memory or the
address of a page not in memory a page or segment can be copied to
disk and the required page or segment brought in.

14.3.1 Paging

In a paged system a page table is used to translate each address uttered
by a program to a physical address. Essentially part of the logical address
is used to index into the page table to recover the physical address at
which the page was loaded. The least significant part of the logical
address is added to the address where the page was loaded to yield the
sought after location.

The description above describes the page table as a single table. In
practice it is usual to have multiple levels of page tables. In the most
popular form - two level paging - there is a top level page table which
points to the physical locations of the second level page tables. The ad-
dress is divided into three parts the most significant component indexes
the top level page table. The middle component indexes the second level
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page tables. The least significant component is added to the address re-
covered from the second level page table. The advantage of this scheme
is that it allows the page table itself to be paged. This has two advan-
tages unused components of the page table do not need to exist reducing
the size of the page table and allowing processes to co-exist in memory,
by swapping top level page tables the address space can be switched
quickly between processes.

14.3.2 Segmentation

In a segmented system all addresses consist of a segment and an offset
from the segment. When a loaded segment is accessed the offset is added
to the location where the segment was loaded to access the required
location.

14.3.3 Fragmentation

Fragmentation occurs when there is unused or unusable space in the
memory of the system. Both paging and segmentation suffer form frag-
mentation. Paging suffers from internal fragmentation - the lost space
is contained in unused parts of a loaded element. Segmentation suffers
from external fragmentation - it is not necessarily possible to use all the
memory of the machine as the uneven sized segments cannot be divided
to ensure that all the space is filled.

External fragmentation is one of the causes for segmentation’s un-
popularity as a memory management technique. Currently Intel is the
only manufacturer bringing out new microprocessors that support seg-
mentation. The management of external fragmentation adds complexity
to an operating system and hence the move to support paging.

14.3.4 Memory Protection

Both paging and segmentation allow access rights to be attached to the
page or segment. Typically these access rights specify that the data
contained may be accessed by:
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e read
e write

e execute

privileged code only

14.3.5 Making it efficient

Due to the principal of locality it can be seen that by holding recently
used items in memory and removing items which have not been accessed
recently from memory it is possible to create a system which has speeds
approaching the faster memory in the system but at the cost closer to
that of the slower recording medium.

14.4 The Memory Hierarchy

The fastest memory devices present in the system reside in the processor
directly coupled to the internal data bus of the processor - the registers.
Next in speed is on chip memory. Many modern processors have small
primary caches on the processor chip (in the order of 8K bytes size,
< 10nS). Off chip caches are next in speed and considerably larger (in
the order of 100K bytes to 4M bytes size, 15n5). Main memory (in the
order of 10M bytes, < 80nS) follows. Finally hard disks or secondary
storage (in the order of 1G bytes) is the slowest.

14.5 Additional Reading

Further information relating to memory can be found in chapter 7 of
Hennessy, John L., Patterson, David A., Computer Organization and
Design: The Hardware/Software Interface, Morgan Kaufmann, 1994.



Chapter 15

Advanced Topics

This chapter covers:
e Pipelined processors
e Superscalar processors
e The RISC / CISC controversy

The first two topics introduce general techniques for improving the
performance of microprocessors beyond the limits of a simple “von Neu-
mann” architecture. Both techniques introduce parallel operations into
a processor.

The final topic explores the concepts behind RISC processors and
contrasts this with CISC processors. This topic is of particular relevance
to students as the section attempts to identify a number of fallacies
perpetuated by both the RISC and CISC manufacturers in advertising
and the information they supply to users.

15.1 Pipelining Processors

Pipelining is a technique for overlapping the execution of instructions.
In a pipelined machine the next instruction starts executing before the
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previous instruction has completed executing. In the chapter on the
internals of a processor it was observed that each instruction was made
up of several components and frequently those components were common
to all instructions. Pipelining exploits this commonality by making each
common component a step in the pipeline. Thus in a single step of the
pipeline when a component of an instruction completes executing it is
passed on to the next phase of the pipeline and the component of the
next instruction is admitted for processing.

The technique of pipelining improves processors in the same way
Henry Ford revolutionised car manufacture. Ford altered the face of car
assembly by introducing the production line. Prior to Henry Ford each
car was hand crafted by a group of skilled craftsmen. In a production
line a group of workers are responsible for a single stage of the total
process and then pass the product on to the next stage of the production
line. Similarly, in a pipelined microprocessor, each component handles
its part of the execution and then hands the job onto the next stage of
the pipeline.

The simile of pipelining and a production can be extended to cover
the critical design elements of a pipeline. The rate of production is
limited by the slowest step in production. If a given step takes longer
than the other steps in the process then time is wasted in the other steps.
The aim of making all steps of the pipeline take the same time is hence
a critical goal of a microprocessor designer.

The effect of pipelining is to improve the throughput of the proces-
sor by increasing the number of instructions processed per unit time.
Pipelining does not decrease the time an individual instruction takes.

15.1.1 Pipeline Implementation

Pipelines may vary in length and in the tasks assigned to each step in
the pipeline. Figure 15.1 describes an example of the division of work in
a pipeline.
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Time
i IF |ID | |OF| |OE g 1
i1 IF | D ||OF| |OE ||OS
i+2 IF |ID ||OF| | OE
Steps in the pipeline:

IF  Instruction Fetch
ID  Instruction Decode
OF Operand Fetch
OE Operand Execution
OS Operand Store
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Figure 15.1: An example of the division of pipeline stages and the over-

lapping of execution
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15.1.2 Data Hazards

Data dependency in a pipeline arises when the input of an instruction
depends on the output of another instruction, both of which are execut-
ing in the pipeline. A number of mechanisms have been suggested to
deal with this problem:

e Stall the pipeline. This involves stopping the progression of in-
structions entering a pipeline at the stage of the pipeline a de-
pendency has been detected at and only resuming the progress of
earlier stages after the dependent value has been set. (Figure 15.2)

e Ignore the problem and have the compiler reorder the instructions,
where possible, and insert no-ops where necessary to prevent data
dependencies in the pipeline.

Data Dependency

R

SUB A,B,C ISUB|ID ||AB| | - C

INC C

Figure 15.2: A pipeline stall caused by a data dependency

To detect data dependencies adds complexity to the processor as
data interlocks need to be added to two steps of the pipeline. The
data interlock consists of a test to check if data to be output is used
as input data. Data interlocks need to be applied to both registers and
external addresses to make stalling the pipeline an effective mechanism
for ensuring the expected operation of code.

Data forwarding can be used to reduce the effect of a pipeline stall.
In a system using data forwarding instead of waiting for the save of
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the dependent data to be competed the data is passed directly to the
dependent input and the pipeline restarted. This technique reduces the
time the pipeline is stalled at the cost of increasing the complexity of
the processor.

15.1.3 Branch Hazards

A branch hazard occurs when a jump occurs. There are two varieties of
branch hazards: conditional and unconditional. In the case of an uncon-
ditional jump input to the pipeline is stalled until the correct address for
the jump is determined. In the case of a conditional jump two solutions
are possible:

e continue executing the following instruction but be prepared to
throw away any of its consequences if the jump occurs

e stall the pipeline until the destination address is known

The former mechanism increases processor performance at the expense
of increasing the complexity of the processor.

A further mechanism for dealing with branch hazards - delayed branch
- is well suited to RISC processors (section 15.3.2). The delayed branch
mechanism redefines the branch instruction to take place one instruction
after the branch instruction. This means that the pipeline will never
have to stall on a branch. This technique requires a compiler to re-order
instructions to ensure that there is a suitable instruction or no-op after
each branch.

The use of compiler techniques to avoid pipeline stalls caused by
branch hazards or data hazards is advantageous regardless of the hard-
ware support provided for coping with the hazard when it arises Avoiding
pipeline stalls maintains the throughput of the processor.

15.2 Swuperscalar Processors

A superscalar processor contains multiple functional units contained
within the processor. The functional units may be of the same or dif-
ferent types. In a superscalar architecture more than one instruction
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can be issued at a time provide the instructions are independent. The
superscalar mechanism differs from the pipeline mechanism in that it
is necessary that the operation of a dependent instruction not be com-
menced. The steps of instruction execution of a two issue superscalar
processor is illustrated in figure 15.3.

Time

i+1 IF | ID |OF|OE |OS

Figure 15.3: Instruction execution in a two issue superscalar processor

The simplest mechanism for ensuring that instructions issued are not
dependent is to have each functional unit handle a different type of in-
struction. A classic example of this type of operation is to have a floating
point and an integer unit. Instructions can be issued simultaneously to
the two units as there are no interdependencies between the units. This
mechanism also simplifies the control of the processor as the order of in-
struction types can be specified and the functional units loaded in order.
The absence of a suitable instruction indicates that a given functional
unit should execute a no-op.

When similar functional units are used or it is possible for dependent
instructions to issued at the same time it is necessary to include mech-
anisms similar to the interlocks found in pipelined systems to cause one
or more functional units to execute a no-op to prevent the dependent
instructions being executed at the same time.

To gain maximum benefit from superscalar processors it is necessary
to supply independent instructions to each of the functional units and
avoid idle time in any unit. This requires that the compiler organize the
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instructions into an order which allows parallel operations to take place.

15.3 The RISC / CISC Controversy
15.3.1 CISC

The characteristics of a Complex Instruction Set Computer (CISC) are
¢ a rich instruction set
e many addressing modes

CISC machines were motivated by microcode. Because of the ease of
writing microcode to implement an instruction it was perceived that
adding instructions to microcode resulted in an improvement to an in-
struction set at relatively low cost. Microcode is stored in small high
speed memories and hence it was perceived that microcode executed
faster than assembly code. This led instruction set designers to add
more complex instructions that performed common operations desired
by programmers. Finally there was a perception that compilers were
complex and by giving the compiler a wider choice of operations and
addressing modes it would simplify the design of the compiler.

15.3.2 RISC

The characteristics of a Reduced Instruction Set Computer (RISC) are:
¢ Simple instructions
¢ Uniform instruction length

Few instruction formats

¢ Orthogonal instruction set
¢ Few addressing modes

Load-Store Architecture
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¢ Few data types
e Many registers

RISC processors were driven by the invention of caches, an improve-
ment in compiler technology, and the desire to reduce the complexity of
the processor architectures to simplify the task of introducing pipelining.
RISC was formed on the observation that the majority of the work of a
processor was done by a minority of the instructions, hence an overall
speedup could be had if the frequently executed instructions were im-
proved. This led to the introduction of hybrid microprogram and hard-
wired controllers. This alteration increased processor complexity. The
next step in development was motivated by an improvement in compilers
and the introduction of caches. With caches made with the same tech-
nology as the control store it is no longer true that microcode executed
more quickly than simple instructions. The improved compilers were
in fact hampered by more complex instructions and multiple addressing
modes as they attempted to choose the best mode and instruction from
a wide range of possibilities.

The RISC processor aimed to provide a simple set of instructions
that worked quickly. In addition the processor was designed to be simple
so that the more flexible hardwired control units could be designed at
reasonable cost.

The load-store architecture simplifies the design of the processor by
limiting memory access to only the load and store instructions. All other
instructions have registers as both source and destination.

The regular instruction length simplifies control and decoding logic.

15.3.3 Comparison

In practice the designers of both RISC and CISC processors are driven
by the same goals - maximum throughput. This has caused conver-
gence in design. RISC processors commonly include a microcode based
floating point unit because it yields better performance than attempting
to perform the same operations in machine code. CISC machines have
hardwired control for some of their instructions to achieve single cycle
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execution on some instructions. The mechanisms of pipelining and su-
perscaling are applicable to both architectures, although more difficult
to apply to a CISC processor. In essence the distinction between the
RISC and CISC processor of today is becoming more blurred.

Measures of performance are complicated by the RISC / CISC design
split. The simple measures of MIPS (millions of instructions per second)
and processor speed obviously do not serve as adequate measures of
performance as the instructions executed can perform vastly different
amounts of work. It is common to cite these figures in advertising. If
these figures are to be compared it is essential that the comparison only
be used between processors of similar types.

15.4 Additional Reading

Further information relating to pipelining processors chapter 6 and su-
perscalar processors section 6.11 can be found in Hennessy, John L.,
Patterson, David A., Computer Organization and Design: The Hard-
ware/Software Interface, Morgan Kaufmann, 1994.

RISC issues and pipelining are discussed in Patterson, David A., Re-
duced Instruction Set Computers, Communications of the ACM, 28(1),
January 1985.
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Chapter 16

The R2000

16.1 General

The R2000 microprocessor produced by MIPS Computer Systems in
1987 was based on work conducted at Stanford University. A significant
feature of the MIPS product was the absence of hardware interlocks to
prevent data and branch hazards hence its reliance on compilers aware of
the pipeline architecture of the machine. MIPS is an acronym for Micro-
processor without Interlocking Pipe Stages. This design choice simplified
the processor design and increased pipeline throughput. Another inter-
esting feature of this processor is that the processor can be configured as
either a big endian or a little endian processor. In addition it is possible
to select the endian mode from software.

16.2 Gross Features

e 32 bit processor
e Address range 23!

e 32 General registers
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o Load-Store Architecture

e RISC

16.3 Register Set

e 32 general registers (32 bit)
— RO - R31
¢ 2 multiply-divide registers (32 bit)

— HI & LO
— Result of 32 bit Multiplication

— Quotient and Remainder of Integer division

16.4 Data Types

The R2000 supports 6 integer data types: signed and unsigned integers
of 8, 16 and 32 bit size.

The R2010 floating point co-processor supports IEEE-754 floating
point numbers of 32 and 64 bit size.
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16.5 Instruction Formats

The R2000 supports 3 instruction formats:
R-Type instruction:

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
| op [ s | v [ vd T shamt [ funct |
I-Type instruction:
6 bits 5 bits 5 bits 16 bits
| op [ s | rt ] address |
J-Type instruction:
6 bits 26 bits
| op | address |
op operation
s source register
rt second register
rd destination register
shamt shift amount
funct variant of operation

address address

16.6 Addressing Modes

The R2000 supports 4 addressing modes:

Register Addressing The memory location is given by the value of a
register

Base Addressing The address of the memory location is calculated by
adding the contents of a register to the address in the instruction

Immediate Addressing The address of the memory location is the
address in the instruction.

PC-Relative Addressing The address is the sum of the PC and the

address in the instruction.
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The jump instruction uses the ‘J-type’ format and exploits the re-
quirement that instructions be aligned on 32 bit boundaries. The address
of the destination is calculated:

The 26 bit address field is shifted left 2 bits and combined
with the top 4 bits of the PC to provide a 32 bit address.

A consequence of this arrangement is that a linker must avoid at-
tempting to make a jump over a 256M byte boundary. If a jump over
a 256M byte boundary is required then the destination address must be
loaded into a register and a jump register instruction issued.

16.7 Instruction Set

The R2000 supports 74 instructions.

The subroutine mechanism is typical of many RISC processors, in
that the R2000 does not have explicit stack instructions. The mechanism
used by the R2000 to implement subroutine calls is to use a jump-and-
link instruction which jumps to a specified location and stores the return
address in a specified register. Returning from a subroutine is performed
by issuing a jump-to-register instruction. It is the responsibility of
each subroutine to ensure that the return address is saved. In addition
the caller must save the registers that it wishes preserved over a call.

16.8 Virtual Memory

The R2000 does not support page tables to provide automatic transla-
tion of virtual to physical addresses. Instead the R2000 has a 64 entry
Translation Lookaside Buffer (TLB). Each virtual address is divided into
two components: a 20 bit virtual page number and a 12 bit offset. As
each virtual address is uttered the processor attempts to match the vir-
tual page number and PID value with an entry in TLB table if there
is a match and there is no rights violation then the base in the TLB
entry is added to the offset and a physical address returned, otherwise
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a trap occurs. This mechanism simplifies the virtual address transla-
tion hardware but requires greater intervention than a page table based
system.

Virtual Address:

20 bits 12 bits
[ Virtual Page | Offset |
TLB entry:
20 bits 6 bits 6 bits 20 bits 1111 12 bits
[ Virtual Page [PID] [ Page Frame [NIDIVIGI Offset |

N Not cached

D Dirty

V  Valid

G Global (Suppress PID check)

The PID value in the TLB entry is checked against the PID field in
the Entry HI register. If the Global bit is set then the PID check is

avoided.

16.9 Summary

In addition to the RISC characteristics exhibited by the R2000 processor
the designers have opted for the simplest implementation at the cost of
forcing complexity onto the compiler or programmer. The result is a
processor that has a high instruction throughput, a minimal instruction
set and few features aimed at making the compiler’s or the programmer’s
task easier.
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The 80386

17.1 General

The 80386 microprocessor produced by the Intel Corporation in 1985 is
a member of the 80x86 family of microprocessors which has served as
the processor for the popular IBM-PC personal computer range. One
of the driving forces in the design of the 80386 has been to maintain
backward compatibility with software written fro earlier members of the
80x86 family. This requirement caused the designers to provide multiple
modes of operation and forced a highly redundant instruction set onto
the designers.
The 80386 is a little endian processor.

17.2 Gross Features

e 32 bit processor
e Address range 232
e 8 General registers

o CISC



128 CHAPTER 17. THE 80386

17.3 Register Set
¢ 8 general registers (32 bit)
¢ 6 segment selector registers (16) bit

The 80386 dedicates some of the general registers to specific functions
for some instructions.

17.4 Data Types

The 80386 supports the following integer data types: signed and un-
signed integers of 8, 16 and 32 bit size, and signed 64 bit integers.

In addition bit fields, pointers, and strings are supported.

The 80387 floating point co-processor supports IEEE-754 floating
point numbers.

In all 23 data types are present in the 80386.

17.5 Instruction Formats

The 80386 supports a single variable length instruction format. This is
equivalent to the number of formats that could be formed by taking all
the legal combinations of the variable length format.

Instruction  Address Operand  Segment
Prefix Size Prefix Size Prefix Override
Oor1l Oor1l Oor1l Oorl

bytes

Opcode MOD SIB Disp Imm

R/M
1lor2 Qorl Qorl 012o0r4 012o0r4
bytes
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17.6 Addressing Modes

The 80386 supports 11 addressing modes. The addressing of the 80386

modes have been discussed earlier in this book.

17.7 Instruction Set

The 80386 supports 216 instructions. The 80387 supports 80 floating
point operations.

17.8 Virtual Memory

The 80386 supports:
¢ Paging
e Segmentation
e Paged Segmentation

Segmentation is supported using a descriptor table the segment de-
scriptors index into the descriptor table. Each descriptor table entry
contains the following information:

e Base Address
e Limit

e Presence Bit - Causes a fault if clear and an attempt has been
made to load segment descriptor

e Privilege Level - Specifies minimum privilege required to access
segment

e Type - Access rights or Special system types

e Segment Descriptor bit - used to distinguish system segments from
user or kernel segments
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e Accessed Bit - set if segment has been loaded

e Granularity - if 0 then the limit is in bytes otherwise the limit
specifies the number of 32 bit long words that are accessible.

‘When a process wishes to use a segment it attempts to load a segment
register with the segment selector for the segment required.
Segment Selector:

13 bits

1 2
| Index [T[RPL]

Index Index into Global or local descriptor table
T Table: 1 for local descriptor table, 0 for global descriptor table
RPL  Requested Privilege Level

The operating system is responsible for dealing with traps caused by
invalid and not present descriptors.

The paging scheme used in the 80386 is based on a two level page
table structure. Similar to that described earlier.

When performing paged segmentation the segment is decoded to gen-
erate the virtual address which is translated by examining the page ta-
bles.

17.9 Summary

The 80386 is processor with a diverse and rich instruction set. The paged
segmentation scheme employed by the 80386 is rare in current micropro-
cessors and few operating systems take advantage of the presence of
segment registers.
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AT&T Syntax

A.1 Register Set

The 80386/80486 provides a set of general registers, segment registers,
debug registers and control registers. The name and size is recorded for
each register directly accessible using an AT&T type assembler. Note
that all register names are preceeded by a percent sign.
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General Purpose Registers:

Register | Width | Type

Name (bits)

Yoeax 32 General Purpose Register
Yoax 16 Least 16 bits of %eax
%ah 8 Greatest 8 bits of %ax
%al 8 Least 8 bits of %ax
Y%oebx 32 General Purpose Register
%bx 16 Least 16 bits of %ebx
%bh 8 Greatest 8 bits of %bx
%bl 8 Least 8 bits of %bx

Yoecx 32 General Purpose Register
%ex 16 Least 16 bits of %ecx
%ch 8 Greatest 8 bits of %ex
%l 8 Least 8 bits of %cx

Yoedx 32 General Purpose Register
%dx 16 Least 16 bits of %edx
%dh 8 Greatest 8 bits of %dx
%dl 8 Least 8 bits of %dx
Y%ebp 32 Base Pointer

Y%bp 16 Least 16 bits of %ebp
%esi 32 Source Index

Y%si 16 Least 16 bits of %esi
%edi 32 Destination Index

%di 16 Least 16 bits of %edi
Yoesp 32 Stack Pointer

Yosp 16 Least 16 bits of %esp

AT&T SYNTAX
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Segment Registers:

133

Register | Width | Type
Name (bits)
Yocs 16 Code Segment
Y%ds 16 Data Segment
Yoes 16 Extra Segment
Yoss 16 Stack Segment
Yofs 16 Segment
Yogs 16 Segment
Debug Registers:
Register | Width | Type
Name (bits)
%dr0 32 Breakpoint 0 Linear Address - Debug Register
Yodrl 32 Breakpoint 1 Linear Address - Debug Register
%dr2 32 Breakpoint 2 Linear Address - Debug Register
Yodr3 32 Breakpoint 3 Linear Address - Debug Register
Y%dr6 32 Debug Control Register
%dr7 32 Debug Control Register

Test Registers:

Register | Width | Type

Name (bits)

Yotr3 32 Test Register
Yotrd 32 Test Register
Yotrd 32 Test Register
Yotr6 32 Test Register
Yotr7 32 Test Register
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Floating Point Stack Registers:
Register | Type

Name
Yost Top of NPU stack
Y%st(0) Top of NPU stack
%st(1) | NPU stack register
%st(2) | NPU stack register
%st(3) | NPU stack register
Yost(4) NPU stack register
%st(5) | NPU stack register
%st(6) | NPU stack register
Yost(7) NPU stack register

A.2 Flags

The 80386 provides a flag register known as EFLAGS. This register
contains bits which are set by the processor after arithmetic operations
or which reflect the current state of the processor.

31 0

DLl o L ] o efrors o s ool o [ o e [or]

The flags are:
AC Alignment Check'.
VM Virtual 8086 Mode
RF Resume Flag
NT Nested Task Flag
IOPL IO Privelege Level (2 bits)
OF Overflow Flag

INot available on the 80386
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DF Direction Flag

IF Interrupt Flag

TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Carry Flag
PF Parity Flag

CF Carry Flag

A.3 Assembler Syntax

This section is specific to the Free Software Foundation’s GNU AS as-
sembler. Many of the other AT&T type assemblers use a similar set of
operations, typically a subset of these.

A.3.1 General Layout

The assembler input is free form, requiring only that statements be sep-
arated by either a newline character or a semicolon. Character constants
are not terminated by a newline or semicolon (‘;’) character. A state-
ment may be continued over more than one line by placing a backslash
(*\") before the newline character.

Symbols may be made up of alphabetics, digits, ¢’, ‘¢’ and ‘.". Sym-
bols are case significant. The special symbol ‘.’ refers to the current
address that is being assembled to.

Strings are delimited by double-quote character (‘”7).

Numbers follow the conventions of C:

Decimal Any number not beginning with a zero eg. 10.

Hexadecimal A number beginning with ‘0x’ eg. Oxa.
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Octal A number beginning with zero eg. 012.
Special characters follow the conventions of C:
\b Backspace
\f Formfeed
\n Newline
\r Carriage Return
\t Tab
\ocoo where o is an octal digit An octal character code.
\\ The ‘\’ character.
\” The “*’ characther

Labels are a symbol followed immediately by a colon (*:’).

A.3.2 Operands

Immediate operands are numbers which do not represent memory loca-
tions. These are prefaced in AT&T type assemblers by a dollar sign
(4$7).

Absolute references are prefaced by an asterix (‘*’) to differentiate
them from relative references.

The size of operands are determined explicitly by the instruction,
not by reference to the size of the object refered to. Opcode suffixes are
added to indicate the size of the operation.

b Byte (8-bit)
w Word (16-bit)

1 Long (32-bit)
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A.3.3 Comments

There are two forms of comments:

e C type: Comments may be multiline and are delimited by ‘/*” and

;*/7.

e Line Comment type: All characters from ‘#’, the line comment
character, to the next newline are ignored.

A.3.4 Expressions

The following operators are available:
— Two’s complement negation.
~ One’s complement negation.

* Multiplication.

/ Division.

% Modulo.

< or << Left shift.

> or >> Right shift.

| Bitwise Or.

& Bitwise And.

" Bitwise Xor

! Bitwise Or Not.

+ Add.

— Subtract.
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A.3.5 Assembler Directives
.abort Stop assembly immediately

.align boundary, pad Adjust the location counter to the next boundary
exactly divisible by 20°¥ndery If pad is present then this value of
the bytes used in filling to the next boundary.

.ascii strings Reserves space for and stores strings.

.asciz strings Reserves space for and stores strings with an additional
zero byte at the end of each string.

.byte expressions Comma separated expressions are stored into the next
byte.

.comm symbol, length Declares a named common area of at least length
bytes size.

.data subsegment Assembles following statements at the end of data
subsegment subsegment. The default subsegment is 0.

.double flonums Comma separated floating point numbers are stored
into the 64-bit floating point form.

file string The string becomes the name of the new logical file.

1l repeat, size, value Creates a block of repeat objects of size bytes
containing value.

float flonums Comma separated floating point numbers are stored into
the 32-bit floating point form.

.globl symbol Makes symbol visible to the linker.

.nt ezpressions Comma separated expressions are stored into the next

32 bits.

Jdcomm symbol, length Declares a local common area of at least length
bytes size. At run time the bytes of this area start off zeroed. This
area is not visible to the linker.
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Jdine number Assigns a logical line number to the statements following.

Jdong expressions Comma separated expressions are stored into the next
32 bits.

.octa bignums Comma separated big numbers are stored into the next
16 bytes.

.org lc, fill Advances the segments location counter to Ilc using fill as
padding.

.quad bignums Comma separated big numbers are stored into the next
8 bytes.

.set symbol, expression Sets the value of symbol to expression.

.short ezpressions Comma separated expressions are stored into the
next 16 bits.

.single flonums Comma separated floating point numbers are stored
into the 32-bit floating point form.

.space size, fill Fills an area of size bytes with the value fill. If fill is
omitted then the area is filled with zeros.

.text subsegment Assembles following statements at the end of text sub-
segment subsegment. The default subsegment is 0.

.word expressions Comia separated expressions are stored into the

next 16 bits.

A.3.6 Memory References

Direct memory references may be made by using either a symbol, a
numeric constant or an expression.
The AT&T syntax for indirect memory references is:

segment : disp(base, index, scale)
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This may be explicitly written as:

( 3\ 4 3\
( ) Yeaz Yeaz
%cs %ebx %ebx
Y%ds No Disp. Yoecx Yeecx 1
Y%es 3 :< 8 Bit Disp. 3 (R %edx 3, T%edr 3.8 2 3)
Y%oss 32 Bit Disp. %eesi %oesi 4
%fs %ed: %ed: 8
| %ogs ) %oebp %oebp
[ %oesp )\ Tesp
The effective address of a memory location is calculated:
( _ ( _ 3\
s Yoeax Yeax
% ds . Yoebx Yoebx -
Yies No. Dzs.p. %oecx %ecx 1
% + 8 Bit Disp. +< %edr Y +< %edr } x 2
%(;;Z 32 Bit Dusp. %oesi Yoest 4
%ogs %oedi Yoedi 8
Yoebp %ebp
| Yoesp | Toesp
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If the segment modifier is not included then the instruction uses the
default segment. If the displacement is not included then a displacement
of zero is assumed. The valid forms of the index section are:

(base, index, scale)
(base, index)
(base)
(,index, scale)

(,index)
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Appendix B

Instruction Set

B.1 Layout

The instructions to be used in these lab classes are provided in this chap-

ter. The description of each instruction is divided into 6 components.

The ADD instruction is presented, with commentary, as an example.
Each instruction is documented for an AT&T style of assembler.

B.1.1 Title lines
ADD Add

This line contains the mnemonic for the instruction on the left hand
side and a description of the function of the instruction at the right.

B.1.2 Type & Compatibility

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

This set of boxes classifies the type of the instruction and the processors
with which the instruction is compatible.

143
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The type compatibility boxes are:

Flow Flow of Control - Instructions which may cause execution to change to
a location other than the next instruction.

Int Integer - Instructions that operate on integer values.
Float Floating Point - Instructions which operate on floating point numbers.
Multi Multi-Segment - Instructions which operate on more than one segment.

The operating system box (OpSys) is checked if the instruction is not used
by applications programs.
The processor compatability boxes are:
386 180386 - This box is checked if this instruction is available on the 386
processor.

387 180387 - This box is checked if this instruction is available on the 387
numeric processing unit (NPU). The floating point coprocessor for the

386.
486 180486 - This box is checked if this instruction is available on the 486
processor.

B.1.3 Formats

Formats:
AT&T

ADD imm, mem
ADD reg, mem
ADD imm, reg
ADD mem, reg
ADD reg, reg
The AT&T column is used for AT&T type assemblers. Listed in the
column is the mnemonic for the instruction and the valid types of operands
for that instruction.
The operand types are:

imm An immediate value.

m14/28byte The address of a memory location extending over 14 or 28 bytes
m16int The address of a memory location that represents a 16 bit integer.
ml6real The address of a memory location that represents a 16 bit real.

m2byte The address of a memory location extending over 2 bytes.
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m32int The address of a memory location that represents a 32 bit integer.
m32real The address of a memory location that represents a 32 bit real.
m64int The address of a memory location that represents a 64 bit integer.
m64real The address of a memory location that represents a 64 bit real.
m80dec The address of a memory location that represents a 80 bit decimal.
m80real The address of a memory location that represents a 80 bit real.

m94/108byte The address of a memory location extending over 94 or 108
bytes.

mem The address of a memory location.

ofs A signed offset from the current memory location.

ptr A pointer. The address of a value which consists of a selector and a the
address of a memory location.

reg Any register.

regl6é A 16 bit register.

reg32 A 32 bit register.

sreg A segment register.

ST The top of the NPU stack.

ST(i) The ith element of the NPU stack.

B.1.4 Psuedo Instructions

Pseudo:
AT&T

ADD srcl, dst
The instruction is followed by pseudo operands. The pseudo operands
are used in the description of the instruction that follows this section. The
pseudo instruction and operands is used to group different versions of the same
instruction which have the same form.

B.1.5 Description

Description
This instruction adds two integers - srcl and dst - leaving the result in

dst. The flags are set accordingly. If src! is an immediate byte value then
it is sign extended to the size of dst before the addition.
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This section contains a short description of the function of the instruction
and any warnings relavent to its use.

B.1.6 Flags

Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M

This section lists the flags consulted or altered by the instruction.
The codes are:

Blank Flag is unaffected by instruction.

T Flag is tested by instruction.

M Flag is modified by instruction depending on the operands.
1 Flag is set by instruction.

0 Flag is cleared by instruction.

U The instruction’s effect on the state of the flag is undefined.



B.2. INSTRUCTIONS

B.2 Instructions

ADC Add With Carry
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

Description

ADC imm, mem
ADC reg, mem
ADC imm, reg
ADC mem, reg

ADC reg, reg
Pseudo:

AT&T

ADC srcl, dst

This instruction adds two integers - srcl and dst - and CF leaving the
result in dst. The flags are set accordingly. If src! is an immediate byte
value then it is sign extended to the size of dst before the addition.

Flags:

OF SF ZF AF PF
M M M M M
CF TF IF DF NT

™
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ADD Add
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

ADD imm, mem
ADD reg, mem
ADD imm, reg
ADD mem, reg

ADD reg, reg
Pseudo:

AT&T

ADD srcl, dst
Description

This instruction adds two integers - src! and dst - leaving the result in
dst. The flags are set accordingly. If src! is an immediate byte value then
it is sign extended to the size of dst before the addition.

Flags:

OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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AND Logical AND
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

AND reg, reg
Pseudo:

AT&T

AND srel, dst
Description

AND imm, mem
AND reg, mem
AND imm, reg
AND mem, reg

149

This instruction performs a logical AND on each bit of two integers - src!
and dst - leaving the result in dst. CF and OF are cleared and PF, SF,
and ZF are set according to the result.

Flags:

OF SF ZF AF PF
0 M M U M
CF TF IF DF NT

0
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BOUND Check Array Index Against Bounds

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

BOUND mem, reg

Pseudo:
AT&T

BOUND srcl, src2
Description
This instruction is used to check a signed array index is between an upper
and lower bound specified in a memory block. The array index src2 is
checked against the bounds in the memory block pointed to by srcl. The
format of the memory block is 2 consecutive 16 bit signed integers. The
lower bound occurs first followed by the upper bound. If src2 is not
between the lower bound and the upper bound plus the number of bytes
occupied for the operand size then interrupt 5 is generated.

Flags:

OF SF ZF AF PF

CF TF IF DF NT




B.2. INSTRUCTIONS

CALL Call Procedure or Function

Flow | Int | Float | Multi | IO OpSys 386

38

{

486

X X X

Formats:
AT&T

CALL reg
CALL mem
CALL ofs
CALL ptr

Pseudo:
AT&T

CALL dst
Description

151

This instruction pushes the current location onto the stack and then jumps
to dst. In the case of near destinations (reg, mem, ofs) only the IP or EIP
is pushed onto the stack. Far calls (ptr) push CS before IP or EIP.

Far calls may be used to access routines at a higher protection level through

call gates or a task gate.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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CLC Clear Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
CLC
Pseudo:
AT&T
CLC
Description
This instruction sets CF to 0.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
0
CMC Complement Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
CMC
Pseudo:
AT&T
CcMC
Description
This instruction complements CF.
Flags:
OF SF ZF AF PF
CF TF IF DF NT
M
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CMP Compare Two Operands
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

CMP imm, mem

CMP reg, mem
CMP imm, reg
CMP mem, reg

CMP reg, reg

Pseudo:

AT&T
CMP srel, sre2
Description
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This instruction performs the function src2 — srcl setting the flags in
. The result of the subtraction is NOT stored.

accordance with the result

Flags:

OF SF ZF AF PF
M M M M M
CF TF IF DF NT

M
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DEC Decrement by 1
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
DEC mem
DEC reg
Pseudo:
AT&T
DEC dst
Description
This instruction subtracts 1 from dst. Note that CF is not affected by this
instruction.
Flags:
OF SF ZF AF PF
M M M M M

CF TF IF DF NT
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DIV

Unsigned Divide

Flow | Int | Float

Multi

10

OpSys

386

387

486

X

Formats:

AT&T

DIV
DIV
DIV
DIV
DIV
DIV
DIV
DIV
Pseudo:

mem, %al
mem, %ax
mem, %eax

reg, %al
reg, %ax

reg, %eax

mem
reg

ATE&T

DIV
DIV

srcl, dst
srcl

Description
This instruction performs unsigned division on the extended register pair

of dst by dividing by src! leaving the result in the extended register pair
dst. The extended register pairs of the accumulators are: %edz:%eaz for

Keaxr; %dr:%azx for Fax; and %az for %al.
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The single operand form of this instruction divides the extended register
pair of the accumulator - determined by the size of the size modifier of the

opcode - by srcl.

Flags:

OF SF ZF AF PF
U U U U U
CF TF IF DF NT
U
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ENTER Make a Stack Frame
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

Formats:
AT&T

ENTER imm, imm

Pseudo:
AT&T

ENTER rsv, Ivl
Description
This instruction creates a stack frame suitable for many high level lan-

guages. The two operands are: rsv the number of bytes to reserve for
local variables, and [vl the lexical nesting level of the procedure. If lvl is
zero then the operations performed are:

e push the current base pointer

e set the base pointer to equal the frame pointer (the value of the
stack pointer after the base pointer was pushed)

e subtract rsv from the current stack pointer.
If lvl is not zero then the operations performed are:
e push the current base pointer
e push [v] modulo 32 minus one links to previous stack frames

e push the frame pointer (the value of the stack pointer after the base
pointer was pushed)

e set the base pointer to equal the frame pointer
e subtract rsv from the current stack pointer.

Note: The frame pointer is a name for a value of the stack pointer. The
frame pointer is NOT a register.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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IDIV

Integer Divide

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
IDIV mem
IDIV reg

IDIV mem, %ax
IDIV reg, %ax

IDIV mem, %eax

IDIV reg, %eax

Pseudo:
AT&T

IDIV srcl

IDIV srcl, dst

Description

This instruction performs a signed division on the extended register pair
of dst by dividing by src! leaving the quotient of the result in the lower
half of the extended register pair dst and the remainder in the upper half
of the extended register pair dst. The extended register pairs of the accu-
mulators are: %edz:%eax for %eax; %dz:%ax for %az; and %az for %al.

The single operand form of this instruction divides the extended register
pair of the accumulator - determined by the size of the size modifier of the

opcode - by srcl.

Note: that the remainder has the sign as the dividend and that the mag-
nitude of the remainder is always less than the magnitude of the divisor.

Flags:
OF SF ZF AF PF
U U U U U
CF TF IF DF NT
U
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IMUL Integer Multiply
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
IMUL mem
IMUL reg

IMUL reg, reg

IMUL mem, reg
IMUL imm, reg
IMUL imm, reg, reg
IMUL imm, mem, reg

Pseudo:
AT&T

IMUL srel
IMUL srel, dst
IMUL srel, src2, dst

Description
This instruction performs a signed multiplication on two integer values.

The single operand form multiplies the lower half of the extended register
pair of the accumulator by srci leaving the result in the extended register
pair of the accumulator. The extended register pairs of the accumulators

are: %edz:%eax for %eax; %dz:%ax for %ax; and Faz for Kal.
The two operand form multiplies dst by src! and leaves the result in dst.

The three operand form multiplies src2 by srcl leaving the result in dst.

Flags:

OF SF ZF AF PF
M U U U U
CF TF IF DF NT
M
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INC Increment by 1
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
INC mem
INC reg
Pseudo:
AT&T
INC dst
Description
This instruction adds 1 to dst. Note that CF is not affected by this
instruction.
Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
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JA
JAE
JB
JBE
JC

JCXZ
JECXZ

JE
JZ
JG
JGE
JL
JLE
JNA
JNAE
JNB
JNBE
0)
JNC
JNE
ING
JNGE
JNL
JNLE
OF)
JNO
JNP
JNS
JNZ
JO
JP
JPE
JPO

APPENDIX B. INSTRUCTION SET

Jump if above (CF =0-ZF =0)

Jump if above or equal (CF = 0)

Jump if below (CF =1)

Jump if below or equal (CF =1+ ZF =1)
Jump if carry (CF =1)

Jump if CX register is 0

Jump if ECX register is 0

Jump if equal (ZF =1)

Jump if zero (ZF = 1)

Jump if greater (ZF =0-SF = OF)
Jump if greater or equal (SF = OF)
Jump if less (SF # OF)

Jump if less or equal (ZF =1+ SF # OF)
Jump if not above (CF =1+ ZF =1)
Jump if not above or equal (CF = 1)
Jump if not below (CF = 0)

Jump if not below or equal (CF =0-ZF =

Jump if not carry (CF = 0)
Jump if not equal (ZF = 0)
Jump if not greater (ZF =1+ SF # OF)
Jump if not greater or equal (SF # OF)
Jump if not less (SF = OF)
Jump if not less or equal (ZF =0 SF =

Jump if not overflow (OF = 0)
Jump if not parity (PF = 0)
Jump if not sign (SF = 0)
Jump if not zero (ZF =0)
Jump if overflow (OF = 0)
Jump if parity (PF =1)
Jump if parity even (PF =1)
Jump if parity odd (PF = 0)
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JS
JZ

Jump if sign (SF =1)
Jump if zero (ZF = 1)

Flow

Int

Float

Multi

10

OpSys

386 | 387

486

X

Formats:

AT&T
Jee ofs

Pseudo:
AT&T

Jee dst

Description
These instructions test flags and generate a relative jump to the current

EIP if the condition is satisfied.

Flags:

OF SF ZF AF PF
T T T T
CF TF IF DF NT
T
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JMP Jump

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

JMP reg
JMP mem
JMP ofs
JMP ptr

Pseudo:
AT&T

JMP dst

Description
This instruction generates an unconditional jump to a memory location.

The memory location may be relative to the current location, or absolute.

This instruction may be used to change privelege level or task.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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LEAVE High Level Procedure Exit

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X

Formats:
AT&T

LEAVE

Pseudo:
AT&T

LEAVE

Description
This instruction returns a stack to the state equivalent to the state of the
stack prior to the use of an ENTER instruction. It frees local memory,
removes links to prior lexical nesting levels and restores the frame pointer.
LEAVE moves %bp or %ebp to %sp or %esp and pops the old frame
pointer into %bp or %ebp.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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LOOP Loop if ECX not equal to 0

LOOPE Loop if ECX not equal to 0 and ZF = 1
LOOPZ Loop if ECX not equal to 0 and ZF = 1
LOOPNE Loop if ECX not equal to 0 and ZF = 0
LOOPNZ Loop if ECX not equal to 0 and ZF = 0
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
LOOPc ofs
Pseudo:
AT&T
LOOPc dst
Description

This instruction decrements %ecz. It performs a relative jump to dst if

the condition is met.
Flags:

OF SF ZF AF PF
T

CF TF IF DF NT
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MOV Move Data
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOV imm, mem

MOV reg, mem

MOV imm, reg

MOV mem, reg

MOV reg, reg
Pseudo:

AT&T

MOV srcl, dst
Description

This instruction copies the contents of srcl to dst.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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MOV Move to/from Segment Registers
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X
Formats:
AT&T

MOV regl6, sreg
MOV sreg, regl6

Pseudo:
AT&T

MOV srcl, dst

Description
This instruction copies the contents of srcl to dst. As the segment regis-

ters are 16 bits in size, both operands must be 16 bits wide. Note that in
protected mode the segment registers are loaded with descriptors and that
the base and limits of the segments are found by reference to the descrip-
tor table. In real mode the segment register contains the base address of
the segment and the limit is fixed at 64 Kbytes.

Flags:
OF SF ZF AF PF
U U U U U
CF TF IF DF NT
U
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MOV Move to/from Special Registers
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOV reg32, %cr0/%cr2/%cr3

MOV reg32, %dr0/%drl/%dr2/%dr3

MOV reg32, %dr6/%dr7

MOV reg32, %trd/%trd/%tr6/ %otr7

MOV %cr0/%cr2/%cr3, reg32

MOV %dr0/%drl/%dr2/%dr3, reg32

MOV %dr6/%dr7, reg32

MOV %trd/%tr5/%tr6/%tr7, reg32
Pseudo:

AT&T
MOV srcl, dst
Description

This instruction copies the contents of src! to dst. This instruction can
modify special registers.
processor, controlling the operating mode of the processor and debugging
support for the processor.

Flags:

OF SF ZF AF PF
U U U U U
CF TF IF DF NT

U

The special registers are used in testing the
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MOVSww Move with Sign-Extend (AT&T Only)

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOVSww mem, reg
MOVSww reg, reg
Pseudo:
AT&T
MOVSww srcl, dst
Description
These instructions move a value from srcl to dst after sign extending the
value. The MOVSww instruction determines the conversion based on the
two size modifiers located at the end of the instruction. The values of ww
may be: bl, bw, and wl

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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MOVZww Move with Zero-Extend (AT&T Only)

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

MOVZX mem, reg
MOVZX reg, reg
Pseudo:
AT&T
MOVZww srcl, dst
Description
These instructions move a value from srcl to dst after zero extending the
value. The MOVZww instruction determines the conversion based on the
two size modifiers located at the end of the instruction. The values of ww
may be: bl, bw, and wl.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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MUL Unsigned Multiplication of AL or AX or
EAX

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

MUL reg
MUL mem

Pseudo:
AT&T

MUL srcl

Description
This instruction performs an unsigned multiplication on two integer val-

ues. It multiplies the lower half of the extended register pair of the ac-
cumulator by srel leaving the result in the extended register pair of the
accumulator. Under an AT&T assembler the extended register pair is
determined by the size modifier of the instruction. The extended register
pairs of the accumulators are: %edz:%eaz for $2-bit modifier; %dz:%ax

for 16-bit modifier; and %az for 8-bit modifier.

Flags:
OF SF ZF AF PF
M U U U U
CF TF IF DF NT
M
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NEG Two’s Complement Negation

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

NEG reg
NEG mem

Pseudo:
AT&T

NEG dst

Description
This instruction calculates the two’s complement negation of the integer

dst.

Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
NOP No Operation
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X
Formats:
AT&T
NOP
Pseudo:
AT&T
NOP
Description

This instruction performs no operation.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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NOT One’s Complement Negation

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:
AT&T

NOT reg
NOT mem

Pseudo:
AT&T

NOT dst
Description
This instruction performs a logical NOT on each bit of the integer dst.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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OR Logical Inclusive OR
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

OR imm, mem
OR reg, mem

OR imm, reg

OR mem, reg

OR reg, reg
Pseudo:

AT&T

OR srcl, dst
Description
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This instruction performs a logical OR on each bit of two integers - src!
and dst - leaving the result in dst. CF and OF are cleared and PF, SF,
and ZF are set according to the result.

Flags:
OF SF ZF AF PF
0 M M U M
CF TF IF DF NT
0
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POP Pop a Word from the Stack

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

POP reg
POP mem
POP sreg

Pseudo:
AT&T

POP dst
Description
This instruction copies the word or doubleword pointed to by %sp or
Zesp in the stack segment to dst. It then adds 2 for a word or a byte size
operation to the stack pointer, or 4 for a doubleword to the stack pointer.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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POPA Pop All General Registers
POPAD Pop All General Registers

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:

AT&T
POPA
POPAD

Pseudo:
AT&T

POPA
POPAD
Description
These instructions pop the following registers from the stack: %edi, %est,
Febp, %esp, Febr, %edr, %ecr, and Zeax. Note that the value Fesp
found on the stack is disposed of, and does not alter %esp.

Flags:

OF SF ZF AF PF

CF TF IF DF NT
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POPF Pop Stack into Flags Register
POPFD Pop Stack into Flags Register
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T
POPF
POPFD
Pseudo:
AT&T
POPF
POPFD
Description
These instructions pop a 32 bit quantity off the stack into the EFLAGS
register.
Flags:
OF SF ZF AF PF
R R R R R
CF TF IF DF NT
R R R R R
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PUSH Push Operand onto the Stack

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

PUSH reg

PUSH mem
PUSH sreg
PUSH imm

Pseudo:
AT&T

PUSH srel
Description
This instruction copies dst into the word or doubleword pointed to by %sp
or %esp in the stack segment. It then subtracts 2 for a word or a byte size
operation from the stack pointer, or 4 for a doubleword from the stack
pointer.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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PUSHA Push All General Registers
PUSHAD Push All General Registers

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X

Formats:

AT&T
PUSHA
PUSHAD

Pseudo:
AT&T

PUSHA
PUSHAD
Description
These instructions push the following onto the stack: %eaz, %ecx, %edz,
%ebz, the value of %esp before the instruction commenced, %ebp, %esi,

and %edi.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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PUSHF

Push Flags Register onto the Stack

PUSHFD  Push Flags Register onto the Stack

Flow | Int | Float

Multi

10

OpSys

386

387

486

X

X

X

Formats:

AT&T
PUSHF
PUSHFD

Pseudo:
AT&T

PUSHF
PUSHFD

Description

These instructions push EFLAGS onto the stack.

Flags:

OF

SF

ZF

AF

PF

CF

TF

IF

DF

NT
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RCL Rotate (Carry Left)
RCR Rotate (Carry Right)
ROL Rotate (Left)
ROR Rotate (Right)
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

Rdd imm, mem
Rdd imm, reg
Rdd %cl, reg
Rdd %cl, mem

Pseudo:
AT&T

Rdd cnt, dst

Description
These instructions rotate the bits of dst by ¢nt. The RCx forms rotate

through the carry bit, enlarging the destination dst by one bit. In the
ROx form the bit shifted dst is stored in CF.

Flags:
OF SF ZF AF PF
M
CF TF IF DF NT
™
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RET Return from Procedure or Function

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X X

Formats:
AT&T

RET
RET imm

Pseudo:
AT&T

RET
RET cnt

Description
This instruction pops the value pointed to by the stack pointer into EIP.

If ¢nt is present then it is added to the stack pointer.

This instruction may cause the privelege level to change.
Flags:

OF SF ZF AF PF

CF TF IF DF NT
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SAL Shift Arithmetic Left

SAR Shift Arithmetic Right

SHL Shift Left

SHR Shift Right

Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486

X X X
Formats:
AT&T

Sdd imm, mem
Sdd imm, reg
Sdd %cl, reg
Sdd %cl, mem

Pseudo:
AT&T

Sdd cnt, dst

Description
These instructions shift the bits of dst by cnt. The bit shifted out of dst

is stored in CF. For SAL, SHL, and SHR zeros are shifted in to fill the
vacated bits. For SAR the top bit is duplicated into the vacated bit.
Flags:

OF SF ZF AF PF
M M M U M
CF TF IF DF NT

M
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SBB Integer Subtraction with Borrow
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

SBB imm, mem
SBB reg, mem
SBB imm, reg
SBB mem, reg
SBB reg, reg
Pseudo:
AT&T
SBB srcl, dst
Description
This instruction adds CF to src! and then subtracts the result from dst.
Immediate operands are sign extended before the operation is performed.

Flags:

OF SF ZF AF PF
M M M M M
CF TF IF DF NT

™
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STC Set Carry Flag
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X

Formats:

AT&T

STC
Pseudo:

AT&T

STC
Description

This instruction sets CF to 1.
Flags:
OF SF ZF AF PF

CF TF IF DF NT
1
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SUB Integer Subtraction
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

SUB imm, mem

SUB reg, mem
SUB imm, reg
SUB mem, reg

SUB reg, reg
Pseudo:

AT&T

SUB srcl, dst

Description
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This instruction subtracts srcl from dst. Immediate operands are sign
extended before the operation is performed.

Flags:
OF SF ZF AF PF
M M M M M
CF TF IF DF NT
M
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TEST Logical Compare
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

TEST imm, mem

TEST reg, mem

TEST imm, reg

TEST mem, reg

TEST reg, reg
Pseudo:

AT&T

TEST srcl, src2

Description
This instruction performs the function src2 AND srcl setting the flags

in accordance with the result. The result of the Logical AND operation is

NOT stored.
Flags:
OF SF ZF AF PF
0 M M U M
CF TF IF DF NT
0
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XOR Logical Exclusive OR
Flow | Int | Float | Multi | IO OpSys 386 | 387 | 486
X X X
Formats:
AT&T

XOR imm, mem
XOR reg, mem
XOR imm, reg
XOR mem, reg

XOR reg, reg

Pseudo:

AT&T

XOR srcl, dst

Description
This instruction performs a logical XOR on each bit of two integers - src!

and dst - leaving the result in dst. CF and OF are cleared and PF, SF,

and ZF are set according to the result.

Flags:

OF SF ZF AF PF
0 M M U M
CF TF IF DF NT

0
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+ +

Course Outline
What is Computer Architecture?

System Subjects

0S Organization Architecture

¢ Operating Systems - Concerned with the software layer
which interacts directly with hardware.

e Computer Organization - Concerned with the details of

the subsystems composing a computer system

e Computer Architecture - Concerned with the complete
computer system and the interconnections of the com-
ponents
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The Course in Outline

e Part 1 - 386 Assembly Language Programming
— 386 Specifics

— General Programming Techniques
— Assembly Language Operations

— Low Level Implementation
e Part 2 - General Architecture

— Processor Fundamentals
- 10

— Memory

— Architectural Issues

— R2000 vs 80386
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+ +

386 Assembly Language Programming

References: This text. Although there are other books on 80386 pro-
gramming, students are advised that at present we know of no other
text that describes programming the 80386 using a notation consistent
with the assembler used in this course.

Processor Architecture

Instructions

e Integers

Registers

e Memory
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Instructions

The 386 processor implements a variable length instruction set. The
length of an instruction may vary with addressing mode in addition to
instruction type.

Types of Operations

e Flow of Control
o Integer
¢ Floating Point
e Input Output
e String
Privilege
¢ Non-Privileged
e Privileged
Segments - On Segmented Memory Architecture Only
e Single Segment

e Multi Segment
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+ +

Argument Type
e Memory to Memory
e Memory to Register
e Register to Memory
e Register to Register

The 386 does not support Memory to Memory moves®.

Although moving information from one memory location to another is a
fairly common operation the absence of this class of operations does not
cause a major performance loss. Why?

e Locality of access

e Memory to Register is faster than Memory to Memory

¢String instructions are an exception



Integers

In mathematics: a number with no fractional component

In computing an arbitrary sized integer may be considered as a contigu-
ous array of bits. The array has the following features:

MSB Most Significant Bit - The bit of the array with the greatest ab-
solute weight

LSB Least Significant Bit - The bit of the array with the least absolute
weight

These features are not simply related to the ordering of a bit in the array.
Conventionally an integer may be drawn as:

MSB LSB

HSEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
Mazx Index 0
This conventional representation can be different from the underlying
physical representation.
The sources of difference are:

¢ Bit Indexing

e Endian-ness
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+ +

Bit Indexing
Most modern computers have the 8-bit byte or a multiple of the 8-bit
byte as the fundamental element of storage. Systems may either be

labelled

MSB LSB
HEEEEEEN
8 0
or

MSB LSB
HEEEEEEN
0 8

This labelling of bits is only significant in interfacing to hardware.
Big Endian & Little Endian Machines

Little Endian The least significant byte is stored in the byte with the
smallest address

Big Endian The most significant byte is stored in the byte with the
smallest address

The 386 is Little Endian.

Application programmers can detect the effects of a particular endian-
ness of a machine if they work with language structures equivalent to C
unions or use pointers to access components of an integer.
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Little Endian

m + 3 | MSB
3
2

m LSB

The little endian method has the architectural advantage:

e Given the address of an unsigned number it may be used
with any of the processor’s integer sizes and interpreted

directly.
Big Endian
m + 3 | LSB
2
3
m MSB
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+ +

Integers can be represented in several ways: BCD, unsigned fixed length,
and signed fixed length. Typically when referring to integers in this
course we will be referring to an unsigned fixed length value. When
referring to a signed integer we will be referring to a two’s complement
fixed length value.

BCD: Binary Coded Decimal

A binary coded decimal is a variable length encoding of an integer value
The 386 supports 2 forms: BCD and packed BCD. A BCD number is
encoded in the low order 4 bits of a byte. The encoding is given in the
following table.

Binary Value Decimal Represented
0000 0

0001
0010
0011
0100
0101
0110
0111
1000
1001 9
A packed BCD value is encoded as pairs of BCD digits within a byte
using the encoding in the table above. The more significant BCD digit
is at the MSB end.

O IO Ui W N




Fixed Length Integers
The 386 supports 3 sizes of fixed length integers:

Byte 8-bit value
‘Word 16-bit value
Long 32-bit value

These data types may be interpreted as either signed or unsigned inte-
gers. Two’s complement representation is used for signed interpretation.
The assembler used in the practical classes uses the suffixes ‘b’, ‘w’ and
‘I’ to indicate the size of the operand.

Pointers

The 386 supports 2 classes of pointers: near pointers and far pointers.
Near pointers are essentially a 32-bit offset from the start of a segment.
Far pointers are 48 bits in length and consist of a 16-bit segment selector
and a 32-bit offset from the start of that segment.

For the practical classes we will only be using near pointers.
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+ +

Registers

A register is a storage location distinct from the main memory of a
computer. Typically it is distinguished by having a different addressing
mechanism to main memory. Registers are usually few in number, typi-
cally less than 32, and typically part of the processor. Registers, because
of their close association with the processor have a small access time in
comparison to memory.

The 386

¢ is not a general register processor as some registers are assigned
special purposes.

e has a relatively small number of general registers: 4 general + 2
almost general

Registers by name and function:

%eax  Accumulator General
%ebx Base General
%ecx Count General
%edx Data General
Y%oesi Source Index Index

%edi  Destination Index Index

%esp  Stack Pointer Pointer
%ebp Base Pointer Pointer




+ +

Y%ocs Code Segment  Segment
Y%ds Data Segment  Segment
Yoes Extra Segment Segment
Yoss Stack Segment Segment
Yots Segment
Yogs Segment
EFLAGS Flag Register Flags

The names of the general registers are mainly of interest only in a his-
torical context. There are still, however, a few functions which use these
registers in a non-general way. Most notable of these are: mul, imul, div
and idiv.

The general registers may be treated as either 8, 16 or 32 bit registers.
The index registers may be treated as either 16 or 32 bit registers. The
segment registers are 16 bits wide.

Note that during the practical classes attempting to change the segment
registers will probably cause you program to be terminated. Segment
registers may only contain segment descriptors in protected mode. At-
tempting to load a segment descriptor without the correct privilege re-
sults in a privilege violation.



%eax

%ebx
Y%ecx

Y%edx

%esi

%edi

%oesp
%ebp

%cs

%ds
%es
Poss
Yefs
%ogs
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o

|

Y%ah %al

Y%ax

~
Y%eaz

|

% st

~
Yoesi

|

Y%cs

I

_l_

13
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Flag Register
31

0

AC RF NF OF IF SF

(oJoJoJoJofofofoJo]o]oJolof T T o] |

[TTTTTTolTol Ii1]

VM IOPL DF TF ZF AF PF CF

AC Alignment Check
VM Virtual 8086 Mode
RF Resume Flag

NT Nested Task Flag
IOPL 1/0 Privilege Level
OF Opverflow Flag

DF Direction Flag

IF Interrupt Enable Flag
TF Trap Flag

SF Sign Flag

ZF Zero Flag

AF Auxiliary Carry Flag
PF Parity Flag

CF Carry Flag

14
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+ +

Segmentation

The 386 implements a segmented memory organization. This means that
every address consists of 2 parts: a segment and an offset. A segment is
a contiguous area of memory which has a starting address and an extent.
Valid references within a segment must have offsets less than the extent
of the segment. Segments may be overlapped or be disjoint.

When segments are overlapped a location may be addressed by two dis-
tinct names. The address is said to have two aliases.

—————————————

Segment 3

Segment 2

Segment 1

_____________



[\
(=]
=~

In the practical classes segments will effectively be ignored as the 386
implicitly uses particular segment registers with different addressing op-
erations and all the required segment registers have been loaded with
descriptors which cover the complete 4Gb address space of the processor
and alias all addresses to their offset value.

This is known in Intel parlance as ‘32 bit flat mode’.

Memory Hierarchy

At this stage an assembly language programmer’s view of the memory
hierarchy will be introduced. This view consists of 3 elements: registers,
memory, and backing store. Later in the course the computer architect’s
view will be introduced.

Registers  Fast (< 10nS) Very Small (~ 64bytes)

Memory Medium (< 100nS) Medium (~ 16 Mbytes)

Secondary Slow (< 15mS) Large (~ 1Gbyte)
The figures are conservative and based on typical low end workstation
components.

System performance is improved by maximizing the use of the faster
elements of the memory hierarchy. The principle of ‘Temporal Locality’
is central to this type of optimization.
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Assembly & Linking
Assembly language has a one-to-one relationship between assembly in-
structions and machine instructions. An assembler takes human readable
mnemonics and outputs a sequence of binary machine code instructions.
For example:

Assembly Language Memory Dump (Hex)

movl $4, %ecx cc 04 00 00 00
movl $6, %eax bh8 06 00 00 00
mul %ecx 7 el

movl $0, %edx ba 00 00 00 00

The format of a 486 assembly instruction is:

Instruction  Address Operand  Segment
Prefix Size Prefix = Size Prefix Override
Oorl Oorl Oorl Oorl

bytes

Opcode MOD SIB Disp Imm

R/M
lor2 Oorl Oorl 0120r4 012o0r4
bytes




The general process of assembly consists of 2 logical phases:
Pass 1: For each line of code

e Identifying the instruction

Identifying the addressing mode

Identifying segments (on a segmented architecture only)

Identifying the size of the operands

Resolving the operands

— Symbols - check symbol table - if symbol defined get address
otherwise get dummy value of correct size and fill in the ad-
dress when determined and insert symbol as an undefined
symbol

— Immediates - get value from source code
e Generate instruction in the processor instruction format
Pass 2:

e Fix references which contain dummy values
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The traditional representation of a 2 pass assembler is ordered in a dif-
ferent way but contains the same processes as the above. The GNU as
assembler is a one pass assembler which means that it operates in a way
similar to the above but instead of having a second pass it uses ‘back
patching’ when it discovers the address of a symbol that has been used
before it has been defined.

Linking

It is desirable to be able to divide a program into multiple source files
to

e Isolate unrelated code

¢ Re-compile or re-assemble only source files which have been
changed

¢ Work with human manageable size segments of code

To support multiple source files it is necessary to have a program which
‘glues’ the separate files together. That program is the linker. It is also
necessary to provide a new class of symbol - the external reference. The
external reference is a symbol which is resolved by the linker and the
address of the symbol is substituted into code using the symbol.



+ +

Components of a GNU as program

.globl main
.globl write_int_r

.data
four: .int 4

.text

main:
movl four, %eax
movl $6, Y%ecx
mull %ecx
call write_int_r
ret

e Assembler directives - Instructions to the assembler

— Segment directives

— Reserving space for variables
e External references - 2 types

— Making a symbol declared in this file public

— Allowing access to a public symbol

Labels

Immediate values

e Variables
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Basic Operations

Assignment Storing values.
Arithmetic Operations on numbers.

Jumps Causing the executing of an instruction other than the instruc-
tion immediately following the current instruction.

Alternation Causing the executing of an instruction other than the
instruction immediately following the current instruction based on
some condition.

Pigeon hole metaphor



A short program

start:
movl d1, %eax  /* Get the data value */
addl d2, %eax /* Add value of data2 */
addl $2, %eax /* Add 2 to the sum */
movl %eax, 100 /* Store result at loc 100 */
jmp exit

sl:

dl: Jdong 4

d2: Jdong 5

e Comments
e Labels, Addresses, Constants
¢ Reserving Space
Memory Reservation Directives
.byte 8 bit integer
.word 16 bit integer
.int 32 bit integer
JJong 32 bit integer
.ascii String of bytes

.asciz String of bytes terminated by a null
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Note that space directives do not reserve space unless there is an ini-
tialization value present. Each element of the initialization value list
reserves space of the size of the directive.

Jlong 5 /* reserves 32 bits & places 5 in it */

Jdong 5, 7 /* reserves 2 longs & places 5 & 7 */

.byte 4,6  /* reserves 2 bytes & places 4 & 6 */

Jlong /* reserves no space */

Strings

f: .ascii "hi"

‘i?

f“h’

f: .asciz "hi"

f |k’

Gi?

0
Immediates

Immediate values are formed by prefixing a ‘$’ to a label or a number.
In the case of a label the immediate value is the address represented
by the label. For numbers, the value is the constant represented by the
number.



AT&T Format

aopb—c
opcode src,, . .. dest

The AT&T instruction format places the result in the right-
most operand. The 80386 instruction set mainly employs 2
operand instructions, hence the rightmost operand typically
doubles as both a source and a destination.

a—b—a
subl b, a
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Operations
Assignment
The fundamental assignment operation provided by the 386/486 is the
mov instruction. This operation copies data from source to destination
without altering the source or the flag registers.

movl 10, %eax /* Copy contents of loc 10 to EAX */

movl $10, %eax /* Put value 10 into register EAX */

movl %ebx, %eax /* Copy value of EBX to EAX */

movb %edx, 10 /* Copy low byte of EDX to loc 10 */
Arithmetic
A large number of arithmetic operations are supported at the instruc-
tion level. These instructions can be grouped as arithmetic and bitwise
logical.

add Add source to destination leaving result in destination. Note that
only one argument may be a memory location.

cf. sub

and Bitwise-and the source and destination leaving result in destination.
Note that only one argument may be a memory location.
cf. or, xor
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mul Perform an unsigned multiply on the %eax register (or a subset)
and the instruction argument leaving the result in the register pair
%edx:%eax (or a subset).

imul Perform a signed multiplication.

¢ As mul but performs an signed multiplication

¢ Two operand form multiplies source by destination leaving
the result in destination.

e Three operand form multiplies sourcel by source2 and leaves
result in destination.

div Perform an unsigned division.

¢ Single operand form. Divide the register pair %edx:%eax (or
subset) by instruction argument. The result is returned in
%eax and the remainder in %edx (or subsets).

e Two operand form. As above but explicitly identifies regis-
ters.

idiv As div but performs signed division.
not One’s complement negation of operand

neg Two’s complement negation of operand
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Jumps
Absolute Jump to a specified location

Relative Jump to a location calculated by adding a signed offset to the
address of the instruction following the jump instruction.

Intersegment Jump to a location in another segment.

Indirect Jump to a location given in either a register or a memory
location.

Indirect Intersegment Jump to alocation defined by a segment offset
pair given in memory location.

Alternation

All decisions in a 386 assembly language program are based on the state
of the EFLAGS register. The EFLAGS register is altered by the opera-
tions:

o arithmetic

o bitwise logical
e test

e cmp

The majority of other operations do not affect the EFLAGS register.
Conditional jumps are taken or not depending on the state of the bits
in EFLAGS.



Conditional Jumps

JA
JAE
JB
JBE
JC
JCXZ
JECXZ
JE
JZ
JG
JGE
JL
JLE
JNA
JNAE
JNB
JNBE
JNC
JNE
JNG
JNGE
JNL
JNLE

Jump if above (CF =0-ZF =0)

Jump if above or equal (CF = 0)

Jump if below (CF = 1)

Jump if below or equal (CF =1+ ZF = 1)
Jump if carry (CF =1)

Jump if CX register is 0

Jump if ECX register is 0

Jump if equal (ZF = 1)

Jump if zero (ZF = 1)

Jump if greater (ZF =0-SF = OF)

Jump if greater or equal (SF = OF)

Jump if less (SF # OF)

Jump if less or equal (ZF =1+ SF # OF)
Jump if not above (CF =1+ ZF = 1)
Jump if not above or equal (CF = 1)
Jump if not below (C'F = 0)

Jump if not below or equal (CF =0-ZF = 0)
Jump if not carry (CF = 0)

Jump if not equal (ZF = 0)

Jump if not greater (ZF =1+ SF # OF)
Jump if not greater or equal (SF # OF)
Jump if not less (SF = OF)

Jump if not less or equal (ZF =0-SF = OF)

28
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JNO  Jump if not overflow (OF = 0)
JNP  Jump if not parity (PF = 0)
JNS  Jump if not sign (SF = 0)
JNZ  Jump if not zero (ZF = 0)
JO Jump if overflow (OF = 0)
JP Jump if parity (PF = 1)
JPE  Jump if parity even (PF = 1)
JPO  Jump if parity odd (PF = 0)
JS Jump if sign (SF = 1)
JZ Jump if zero (ZF = 1)
Setting the condition flags

Test Performs a bitwise-and without returning a result.

Cmp Performs a subtraction without returning a result.

Both mechanisms set the condition flags in the EFLAGS register.



The format of an assembly language program

There is a long historical tradition connected with the layout of an assem-
bly language program. The layout described maximizes the readability
of an assembly language program.

1.

2

Programs are laid out in 3 regions

. Labels, assembler segment directives, and global declarations go in

the leftmost region

. Code and space reserving directives go in the center region

Comments go in the rightmost region if they relate to an instruc-
tion otherwise comments may start in the other 2 regions.

30
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For example:

/* Program to square a number */
.globl main

.globl write_int_r

.globl read_int_r

.data
n: .int O

.text

main:
call read_int_r /% read in integer */
movl %eax, n

mull n /* square integer */
call write_int_r /* write out result */
ret

_l_

31



Representation & Organization
In Brief

e Algorithms - are recipes for performing operations

¢ During this course we will represent algorithms using

Flow Charts
Pseudo Code

— Narrative Descriptions

— Mathematical Formula

— Programming Languages

¢ The advantages of using a representation other than the program
code itself.

Algorithms
e An algorithm is a set of instructions for performing some task.

e The detail of the expression of an algorithm may be specified by
the author of the algorithm.

e The generality of an algorithm may be specified by the author.
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e Algorithms may be partitioned into parts

e Algorithms may be expressed in many ways

Representation

Human languages provide us with a way of expressing instructions. How-
ever, as a mechanism for expressing algorithms, the narrative description,
is poor. The problem with languages similar to English are:

e Lack of precision

e Overloaded meanings

e Verbosity

e Subject to individual interpretation

A good method of representing an algorithm must avoid these problems
and also be clear and readable.

Flowcharts
C ) Terminator

Process

Input/Output

V—
O

Connector



< Terminator

This symbol is used to indicate the beginning and end of a flowchart. The
word start is placed in the symbol to indicate the start of the routine,
the word stop is used to indicate the end of the routine.

Process

A description of one or more actions are placed inside the box. An action
may be defined by another flowchart.

Q Connector

This symbol is used to connect lines on separate pages of a flow chart.
A number or name is placed in the circle to identify the connection.

/ / Input/Output

Input or Qutput to a variable is represented by this symbol. The word

‘read’ or ‘write’ is followed by the variable to be read in or output.

Decision

The condition written in this box determines which of the paths are to
be followed out of the box. The paths leading out of the box are labelled
with a possible result of the condition.
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Lines are used to connect the elements of the flow chart. It is assumed
that control flows down the page unless an arrow is used to alter the
direction of flow.

The author of a flow chart is responsible for the readability of the flow
chart. It is often necessary to break a complex process down into com-
ponents and draw individual charts for those components.
Advantages and Disadvantages

The major advantage of the flowchart is that the operations supplied
by the flowchart symbols are similar to the operations available to the
assembly language programmer.

The flow chart has become unpopular for the following reasons:

e A flow chart can become too complex to be easily interpreted.

e A flow chart does not clearly distinguish between the structural
elements of a high level language. (do loops, while loops, for loops,
and conditionals are all represented by the same construct in a flow
chart)

e The majority of programmersno longer work in assembly language.
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Pseudo Code

Pseudo code or Structured English provides precision and removes
the ambiguity present in a narrative description. This achieved by using
defined keywords which structure the description.

The keywords in pseudo code are:

e start ... stop
— Start and Stop delimit the algorithm.
o if ... then ... else

— The then clause of this structure is executed if the condition
following if is satisfied. Otherwise the else clause is executed.

e repeat ... until

— The body of the loop is executed until the condition following
until is satisfied.

e while ... do

— The body of the loop is executed while the condition following
while is satisfied.

Indentation is used to group operations, and comments are enclosed by

6{7 Zl.nd 6}7.
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Example - Vertical Parity on A Data Stream

Narrative Description

A vertical parity is to be added to a data stream. A block size of 15 is
required. Produce the vertical parity by using the exclusive-or function
to xor each element of the incoming stream. Exit from the process if the
exit variable is set.

Pseudo Code

while (not exit) do
cnt = 0
read chk
repeat
read c
chk = ¢ xor chk
cnt = cnt + 1
until ((cnt = 15) or (exit = true))
write chk



Flow Chart

NO

chk = ¢ @ chk
cnt = cent + 1

38
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Assembly Code

.globl
.globl
.globl
.globl

.data
cnt:
chk:

.text

verchk:
11:

12:

x11:

x1:

verchk
read_char

write_char
exit

.int O

.byte 0

cmpl $1, exit
je x1

movl $0, cnt
call read_char
movb %eax, chk
call read_char
xorb %eax, chk
incl cnt

cmpl $15, cnt
je x11

cmpl $1, exit
je x11

movb chk, %eax
call write_char
jmp 11

ret

APPENDIX D.
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Algorithms & Implementations

It is a common practice, in computer science, to write algorithms with-
out considering the implementation architecture. Typically algorithm
writers assume:

¢ Infinite precision
e Infinite accuracy
e Unlimited word size
e Infinite memory

A consequence of this is that implementing algorithms requires great
care to ensure that situations which were unanticipated by the algorithm
writer are avoided, handled or noted. Failure to take into account the
architecture on which an algorithm is implemented can result in incorrect
answers.

Common Problems

e Large positive numbers can become negative under addition using
a signed representation

e Large negative numbers can become positive under subtraction
when using a signed representation

e Large positive numbers can become small positive numbers under
addition when using an unsigned representation
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e Under two’s complement notation there is one more negative num-
ber than positive number

Solutions
e Limit problem space

¢ Defensive programming practices



Program Structure

High Level view Describes the steps of solving a problem without ref-
erence to the details of a particular implementation.

Low Level view Consists of the details required for a particular im-
plementation.

Both views are required to implement programs effectively. In addition
there is a spectrum of views between the two extremes. The process of
stepwise refinement can be used to provide both a high and low level
representation within a single program.

Top Down Approach

The Top Down Approach is implemented using stepwise refinement. Es-
sentially a problem is defined in a abstract terms. The abstract concepts
are implemented using simpler elements until a sufficiently simple ele-
ment is found and implemented at the base level.

Advantages

¢ Reduces problems to components of a manageable size
e Isolates components of the solution allowing for easier maintenance

e Makes the program more accessible to other programmers
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Mechanisms for Implementing Stepwise Refinement

The major mechanism available to the assembly language programmer
for the implementation of stepwise refinement is the subroutine. A sub-
routine can be used to contain the details of a step in the solution. The
subroutine call can be used to represent the abstract concept.

An example of this is in ‘Practical Sheet 3’ where the factorial function
is used as part of the combination function. In this case the factorial
function is the basic unit of operation that has been implemented. The
combinatorial function is implemented in terms of this low level function.
Internal Documentation

The C language comment delimiters are used to mark comments under
GNU as.

In a well commented program, comments:
¢ Explain the action of a piece of code in the problem domain.

¢ Comments do not explain the function of an assembly language
instruction. (This should be obvious from the instruction itself and
a definition of the instruction set)



e Clarify any unusual coding

e Describe the function of a subroutine

Comment a program as it is written.
invariably loses some pertinent information relating to the reasons for a

particular coding.

Comment liberally, but do not state the obvious. A blow by blow de-

Adding comments at the end

scription of a mundane, easily understood task is a waste of time.

detailed description of the higher level abstract operation of a function
or exploitation of some existing precondition are worthwhile.

Good & Bad Comments

addl $1, %eax /*
addl $1, %eax /*
movl $0, %edx /*
movl $0, %edx /%

call write_int_r /*
call write_int_r /*

je exit /*
je exit /*
je exit /*

Add one to EAX */
Increment array ptr */

Zero EDX */
Clear top word EDX:EAX */

Write out value in EAX */
Display result */

if equal jump to exit */
if equal exit subroutine */
if x = y exit subroutine */

44
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Introduction to Subroutines

Before describing the operation and mechanism of a subroutine, the con-
cept of the system stack will be covered.

The System Stack

The 386 supports stack operations using the Stack Pointer register
(%esp) and the Base Pointer register (%ebp). The operation of the
system stack will be discussed here with reference to the stack pointer
register (%esp), the base pointer register and its usage will be introduced
in a later section.

The abstract datastructure is defined:

Stack An ordered collection of items into which new items may be in-
serted and from which items may be deleted at one end, called the
top of stack.®

Two operations are defined over a stack: push and pop.

Push add a new item to the collection

Pop remove an item from the collection

?Tenenbaum, A M., Augenstein, M J., Data Structures Using Pascal, Prentice-
Hall, 1991, pg 67
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Implementation of the System Stack on the 386

The 386 stack contains objects which are 16 and 32 bits in size. The
stack has a granularity of 16 or 32 bits. This granularity is characterized
by the fact that the 386 provides two forms of both push and pop.

16 bit pushw & popw
32 bit pushl & popl

The function of each of these instructions can be emulated with a series
of instructions. Writing the equivalent operation will be covered after
the addressing modes of the 386 are discussed.

Push

IF pushw
THEN

ESP = ESP - 2

copy content of source to word pointed to by ESP
ELSE

ESP = ESP - 4

copy content of source to long pointed to by ESP
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Pop

IF popw

THEN
copy content of word pointed to by ESP to dest
ESP = ESP + 2

ELSE
copy content of long pointed to by ESP to dest
ESP = ESP + 4

The operation of the system stack can be illustrated as follows:

(Dsiiiiiii

10000 +— %esp

0x00000000




pushl $4
((Deiiiiing

10000
piing
ftfe
fffd
ftfc

0x00000000
pushw $2
(<isiiinig

10000
it
fffe

fifd
fffc
ftth
fifa

0x00000000

= o O O

00
00
00
04
00
02

+ %esp

+— %esp

48



popw %eax

Ox Attt

10000
piiig
ftfe
fifd
ftfc
ftth
fifa

0x00000000
AX + 2
popl %eax
Ox ATt

10000
biing
ftfe
fifd
ftfc
ftth
fifa

0x00000000
EAX «+ 4

APPENDIX D. OHP SLIDES

00
00
00
04
00
02

+— %esp

00
00
00
04
00
02

+— %esp

_l_
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popl %eax
(eisiinind

10000
piiig
ftfe

fifd
ftfc
ftth
fifa

0x00000000

00
00
00
04
00
02

EAX + 0x040002

popw %eax

OxfHEHTE

10000
biing
ftfe

fifd
ftfc
ftth
fifa

0x00000000
AX « 0

00
00
00
04
00
02

«— % esp

+— %esp
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Subroutines and the System Stack
The address of a subroutine is a 32 bit integer. The stack is used to store
these addresses allowing subroutines to be nested.

Call Call pushes the address of the next instruction onto the stack and
jumps to the argument address

Ret Pops the stack and jumps to the address recovered

This scheme allows the easy nesting of subroutines and lets the processor
do most of the work in managing subroutine calls. However, this scheme
does require the programmer to ensure:

e All pushes are matched to pops within a subroutine

e That access to the stack data area must not over-write addresses
placed on the stack.

e That the stack pointer must not be corrupted by the program



Stacks & Subroutines

A simple nested subroutine

1000  start: call subone

1005 jmp exit /* exit the program */
1010 subone: call a /* subroutine subone*/
1015 call b

1020 ret

1021 a: ret /* subroutine a */
1022 b ret /¥ subroutine b */

Call Sequence Process Stack

start
:];01’16 1005
. o
o o
T 1005
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Simple Parameter Passing

There are many ways of passing parameters to subroutines. Two simple
methods of passing parameters will be introduced. Later in the course
additional methods will be covered.

e Pass by register

¢ Pass by memory

Pass by Register

When using this form of parameter passing the parameters are placed
in registers before the subroutine is called. The subroutine uses the
parameters found in the registers and performs its function.

+ Speed: No memory move overhead
+ Simple: No name clashes
- Number: Limited number of parameters can be passed
- Size: Limited amount of information can be passed
Example
mov $1, %eax

mov $2, Yeax
call test



Pass by Memory

When using this form of parameter passing the parameters are placed in
memory locations before the subroutine is called. The subroutine uses
the parameters found in the memory locations and performs its function.

+ Number: Any number of parameters can be passed
+ Size: Any amount of information can be passed

- Speed: Requires a memory move before a parameter can be ac-
cessed

- Complex: It is necessary to ensure that name clashes do not occur
Example

mov $1, parml
mov $2, parm?2
call test
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Preserving Registers

Although subroutines are useful in breaking up a program into smaller,
more manageable sized segments there it is necessary to ensure that no
subroutine called by your routine or subroutine called by a subroutine
you call disturbs a register containing information used by your routine.
For example:

mov $4, %ebx
mov $3, Yeax
call write_int_r
addl %ebx, %eax
call write_int_r

Would produce a strange result if the write_int_r subroutine had a side-
effect that altered the EBX register.

Because it is possible to call routines for which the source code is un-
available it is necessary to have techniques that allow you to save and
restore the values of registers across subroutine calls. In addition these
techniques can be used to write well behaved subroutines that have no
side-effects.

Two techniques will be introduced for preserving register contents:

e Save to static memory location

e Save to stack
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The two techniques can be used to:

e Avoid problems caused by subroutine side-effects

e Prevent subroutine side-effects

To achieve the former required registers are saved before calling the sub-
routine and restored after the completion of the subroutine. To achieve
the latter the registers which a subroutine may alter are saved by the
called subroutine and restored before the subroutine returns.

Save to static memory location

In this method the value of the register is stored in a memory location.
This mechanism does not support recursion. An example of this method
would be:

movl %ebx, sebx
movl %eax, seax
call test

movl sebx, %ebx
movl seax, eax

Save to stack

A more flexible method is to push the contents of registers onto the
stack. This method has the advantage that it can be used in recursive
subroutines.
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pushl %ebx
pushl Yeax
call test
popl Yeax
popl Yebx

Subroutines with no side-effects

In order to write a subroutine with no visible side-effects it is neces-
sary to introduce a method for saving the flag register. Pushf pushes
the contents of EFLAGS onto the stack, using this in conjunction with
pusha? it is possible to store the majority of the user alterable state of
the 386 operating in 386 flat mode.

Example: Debugging Subroutines

A first cut at a debugging routine might be:

eaxout:
pushl %eax
call write_int_r
movl nl , %eax
call write_char_r
popl ’eax
ret

.data

nl: .ascii "\n"

%Pushes the general registers onto the stack
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It eases the task of debugging code markedly if the code used to assist in the
debugging has minimal side-effects. The following subroutine illustrates the
method used to achieve this aim and provides fairly comprehensive output:

regout:

pusha

pushf

call write_int_r
movl sp , jeax
call write_char_r
movl %ebx, %eax
call write_int_r
movl sp , %eax
call write_char_r
movl %ecx, %eax
call write_int_r
movl sp , jeax
call write_char_r
movl %edx, Yeax
call write_int_r
movl nl , %eax
call write_char_r

popf

popa

ret
.data
nl: .ascii "\nl"
sp: .ascii " "
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Recursion - A Minimalist Example

A recursive version of the factorial function can be written without the
need to save values. Only a limited class of recursive problems may
be implemented in this way. In the section on advanced subroutines
a general method will be discussed for the implementation of recursive
routines.

.data
n: .long O
pi: .long O
.text
fact:
movl $1, pi /* initialize */
movl %eax, n
call factil
ret
factl:
cmpl $0, n /* termination condition */
je efact /* n =0 %/
movl pi, %eax /* recurrence relation */
mull n /* pi = n (n+l) */
movl %eax, pi
decl n /* n—— x/
call factl /* recurse */
ret
efact:
movl pi, %eax /* put results into %eax */
ret



Student Exercise
Rewrite the recursive factorial program to use registers instead of mem-
ory locations to store intermediate results.
Sample Answer

fact:

factl:

efact:

The purpose of the exercise:

movl
call
ret

cmpl

$1, %ebx
factl

$0, ‘heax

je efact

movl
movl
mull
movl
movl
decl
call
ret

movl
ret

hecx
Yheax

Yeax,
%ebx,
hecx

Yeax,
Yhecx,
Yheax

factil

Y%hebx
Yheax

%ebx, %eax

/%

/%
/*

/*

/*

/%

/%

initialize pi = %ebx */

termination condition */
n=0 %/

pi = n (n+1) */

n-- */

recurse */

put results into %eax */

e To demonstrate the convenience of named memory locations

e To illustrate register optimization

60
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Overheads & Macros

Although subroutines are highly useful, there is an associated cost with
each subroutine call. That cost is the time taken to write the address
of the return location onto the stack on a call and the time taken to
retrieve the return location from the stack on return.

When writing time critical applications the cost of these overheads can
be significant. To address this problem and still retain the properties of
code modularity the macro was introduced.

A macro is a piece of code which is textually substituted into the source
code of a program before the program is assembled. This allows sub-
routine like textual organization of the code but does not incur the call
and return overheads. Macros have an associated cost known as ‘code
explosion’, that is that each instance of the macro generates the code of
the macro, enlarging the assembled program’s size.

The GNU as assembler does not have an inbuilt macro language. Macros
are only mentioned in this course for completeness.

The following example uses the m4 macro preprocessor to illustrate how
macros might be used.



_l_

.globl main
.globl write_int_r

changequote([,])
define(dmp, [mov $1, %eax
call prtout])

.data
nl: .asciz "\n"

sp: .asciz " "

.text

main:
movl $’a, %ebx
dmp (%ebx)
ret

After being run through the m4 preprocessor:

.globl main
.globl write_int_r

.data

nl: .asciz "\n"

sp: .asciz " "

.text

main:
movl $’a, Y%ebx
mov %ebx, %eax
call prtout
ret

33

62
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Control Structures
Why standard control structures?

e Make code less confusing
e Make code more modular
e Make code easier to modify

This section will cover the standard structures and methods of combining
them to form programs. It should be noted that there are alternate
implementations of these structures.



Pre-Test Loops

Pre-test loops test that a condition is satisfied before entering the body
of the loop. This class of loop is represented by the while ... do in
pseudo code and the while loop in C.

Operation
%J

=~
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Example

while z not equal 0 do
a=a+a
z=2z-1

ploop:
cmpl $0, z /* test if z is zero */
je eloop
movl a, %eax /*let a equal a + a */
addl %eax, a
dec z /* subtract 1 from z */
jmp ploop

eloop: /* exit the loop */

+
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Post-Test Loops

Post-test loops test that a condition is satisfied after executing the body
of the loop. This class of loop is represented by the repeat ... until in
pseudo code and the do ... while loop in C.

Operation

S
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Example

repeat
a=a+a
z=2z-1

until z equal O

ploop:
movl a, %eax
addl %eax, a
dec 7
cmpl $0, z
je eloop
jmp ploop
eloop:

APPENDIX D. OHP SLIDES

/* let a equal a + a */

/* subtract 1 from z */
/* test if z is zero */

/* exit the loop */

+
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If-Then

The If ... Then conditional may be expressed in assembly language by
testing for the negation of the condition. If the negation is true then the
consequence - the then clause - is skipped.

@ True

False

Operation

Example

if z equal 0 then
a=1

cmpl $0, 7z /* test if 7 is zero */
jne ethen
movl $1,a  /*let a equal 1 */
ethen: /¥ exit the conditional */
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If-Then-Else

The If ... Then ... Else conditional is expressed in assembly language
as a test for the condition: If the condition is met, then a jump to the
‘true’ code is made, otherwise the ‘false’ code is executed.

@ True

False

Operation Operation




Example

if z equal 0 then

a=1
else
a=2
cmpl $0, z /¥ test if z is zero */
je then
movl $2,a  /* let a equal 2 */
jmp ethen
then:
movl $1,a  /* let a equal 1 */
ethen: /* exit the conditional */

+ 70
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If-Then-Elself-Else

The If ... Then ... Elself ... Else conditional is a combination of the
techniques for If ... Then and If ... Then ... Else.

True
Not Cond

False True
Operation
Operation Operation
]

O



Example

if z equal 0 then

a=1
elseif z equal 1 then
a=2
else
a=3
cmpl $0, 7z /* test if 7 is zero */
jne eifl
movl $1,a /* let a equal 1 */
jmp eelse
eifl:  cmpl $1,z /* test if z is one */
jne else
movl $2,a  /* let a equal 2 */
jmp eelse
else:  movl $3,a /* let a equal 3 */
eelse: /* exit the conditional */



264 APPENDIX D. OHP SLIDES

+ +

Switch

The switch or case statement may be implemented in two ways: the first
is to use the If ... Then ... Elself ... Else construct. The second
method is to use a jump table. A vector of jump addresses is calculated
for each possible input value, and the input values are used as an index
into the table. This technique provides quick execution. This technique
is similar to that used for dope vectors



Addressing Modes

So far we have used two addressing modes: immediate and direct. Now
we will examine 2 further addressing modes. The syntax, semantics and
use of all the available addressing modes on the 80386 will be discussed.
The 80386 supports the following addressing modes:

Immediate The value returned is the value of the argument

Direct The value returned is the value contained by the location spec-
ified by the argument

Indirect The value returned is the value of the location specified by the
contents of a register or memory location®

Indexed The value returned is the value of the location specified by the
sum of at least a base value and an index value multiplied by an
item size.

?Indirection using memory locations is limited on the 386/486
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Indexed Addressing on the 80386

In immediate mode addressing the value is explicitly encoded into the in-
struction. In direct addressing the address of the location which contains
the value is explicitly mentioned.

Indexed mode addressing calculates the effective address of the location
referred to. The effective address is the actual address of the referred
location. In a general system the effective address can be based on the
contents of memory locations, the contents of registers and constants.
In the 80386 the effective address is based on the contents of registers
and constants only.

The effective address of the memory location is calculated using the
formula:

displacement + base + (index x scale)

The effective address is relative to a segment. The default segments are:
Ref Type  Seg Default
Instruction CS  Automatic with Instruction Fetch

Stack SS  Push, Pop, & any memory reference
with ESP or EBP as a base register
Local DS All data references except strings

and when relative to the stack
String ES  Destination of strings
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The default segment can be overridden by using a segment override. In
32-bit flat mode the segmentation has no effect on user programs as all
the segments are mapped to the same region of memory.

The 80386 instruction set allows the parameters of the effective address
calculation to be replaced only as indicated:

4 _ 3\ . 3 \
7.
0//()6([‘)61‘ %eax
oeow Y%ebx N
No Disp %oecx Yieon 1
8 — Bit Disp y +{ Y%edzr 3+ (;edx x{ 2
32 — Bit Disp Yoesi ;esi 4
Yoedi 706 oy 8
(0]
Y%oebp | ety |
\ %esp )

The following combinations of the effective address calculation are per-
mitted:

¢ Displacement
e Base
e Base + Displacement

¢ (Index * Scale) 4+ Displacement

Base + Index + Displacement

e Base + (Index * Scale) + Displacement
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Displacement

Segment
Index * Scale

Base

Indirect Addressing

Indirect addressing consists of extracting the address of the destination
location from the location named in the instruction. Thus a location
contains the address of the location containing the required value.

The 386/486 provides minimal support for indirect addressing. Specifi-
cally, it is available for mov and jump commands, however, only moves
to and from the register %eax are supported.



Address

1000
1004
1008
1012

2000
2004
2008
2012

Memory

2008

45

movl 1004(, 1), %eax
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GNU as Syntax

Immediate Addressing
Immediate values are prefaced by ‘$’.
Examples

movl $4, Y%eax
movl $fred, Yeax

Direct Addressing
Direct addresses are not prefaced.
Examples

movl 0x4, %eax
movl john, %eax

Indexed Addressing
Addresses of this form are expressed with the syntax:

segment : disp(base, index, scale)

‘ 3
( 3
%eax .
%cs %eba Woeb:r
%ds No Disp %ecx (70 ' 1
%oes 8 Bit (¢ %edz 3, ;eflx 2 3)
%ss 32 Bit %est (706 v 4
%fs Yedi (;:flz 8
%gs Y%ebp ?
| Sesp \ %ebp )



Examples

movl %eax, foo(%ebx)
movl %eax, (ebx,%ecx,2)

Indirect Addressing

Warning: Not supported by the version of GNU as used in practical
work. Do not use.

Is a syntactic exception under GNU as. It is expressed as

location(,1)

Note that only moves and jumps are supported by indirect addressing
and that the moves must be to or from the %eax register.
Examples

movl %eax, foo(,1)
movl foo(,1), %eax
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Indexed Addressing - Detailed Examples

Data Declarations

.data

a: .long 1,2,3
b: .long O

c: .byte 1,2,3
d: .byte 0

sp: .ascii " "

Picture of Memory
sp | 0x20
d 0x00

0x03

0x02
¢ 0x01
0x00
0x00
0x00
b 0x00
0x00
0x00
0x00
0x03
0x00
0x00
0x00
0x02
0x00
0x00
0x00
a 0x01




_l_

Displacements - From Base
Program

.globl main
.globl write_int_r
.globl dispnum

.data

A0 oo

.text
main:

Results

123

.long 1,2,3
.long O
.byte 1,2,3
.byte 0

.ascii

movl
movl
call
movl
call
movl
movl
call
ret

$a, %ebx
(%ebx), %eax
dispnum
4(%hebx), ‘heax
dispnum

$b, %ebx

-4 (%ebx), %eax
dispnum

82



2
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Indexing - From Displacement

Program

.globl main

.globl write_

int_r

.globl dispnum

.data

a0 TP

.long 1,2,3
.long O
.byte 1,2,3
.byte 0

sp: .ascii " "

.text
main:
movl
movl
call
movl
movl
call
movl
movl
call
ret

Results

$0, Yebx
a(,%ebx,4), %eax
dispnum

$1, Y%ebx
a(,%ebx,4), Yeax
dispnum

$-1, %ebx
b(,%ebx,4), %eax
dispnum

APPENDIX D.
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Indexing - Size

Program

.globl main

.globl write_

int_r

.globl dispnum

.data
a: .long 1,2,3
b: .long O
c: .byte 1,2,3
d: .byte 0
sp: .ascii " "
.text
main:
movl $a, Y%ebx
movl $0, Y%ecx
movl (%ebx,%ecx,4), %eax
call dispnum
movl $c, Y%ebx
movl $1, Y%ecx
movl $0, %eax
movb (Y%ebx,%ecx,1), jeax
call dispnum
movl $0, Y%ecx
movl $0, Y%eax
movl (%ebx,%ecx), %eax
call dispnum
ret
Results
1 2 197121

75

84
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Revision
Instant Revision of Indexing
The format of an indexed memory access is:

segment : disp(base, index, scale)

where the valid values are:

( 1 \
( ) Y%eax Yieax
%cs Y%ebx (;ezl
%ods No Disp Yoecx (706 x 1
Vies p:q 8Bit ¢ ({ Yheds 3, 7062‘” 22 )
%ss 32 Bit Y%est (706 x 4
%ofs Yeed ;“? 8
vedi
| %gs ) %ebp e
| Yoesp L 7oeoP )

The effective address - relative to the segment - of the operation may be
calculated using;:

displacement + base + (index x scale)
Instant Revision of Assembler Directives

Al repeat, size, value Creates a block of memory repeat * size contain-
ing value represented in size bytes.

.space repeat, size Creates a block of memory repeat * size containing
Z€eros
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Examples of converting ‘C’" to Assembly Language

The following fragments of ‘C’ code will be translated to assembly lan-
guage. This will illustrate the use of indirect addressing and the imple-
mentation of high level language constructs in assembly language.
Arrays

C

int array[10];
[* .. %/
array [4]++;

Assembler

array: .fill 10, 4, O
/x ... *x/

movl $4, %eax
incl array(,%eax,4)

Note:
e Objects are 4 bytes in size
e Scale Factor is 4

e Transfer size is 4 (long)



Picture of Memory

array

0x00
0x00
0x00
0x00

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00

array[9]

array[4]

array|3]

array|2]

array[1]

array|0]
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char array[10];
/x o0 %/
array [4]++;
Assembler
array: .fill 10, 1, O
/x ... %/

movl $4, %eax
incb array(,’eax,1)

Note:
e Objects are 1 byte in size
e Scale Factoris 1

e Transfer size is 1 (byte)
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Picture of Memory

array

0x00

0x00
0x00
0x00
0x00
0x00

array|9]

array[4]
array|3]
array|[2]
array[1]
array[0]
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Structures

C

struct point
{
int x;
int y;
char color;
};

struct point first;
/* ... %/
first.x = 1;

first.y = 2;
first.color = 0;

Assembler

/* point consists of 2*4 byte fields followed by */
/* a 1*1 byte field */
first: .space 9, 0

/* ... %/

/* get address of structure into a register */
movl $first, Yeax

/* offset of x = 0 */

movl $1, 0(%eax)

/* offset of y = 4 %/

movl $2, 4(%eax)

/* offset of color = 8 */

movb $0, 8(%eax)

81

90



Picture

of Memory

first

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00

first.color

first.y

first.x
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Arrays of Structures

C

struct atom
{
short id;
char x;
char y;
};
struct atom cloud[1000];
/*x .. %/
cloud[4].id = 4;
cloud[4] .x = 2;
cloud[4].y = 1;

Assembler

/* atom consists of 1 * 2 byte fields followed by
/* a 2 * 1 byte field */

cloud: .fill 1000, 4

/*x ... x/

/* get address of structure into a register */
movl $cloud, Y%eax

/* set up index value */

movl $4, %ebx

/* offset of id = 0 */

movw $4, (%eax,%ebx,4)

/* offset of x = 2 */

movb $1, 2(Yeax,%ebx,4)

/* offset of y = 3 %/

movb $2, 3(leax,%ebx,4)



Picture of Memory

cloud

0x00
0x00
0x00
0x00

0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00
0x00

cloud[999].y
cloud[999].x

cloud[999].id

cloud[4].y
cloud[4].x

cloud[4].id
cloud[3].y
cloud[3].x

cloud[3].id
cloud|2].y
cloud[2].x

cloud|2].id
cloud[1].y
cloud[1].x

cloud[1].id
cloud[0].y
cloud[0].x

cloud[0].id

APPENDIX D.
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Pointers

C
int x;
int *y;
X = 4;
y = &x;

printf("%d %d %d", x, y, *y);
Assembler

.globl write_int_r
.globl write_char_r

X: .int O

y: .long O

sp: .ascii " "
movl $4, x
movl $x, y

movl x, %eax

call write_int_r
movl sp, %eax
call write_char_r
movl y, %eax

call write_int_r
movl sp, %eax
call write_char_r
movl y, %ebx
movl (%ebx), %eax
call write_int_r
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Results
4 548 4

In this case the dereference operation is implemented as an indexed ac-
cess to the base address.
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Subroutines - Advanced

Parameter Passing

The parameters of a subroutine are the values that are passed to a sub-
routine for it to operate on. There are two basic methods of passing
parameters:

e pass by stack
e pass by register

These mechanisms can be combined to yield a hybrid
There are two types parameters:

o reference parameters

¢ value parameters
We will be covering;:

¢ definition

e implementation

e characteristics

of parameter passing methods and parameter types.
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Pass by Register

This is the simplest form of parameter passing and should be familiar as
it has been used in prac work to date. The information to be passed to
the subroutine is loaded into registers and the subroutine called.

movl $1, %eax
movl $2, %ebx
call trivadd

/¥ ... x/
trivadd:

addl %ebx, %eax

ret

The advantages of this form are

¢ it permits the subroutine direct access to the parameters in regis-
ters

The disadvantages of this form are
¢ Limited number of parameters can be passed
e Limited amount of information can be passed

e Requires additional work to generate a local copy of the parameter
value



Pass by Stack

Passing values using the stack permits greater flexibility than passing by
register. Provided there is sufficient space on the stack, any type and
number of values may be transferred as parameters to a subroutine using
stack based passing.

Parameters are pushed onto the stack before the subroutine is called.
Indexed addressing relative to the stack pointer is used to recover the
values of the parameters.

pushl $1
pushl $2
call trivadd
add $8, %esp

/*x ... %/

trivadd:
movl 4(%esp), %ebx
movl 8(%esp), %heax
addl %ebx, %eax
ret

The stack can be represented diagrammatically:

Joesp+12

Kesp+8 1

Yoesp+4 2

Jesp+0 | ret addr | «+ %esp
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Parameters passed to a function may be of varying sizes. The following
program fragment shows an implementation of a function which takes a
long integer, followed by a word-sized integer, followed by another long
integer.

pushl $1

pushw $2

pushl $3

call oddadd
addl $10, %esp

/*x ... %/

oddadd:
movzwl 8(lesp), Jeax
addl 4(%esp), %eax
addl 10(%esp), %eax
ret

The stack diagram indicates the offsets and sizes of the parameters rel-
ative to the value of the stack pointer when the function is called.

Yesp+14

Jesp+10 1 4 bytes
Yoesp+8 2 2 bytes
Yesp+4 3 4 bytes
Jesp+0 | ret addr | « %esp 4 bytes




It is essential that the stack pointer be reset to the position it held
before parameters were pushed either by the called subroutine or by
code following the call on the subroutine. Failure to do this before a
return uses the return value stored on the stack will result in either an
access violation or a jump to a location in memory where there may not
be valid code.

Pass by stack has speed penalty in access to the parameters. The param-
eters must be saved on the stack and later accessed by the subroutine.
This time penalty aside, access by stack, provides a consistent, flexible
mechanism for accessing subroutine parameters.

+ 100
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Pass by Value and Pass by Reference
Pass by value should be familiar as both the examples in practical work
and the ‘C’ programming language use this construct.

Pass by value Passes a complete copy of the object named as a pa-
rameter to the function

Pass by reference Passes the address of the object named as a param-
eter to the function

Pass by reference is seen in the Pascal programming language and is
represented by var parameters. ‘C’ does not support pass by reference.
Pascal provides both pass by value and pass by reference. The following
is an example Pascal code fragment:

procedure addtwo(var result: integer; pl, p2: integer);
begin

result := pl + p2;
end;

{ ...}

addtwo(res, 2, 4);

+ 101



Translated into assembly language:

addtwo:
movl 4(%esp), %heax /* get p2 */
addl 8(%esp), Jeax /* add pl */
movl 12(%esp), %edx /* get the address of result */
movl %eax, (Yedx) /* store the result */
ret
[* .. %/
pushl $result
pushl $2
pushl $4

call addtwo
add $12, %esp

For small data items passing by value has the advantage of providing a
copy of the value to the subroutine which it may alter without destroying
the value used by the calling routine. If the data item is sufficiently large,
then the convenience gained is offset by the overhead of copying the data
item.

+ 102
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It is useful to note that the assembly language version of the program
closely resembles the ‘C’ implementation of the program.

void addtwo(int #*result, pl, p2)
{

*result = pl + p2;

}

/x ... %/
addtwo(&res, 2, 4);

Returning Results

The results of a function may be returned by using either a register or
by a reference to memory. Returning results by reference is equivalent
to passing an additional pass by reference parameter to a function, and
using that parameter for the return value.

+ 103



Local Variables
A local variable is a variable that is not visible to the caller of a subrou-
tine but is visible to the subroutine. Local variables:

¢ reduce the amount of global storage space required for a program
e provide a private storage area that a subroutine can use.

Local variables are created when they are required and persist until the
function exits. This ensures that the variable only consumes space when
the variable is in use. Recursive routines often require a quantity of
storage space in which the current state is stored. Local variables are
created with each instance of a subroutine, and provide a natural location
in which to store intermediate results.

Note: Creating space on the stack is NOT equivalent to malloc’s in C.
Space creation using the stack is equivalent to local variables in C. A
malloc is equivalent to reserving space on the heap.

Local variables are created in assembly language by reserving space on
the stack after the parameters.

+ 104
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A program fragment which demonstrates the creation of a local variable
on a stack is:

/* fn takes two word size parameters and needs */
/* eight bytes of local storage space */
fn:
subl $8, Yesp /* reserve space */
movl 12(%esp), ’eax /* recover pl */
movl 16(%esp), %ebx /* recover p2 */

VA
addl $8, %esp /* reset stack */
ret

+ 105



The stack for this subroutine:

OxfHET

0x00000000

p2 (msb)

p2 (Isb)

pl (msb)

pl (Isb)
ret addr (msb)

ret addr (Isb)
reserved
reserved
reserved
reserved
reserved
reserved
reserved
reserved

+— %esp

S
O
=~
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Assembler Bug
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There is a bug in the version of GNU as being used for the practical
class. This bug manifests itself as follows:

Input Code

cmpb $0,
cmpw $0,
cmpl $0,

cmpb $0,
cmpw $0,
cmpl $0,

Yeax
Yeax
Yeax

Y%ebx
%ebx
Y%ebx

Generated Code

cmpl
cmpw
cmpl

cmpl
cmpw
cmpl

o,
$0,
o,

o,
$0,
o,

Yheax
Yheax
Yheax

%ebx
%ebx
%ebx

<- error

<- error

The correct code can be generated by rewriting the instruction as:

Input Code

cmpb $0,

cmpb $0,

%hal

%bl

Generated Code

cmpb $0, %al

cmpb $0, %bl

107



Stack Frames

Previously the concept of a local variable was introduced. The mecha-
nism of referencing local variables and function parameters off the stack
pointer is quite unwieldy. Each time more space is reserved on the stack
or a push or a pop is executed within a subroutine the offsets for the
parameters and local variables need to be recalculated. This is tedious
and error prone.

The stack frame is a mechanism which can be used to avoid the deficien-
cies described. On the 386/486 a stack frame is constructed by using the
base pointer in conjunction with the stack pointer.

To create a simple stack frame:

1. Push %ebp
2. Move %esp to %ebp
3. Reserve space on the stack

This results in a structure which has %ebp pointing to a location just
above the local variables and a fixed known distance below the parame-
ters. Thus both the parameters and the local variables may be referenced
by offsets from %ebp safely. Note also that %esp is free to be used by
push and pop.

+ 108
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A simple stack frame may be represented:

0tFFFFFFFF
Parameters
Return Address
01d %ebp
Local Variables
Stack ...
0z00000000

+

+ %ebp

+— %esp

Local variables may be accessed using negative offsets from the base
pointer and parameters are accessible using positive offsets. Use of push
and pop do not affect the base pointer, so the offsets are not affected by

normal activity on the stack.

109
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The code that forms a simple stack frame with space bytes of local vari-
ables is:

pushl %ebp

movl %esp, %ebp

subl $space, %esp

This is equivalent to the command enter $space, $0. The leave in-
struction may be emulated by the code:

movl %ebp, %esp

popl Yebp

Leave, restores the base pointer to its previous values.

+ 110
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An example The following ‘C’ program fragment generates a Fibonacci
sequence as an example of a recursive program with local variables:

void fib(int a, int b)
{

int c;

printf("%d ", a);

c =a+ b;

if (¢ > 50)
return;

fib(b, ¢);

}

/x ... %/

fib(1,1);
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An assembly language fragment using local variables reserved on the
stack directly following the parameters of the function:

fib:
subl $4, Yesp /* reserve space for c */
movl 12(%esp), Jieax /* recover the a parameter */
call print_num /* call fict. print routine */
movl 8(%esp), %ebx /* recover the b parameter */
movl %eax, 0(%esp) /* store a in c */
addl %ebx, 0(%esp) /* add b */
movl 0(%esp), %ecx /* move value c into %ecx */
cmpl $50, 0(%esp) /* test against 50 x/
jge skip
pushl %ebx /* call fib =*/
pushl %ecx
call fib
addl $8, %esp /* fix the stack pointer */
skip:
addl $4, %esp /* remove C from stack */
ret
[x .. %/
pushl $1 /* fib(1,1) */
pushl $1
call fib

addl $8, %esp
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The example Fibonacci program rewritten to use a simple stack frame:

fib:

ski

/%

pushl %ebp

movl %esp, %ebp
subl $4, Y%esp

movl 12(%ebp), eax
call print_num

movl 8(%ebp), %ebx
movl %eax, -4(%ebp)
addl %ebx, -4(ebp)
movl -4(%ebp), %ecx
cmpl $50, -4(’ebp)
jge skip

pushl %ebx

pushl %ecx

call fib

addl $8, Yesp

p:

movl %ebp, %esp
popl ’%ebp

ret

*/

pushl $1
pushl $1
call fib
addl $8, Yesp

/%

/%
/%
/%
/%
/%
/%
/%
/%

/%

/%

/%

/%

create stack frame */

reserve space for c */
recover the a parameter */
call fict. print routine */
recover the b parameter */
store a in c */

add b */

move value ¢ into Y%ecx */
test against 50 */

call fib */

fix the stack pointer */

destroy stack frame */

fib(1,1) */

113



Using enter and leave:

fib:

ski

/* ...

enter $4, $0

movl 12(%ebp), %eax
call print_num

movl 8(%ebp), %ebx

movl %eax, -4(%ebp)
addl %ebx, -4(%ebp)
movl -4(%ebp), %ecx
cmpl $50, -4(%ebp)

jge skip

pushl %ebx

pushl %ecx

call fib

addl $8, %esp

p:

leave

ret

*/

pushl $1
pushl $1
call fib
addl $8, %esp

/%
/%
/%
/%
/%
/%
/*
/%

/*

/*

/*

/*

305

reserve space for c */
recover the a parameter */
call fict. print routine */
recover the b parameter */
store a in c */

add b */

move value c¢ into Jecx */
test against 50 */

call fib */

fix the stack pointer */

destroy stack frame */

fib(1,1) */
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Student Exercise
Write a function called ackerman which is compatible with the following ‘C’
function.

int ackerman(m, n, p)

int m;
int n;
int p;
{
int res;
int t;
if (m == 0)
{
res = mn + p;
}
else if (n == 0)
{
if (m == 1)
res = 0;
else
res = 1;
}
else
{
t = ackerman(m, n-1, p);
res = ackerman(m-1, t, p);
}
return(res) ;
}
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P +16
n +12
m +8
ret addr +4
old %ebp | + %ebp
res -4
t -8
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/* function ackerman takes 3 parameters mn & p */
/* performs ackerman’s function */

ackerman:
pushl %ebp
movl %esp, %ebp
subl $8, Yesp
movl 8(%ebp), Jeax
cmpl $0, %eax
je rl
movl 12(%ebp), Jeax
cmpl $0, %eax
je r2

movl 16(%ebp), %eax
pushl Yeax

movl 12(%ebp), %eax
decl %eax

pushl Jeax

movl 8(%ebp), %eax
pushl %eax

call ackerman

movl %eax, -8(%ebp)
addl $12, Yesp

/* setup stack frame */
/* reserve local vars */
/* if m = 0 *x/

/* else if n = 0 */

/* else */
/* t=ackerman(m,n-1,p) */
/* p x/

/* n-1 %/

/* m x/

/* store in t */
/* reset stack ptr */
/* res=ackerman(m-1,t,p) */
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movl 16(%ebp), %eax
pushl %eax
movl -8(%ebp), %eax
pushl Y%eax
movl 8(%ebp), %eax
decl Y%eax
pushl %eax
call ackerman
movl %eax, -4(%ebp)
addl $12, %esp
jmp conc

rl:

movl 12(%ebp), %eax
addl 16(%ebp), %eax
movl %eax, -4(%ebp)
jmp conc

r2:
movl 8(%ebp), %eax
cmpl $1, %eax
je r3
movl $1, -4(%ebp)
jmp conc

r3:
movl $0, -4(%ebp)
jmp conc

conc:
movl -4(%ebp), %eax
leave
ret

/*

/*

/*

/*
/*

/*
/%
/%
/%

/%

/%

309

+
p */
t x/
m-1 */
store in res */
reset stack ptr */
n+p */
n */
P */
store in res */
if m=1 %/
res =1 *x/
res = 0 *x/
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Data Structures

Both the choice of algorithm and the choice of data structures influence
the efficiency of programs. Because of the significant role of data struc-
tures in all programming this lecture will be devoted to the details of
data structures.

This lecture will cover:

e Implementation of data structures at the assembly code level
¢ Low level mechanisms for accessing data stored in data structures
e The description of basic data structures
The data structures to be discussed:
¢ Vectors

e Arrays

Records / Structures
e Dope Vectors

Trees and Graphs
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Vectors

A vector is a one dimensional array. The assembly language represen-
tation of an array comnsists of a set of equal size objects consecutive in
memory. Elements of this set are accessed by multiplying the index of
the required element by the size of the element and adding this to the
base address of the array.

General Representation of a Vector:

vector[a..b] of elements

La bl
I I D B I
1 base

addrs = ((index — a) * sizeof(element)) + base

The vector was introduced in the section on indexed addressing. Code
was introduced into that section which used the inbuilt index granulari-
ties of 1, 2, 4, and 8 bytes. An example of a generalized indexing scheme
which can be used for other element sizes follows.
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/* calculate offset from base */

movl $inder, %ebx

subl $first, Jebx

movl $size, %eax

/* note that this multiply destroys the contents */
/* of jedx and leaves the result in %eax */

mull %ebx

/* add base to offset Jeax points to beginning */
/* of item */

addl $base, Yeax

/* access first word of element */

movl 0(%eax), %hecx
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Arrays

Vectors are one dimensional arrays. Multi-dimensional arrays will be
introduced here.

As the memory of a computer may be viewed as a one dimensional array
of storage locations, it is necessary to develop a mechanism that allows
the representation of a multi-dimensional array in a one dimensional
array.

A general mechanism for representing multi-dimensional arrays:

A multi dimensional array may be considered an array of
arrays of one less dimension. A mechanism for implement-
ing a one dimensional array is known. Hence an array of
arbitrary dimension may be represented by induction.

Because of the frequent use of two dimensional arrays, a two dimensional
array will be used as an example of multidimensional arrays.

There are two ways of linearizing a multidimensional array. The first is
to store the first row of the array in memory followed by each subsequent
row. This is known as row-major form. The second method stores the
columns in order, and is known as column-major form.
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Two Dimensional Array:

Row Major Form:

row 1 row 2

Column Major Form:

column 1 column 2 column 3

A A

The following section of code provides access to a row-major form 2
dimensional array of arbitrary sized items represented by the Pascal like
declaration:

arr : arrayla..b,c..d] of element
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/* calculate size of a row */

movl $b, %ebx

subl $a, Jebx

movl $size, %eax

/* note that this multiply destroys the contents */
/* of %edx and leaves the result in jeax */

mull %ebx

/* work out the relative row index */

movl $rowidzr, %ebx

subl $a, %ebx

/* calculate the row offset */

/* note that this multiply destroys the contents */
/* of Yedx */

mull %ebx

/* store result in %ecx */

movl %eax, jecx

/* calculate column offset */

movl $colidz, %ebx

subl $c, %ebx

movl $size, %eax

/* note that this multiply destroys the contents */
/* of Yedx x/

mull %ebx

/* add in stored result and base to get pointer to */
/* start of element [rowidx, colidx] */

addl Yecx, %eax

addl $arr, Yeax
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Records / Structures

A record is a synonym for structure in the context of computer languages.
Structures are manipulated by adding an offset to the base address of the
structure to yield the address of the element of the structure to be altered.

struct point
{
int x;
int y;
char color;
};

struct point first;
VAR Y
first.color = 0;

/* point consists of 2 * 4 byte fields followed by
/* a 1 * 1 byte field */
first: .space 9, 0

/* ... %/

/* get address of structure into a register */
movl $first, Yeax

/* offset of color = 8 */

addl $8, Yeax

movb $0, (%eax)
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Dope Vectors
A dope vector is a one dimensional array containing the starting ad-
dresses of other objects. Multi-Dimensional arrays can be constructed
using dope vectors which involves the storing the starting addresses of
an array of lower dimension in the dope vector.

Dope Vector Array Vectors

AINN

The sample code manipulates a four by four array of long words stored
in row-major form using a dope vector implementation:
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/* declarations for array in row major form */

dpv:
r0:
rl:
r2:
r3:

/* ...

.long r0, r1, r2, r3

fill 4, 4,
fill 4,
fill 4,
fill 4

0
4, 0
4, 0
4, 0

b s

*/

/* retrieve address of row */
movl $rowidr, %ebx

movl dpv(,%ebx,4), Jedx

/* retrieve value at column */
movl $colidz, %hebx

movl (%edx, %ebx, 4), ‘heax
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Trees and Graphs

Tree and graph structures are built in assembly language in a manner
similar to that used in the ‘C’ programming language. Essentially a node
consists of a structure containing some data and a number of pointers to
other nodes. By connecting the nodes together a tree or a graph can be
built. As with ‘C’ it is possible to construct a graph with an arbitrary
number of connections by using conventions and careful manipulation of
pointers.

The following is an example of a routine to manipulate a graph with
an arbitrary number of connections. The routine performs a depth first
search on a graph.
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.data
root: .long O, 0, nl1, n2, n3, n4, O
ni: .long 1, 0, n5, n1, O
n2: .long 2, 0, n3, O
n3: .long 3, 0, root, O
n4: .long 4, 0, O
nb: .long 5, 0, root, O
.text
dfs: /* depth first search */
enter $4, $0 /* create space for cur ptr */

movl 8(%ebp), %ebx /* recover param */
cmpl $0, 4(%ebx) /* check for mark */
jne done
movl %ebx, -4(%ebp) /* store current pointer */
addl $8, -4(%ebp) /* set to first value */
incl 4(%ebx) /* mark */
movl (%ebx), Y%eax /* output the node name */
call printnode
11:
movl -4(%ebp), jebx /* test for end of node list */
movl (%ebx), %eax
cmpl $0, %eax
je done
pushl %eax
call dfs
addl $4, Yesp /* reset stack */
addl $4, -4(%ebp) /* increment ptr node list */
jmp 11
done:
leave
ret
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Floating Point

In the practical classes and lectures we have used integers exclusively to
solve numeric problems. Although a large number of problems can be
solved in the integer domain, there are problems which are best solved
in the domain of reals. To methods will be introduced to allow the
representation of real numbers:

¢ Fixed point
¢ Floating point

Before describing the formats used in computer systems - formats based
on binary representation - some similar formats in decimal notation will
be covered.

Decimal Representation

Fized Point: In our day to day existence we frequently use a fixed point
representation for money. The Australian currency is based on the cent
- a fraction of a cent is not a particularly useful concept in personal
financial transactions. However, the cent is an unwieldy value as it is
too small. To make the system easier to use we quote most prices in
dollars or multiples of 100 cents. This is an example of a scaled number
scheme.

100 cents = 1 dollar
15 cents = 0.15 dollars
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For convenience we carry out operations on dollar size values and place
the fixed point for our dollar representation inbetween the second and
third columns from the right.

A fixed point scheme performs well when the problem domain is based
on an indivisible quantity.

Scientific Notation / Floating Point: Scientific notation is closely related
to floating point arithmetic. A number written in scientific notation
consists of a number multiplied by some power of 10. For example:

15 % 10° = 15000000

15%x1072 = .15

Scientific notation allows the representation of a wide range of values
compactly.

Limatations: Neither decimal fixed point representation nor scientific
notation can specify all numbers. There are some numbers such as 7 and
e (transcendental numbers) and /2 (irrational numbers) which cannot
be represented precisely in decimal notation without an infinite number
of digits. In addition if there are limitations placed on the number of
decimal places, the number of significant figures or the size of the powers
that scientific notation can have, then both schemes are limited in range
and accuracy.
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The Decimal / Binary Point

In decimal notation the fractional component of the number is written
beyond the decimal point. The columns beyond the decimal point rep-
resent fractions of powers of ten decreasing in size. For example:

21.2345649

may be written as

1 1 1 1
2510+ 1% 142% — — ds— -
#1041l + 2% 75 +3% 750 4% 1000 T °* Too00 T * To0000

or

2%x10" +1%10°+2% 107" +3% 1072 +4% 107" +5% 107" + 6% 107°
A similar representation is available for binary numbers. In the case of

a binary number, values beyond the binary point represent decreasing
fractions of powers of two.
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For example:

10.01101,
may be written as

1 1 1 1 1
1*2+0*1+0*§+1*Z+1*§+0*E+1*3_2

or

12" +0%2° +0%27' + 1527241273 40%27 4+ 1%x27°
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Normal Numbers
A number stored in normal form has a value in the position before the
point other than zero, but no values in any more significant positions.
The following are normal decimal numbers:
1.310

2.05 % 10”1

1.4 %1072
All normalized binary numbers start with a 1 followed by the binary
point.

1.11001,

Normalizing numbers ensures that the number is both uniquely repre-
sented and represented in the most accurate form possible within the
representation.
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Floating Point Binary Numbers

A floating point binary number consists of several parts:

| s | exponent field | significand field |

where

Sign Bit A bit used to indicate the sign of the number. If the sign bit
is clear the number is positive otherwise the number is negative.

(5)

Exponent Field A number. The number may be biased. The value of
a biased number is given by value = biased number — bias. (E)

Significand Field / Mantissa Field An unsigned normalized num-
ber. (F)

In general the value of a floating point number may be calculated using
the formula:

—19% F x2F

+ 135



The following examples have an 7 bit significand a 4 bit exponent with
a bias of 8 and a single sign bit. The format of the number is the sign
bit followed by the exponent field followed by the significand.

E2 F2 S E10 F10 valuem
1000 1000000 | + O 1.0 1
1000 1000000 | - 0 1.0 -1
1000 1100000 | + O 1.5 1.5
0111 1110000 | - -1 175 | -0.875
1001 1110000 | + 1 1.75 3.5

or or ol
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Range & Precision
Range and precision are two parameters which describe a number rep-
resentation.

e The range of a representation is defined as the greatest and least
value that can be represented. Ranges are typically symmetric
about zero.

e The precision of a representation is defined by the size of the steps
between adjacent values.

These quantities can be represented on a number line:
— — Accuracy
— <— Range

Min Max

Typically the range of a representation is specified in terms of the max-
imum and minimum values represented by the exponent. In addition,
the precision is often quoted as the number of bits required to state the
number represented by the significand.

If a number is stored in a normalized form it is possible to exploit the
property that it has a leading 1 by dropping the leading leading 1 and
simply assuming that it is present. This effectively yields an extra bit of
precision.
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Student Exercises
Using binary floating point numbers with the structure:
1 8 4
Yt Vo
S Mantissa Exponent
The Exponent is biased by 8.
Write the following as binary floating point numbers:
20
5
3.125
12
1.25
0.1875
0.0625
6
-1
—0.125
0
—40
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Answers

Using binary floating point numbers with the structure:

4

_l_

1 8
Yt Vo P
S Mantissa Exponent

The Exponent is biased by 4.

Write the following as binary floating point numbers:

20 — 101005 — 1.01005 * 2*;5 — 0 10100000 1100

5 — 0 10100000 1010
3.125 — 0 11001000 1001
12 — 0 11000000 1011
1.25 — 0 10100000 1000
0.1875 — 0 11000000 0101
0.0625 — 0 10000000 0100
6 — 0 110000000 1010
—1 — 1 100000000 1000
—0.125 — 1 10000000 0101
0 — 0 000000000 0000
—40 — 1 10100000 1101
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Properties of Non-Integer Numbers
Fixed Point:

e Has a reduced range of values in comparison to an integer of equiv-
alent size. This is due to the fixed point value being effectively a
scaled integer value.

e All combinations of bits represent a value of a fixed point number.
Hence there are no wasted bit combinations.

e The accuracy of a value is independent of its magnitude.
Floating Point:

e Typically has an increased range of values in comparison to an
integer of equivalent size.

e Not all bit combinations represent different numbers. For example
there are a large number of bit combinations which can be used to
represent zero.

e The accuracy of a value is dependent on the magnitude of the
number. This is due to the uneven spread of values on the number
line caused by steps in the exponent value doubling the separation
between adjacent values.
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A floating point representation can include additional values known as
NaNs or Not a Number and positive and negative infinity. These values
are not ordinary numbers and are used as results when an exception
would have to be raised if the NaNs were not available.

Overflow and Underflow

There are two types of errors which are particularly significant in floating
point calculations: Overflow and Underflow.

Overflow The result of a calculation cannot be represented because
the calculated exponent is too large to be accommodated in the
exponent field.

Underflow The result of a calculation cannot be represented because
the calculated exponent is too small to be accommodated in the
exponent field.
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Begin Floating Point Addition

Compare exponents.
Shift smaller until
exponents equal

A

Add Significands

Normalize the sum

Overflow
or Underflow

Round significand to
appropriate number of
bits

Interrupt
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Floating Point Multiplication

Add biased
exponents and then
subtract the bias
from the sum.

_l_

Multiply
Significands

Normalize the
product

Overflow
or Underflow

Round significand to

appropriate number
of bits
Interrupt

Set sign of product.
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Properties of Operations

Is Floating Point Addition Associative?

No!

Proof: The following is true if addition is associative

(a+b)+c=a+(b+c)
let the numbers be of the form
a=—1%%2% xay

if the Isb of by and ¢y are set, b, = ¢, and a, = b, + 1 then

Left hand side: a+b the Isb will not be set and (a+b)+ ¢ Isb of mantissa
not set

Right hand side: b+ c the 1sb will not be set but there will be a carry
into the next place. Thus one bit of the mantissa from a+ (b+c¢) will be
set due to the grouped sum hence the result will be different to the rhs.
Is —z the same as 0 — 2?7

Not necessarily.

Because there are two representations of 0 in a sign magnitude system
(ie. 40 and —0) the following can be expressed:

0—0=+40defined IEEFE 754

—(0) = =0 defined IEEE 754
Thus —x is not the same as 0 — x when z = 0 under IEEE 754.
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Floating Point Numbers
Architectural Choices

A designer of a floating point unit has many degrees of freedom. The
choice of the following factors influences performance and capability:
Radix of the Exponent: In all previous examples we have had a base
2 radix for the exponent. This can be generalized to allow for different
radix sizes giving a new form for the equation to determine the value of
the floating point value:

—1% %« F «B"

The consequences of changing B from 2:
¢ Potential to handle wider range of numbers for same exponent size
e Loss of implied 1 for first digit

Width of Exponent: The wider the exponent field the larger the range
of representable floating point numbers
Width of Significand: The wider the significand field the greater the

accuracy of representable floating point numbers
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Total Number Width: Although increased accuracy and range is
desirable in a number, increasing the total width of the number increases
the loading and operation times.
Choice of Rounding Schemes

Truncation All computations become systematically smaller.

Round to Nearest Requires additional precision in the floating point
unit, hence slower.

Ordering of Components The component ordering SEF has the ad-
vantage that it allows simple magnitude comparisons for most floating
point numbers. Other arrangements have been used.

+ 146



338

APPENDIX D. OHP SLIDES

+ +

IEEE 754

The IEEE 754 Standard for binary floating point arithmetic describes
a set of formats and operations for floating point numbers. It should
be noted that there are both required and optional features specified in
the standard and that most of the current computers comply at least
partially with the standard.

A short summary of the major features of the standard is provided here.

Single Single Extended
Precision’ 24 > 32
Erax 127 > 1023
FErin —126 < —1022
Exponent Bias 127

Double Double Extended
Precision’ 53 > 64
FEraz 1023 > 16383
FErin —1022 < —16382
Exponent Bias 1023

TIncludes assumed bit for normalized numbers.
The form of the floating point number is:

| s | exponent field | significand field |
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A convention is required to store the value zero. This is due to the
assumed leading bit for normalized numbers. The convention for rep-
resenting zero is for the exponent field and the significand to be set to
zero. In addition to this there are a number of classes of special values
that are represented by setting the exponent field to zero or to all ones.
Included in these values are NalNs, positive and negative infinity and
denormal numbers. A denormal number (sometimes known as a subnor-
mal number) is represented as a number with a zero exponent field and
a non-zero significand. These numbers are used to represent numbers
which are smaller than the smallest representable normalized number.
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Block Structured Languages

Review of Stack Frames

Before discussing block structured languages we will review the stack
frame as used with ‘flat’ languages. This was covered in the lectures on
advanced subroutines.

0cFFFFFFFF

S1 Parameters

S1 Return Address
S1 Old %ebp *

S1 Local Variables

S2 Parameters

S2 Return Address
S2 Old %ebp * +— %ebp

S2 Local Variables
+— %esp

Stack ...

000000000
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Stack frames are regular structures that are constructed on the stack by
subroutines. The process of generating one of these structures consists

of:
e The calling routine pushing parameters for the called routine onto
the stack.
e The calling routine calling the subroutine. (This results in the

return address being pushed onto the stack)

e The subroutine performs one of:

enter $size, $0 (This results in %ebp being pushed onto the
stack, %ebp being set equal to %esp and then subtracting size
from %esp.

or
pushl %ebp

movl %esp, %ebp
subl $size, %esp

Adopting the stack frame convention for all subroutines makes it easier
to write subroutines. The stack frame convention ensures that parame-
ters are accessible by positive offsets from %ebp and local variables are
accessible by negative offsets from %ebp. The convention ensures that
the offsets required to access parameters and local variables are consis-
tent with respect to %ebp throughout the subroutine.

150



342 APPENDIX D. OHP SLIDES

+ +

Stack frames are destroyed by one of:
¢ leave
e ret
or
e movl %ebp, %esp
e popl %ebp

o ret
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Flat & Block Structured Languages
Flat Languages: A flat language

e allows no two functions to have the same name
e all functions are visible to other functions

e has two classes of variables - variables visible to all functions and
variables visible only to the function they are named in.

C is a flat language
Block Structured Languages: A block structured language

e may have functions local to functions hence different functions may
have the same name.

e has functions which are only visible within their block

e has two classes of variables - variables visible to all functions and
variables visible to any function within the block.

Pascal is a block structured language

+ 152



344

_l_

program blocks(input,
procedure a;
var
v: integer;
procedure disp;

output) ;

begin
writeln(’a’, v);
end;
begin
v := 1;
disp;
v o= 2
disp;
end;

procedure b;
var
v: integer;
procedure disp;

begin
writeln(’b’, v);
end;
begin
v = 1;
disp;
v = 2
disp;
end;
begin
aj;
b;
end.

APPENDIX D. OHP SLIDES
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Output:
al a2 bl b2

The block structure of the program may be drawn:

program blocks;
var v: integer;

procedure a;

procedure disp;

procedure b;

procedure disp;

In Pascal, the scope of a variable is the region in which it is accessible by
name to a subroutine. Variables declared in blocks of which the current
subroutine is a strict subset are within the scope of the current function.
The scope of a subroutine in Pascal is the region in which a function
or procedure may be called by name. Procedures and functions in the
current block and blocks which are one level above the current block and
contained by the current block are accessible.
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Implementing Block Structuring in Assembly Language
Block structured languages are supported in assembler by providing
backward links in the stack frame to earlier stack frames. The enter
instructions second parameter, level, determines the number of stack
frame pointers that are inserted into the current stack frame to the pre-
vious stack frame. The example, below, shows the invocation of disp by
procedure a.

Old EBP
y v: integer;
Ret Addrs
Old EBP
) Frame -1
Frame 0
Ret Addrs
Old EBP
Frame -1 procedure disp
Frame -2
Frame 0

program blocks

procedure a

By following back the chain of back pointers it is possible to access any
variable in the scope of the current function.
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The Processor

Data Paths

Instead of studying the detail of the 80386 processor’s data paths, the
simpler data paths of the 8086 will be covered. This simpler proces-
sor allows the general concepts of a microprocessor architecture to be
discussed without the need to cover the detail of the more complex pro-
Cessor.

: Addrs &
Addres?%&b]l:)tafa bus Status
—>
Data
Bus Interface Unife
Bus Ctrl
16 bit .
Addr bus
SS
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PC Instruction 3 .
Internal queue 5 Control Unit]
Registers 1
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ALU

The arithmetic logic unit (ALU) of the processor performs arithmetic
and logical functions. The ALU has two bus inputs which are combined
to produce an output. The function provided by the ALU is determined
by its control inputs. In addition to performing either an arithmetic
or logical function the ALU sets bits in the status register to indicate
features of the result.

Register File

The 8086 block diagram shows two logically distinct register files. A
register file is a collection of registers. The first of these is a register
file containing the general registers, stack pointer, base pointer, and the
index registers. The second register file contains the segment registers
and the program counter.

Control Unit

The control unit decodes the instruction stream and co-ordinates the
activities of the processor.

Buses

A bus is a collection of conductors. Note that a conventional bus may
only be ‘driven’ by one device at a time, although many devices may
observe the state of the bus. A device is said to ‘drive the bus’ if it is
a source of current for the bus. To observe the value of the bus it is
necessary to sink or consume some current from the bus.
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Other Elements

Instruction Queue The instruction queue buffers four bytes of in-
structions.

Temporary Registers These registers are used to hold data items to
be fed to the ALU.

Address Adder This is used to form the 20 bit address used by the
8086 to access memory.

Bus Interface Unit The bus interface unit fetches data and code from
memory. The bus interface unit also monitors the interrupt and
other control lines.

Addressing
The 8086 supports a 20 bit address space by combining a 16 bit address
with a 16 bit segment register. The 16 bit segment register is left shifted
by 4 bits and is added to the 16 bit address to yield a 20 bit address.
L Segment
LT

+ || |||||| Offset

LLLLCETETTTTTTITIIL) Memory Address

This operation is required each time an address is to be output to the
bus.
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Fetch-Execute Cycle

The basic operation of the 8086 is dominated by a single sequence of
operations. This sequence is known as the fetch and execute cycle. The
following descriptions give the flavor of the operations and how they
might be implemented. Note that this is not a precise description of
the operation of the 8086 chip. The invariant part of this cycle over all
instructions is:

1. Output PC to Address Adder
Output CS to Address Adder

2. Output 20 bit address to system bus
Increment PC

3. Store returned bytes in Instruction Queue

4. Decode first byte of instruction

The remaining steps of the cycle vary with the instruction. If the in-
struction is a multi-byte instruction then further bytes are read from the
instruction queue.

Two example the sequences will be illustrated: incrementing a register
and adding a register and an integer will be covered. These examples
exercise most of the data paths through the processor.
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Increment AX:
5. Output enable AX onto the 16 bit Address & Data Bus
Input enable the ALU
Select increment function

6. Input enable AX onto the 16 bit Address & Data Bus
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Add AX and location 1004 leaving the result in AX:

5. Output enable AX onto the 16 bit Address & Data Bus
Input enable a Temporary Register

6. Output 1004 to Address Adder
Output DS to Address Adder

7. Output 20 bit address to system bus

8. Store returned bytes in Instruction Queue

9. Output enable Instruction Queue
Input enable ALU
Select add function

10. Input enable AX onto the 16 bit Address & Data Bus
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Instant Revision of Digital Logic

Combinatorial Logic

In combinatorial logic the result is determined only by the input values.
The basic operators of combinatorial logic are:

NOT logical not
AND logical and
OR logical or

These operations can be implemented directly in hardware gates.

Data Storage Elements

A general logic circuit may contain data storage elements - the most
simple of the elements are called flip-flops. These data storage elements
store an input value and output that value on demand.

Sequential Circuits

A sequential circuit consists of combinatorial logic being used to process
the inputs and outputs of data storage elements. There is a special class
of sequential circuits known as synchronous circuits. A synchronous
circuit has all data storage elements output data at the same time. We
will only refer to synchronous circuits in this course.
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Control

In the previous lecture the general structure of the processor was dis-
cussed and the sequence of events required to implement two example
operations were discussed. This lecture will cover the mechanisms for
implementing those sequences.

Regardless of the implementation, the control of the processor, performs
the following:

¢ Decode the instruction

e Generate the sequence of control signals that implement the in-
struction.

Decoding Instructions

Typically instructions are composed of fields of bits which control part
of the operation of an instruction. Early in the course the instruction
format for the 386/486 was discussed.

Instruction  Address Operand  Segment
Prefix Size Prefix Size Prefix Override
Oor1l Oorl Oorl Oorl

bytes

Opcode MOD  SIB Disp Imm

R/M
1or2 Qorl OQorl 0120r4 012o0r4
bytes
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The most notable feature of the format is that it permitted variable
length instructions. To accommodate this the encoding of the compo-
nents was selected to indicate if there was another part of the instruction
following.
This can be illustrated by looking at the opcodes that are used by the
add instruction (taken with modification from i486 Microprocessor Pro-
grammers Manual, Intel, 1990):

04 b ADD wmm8, AL

05 ww ADD imm16, AX

05 2d ADD imm32, EAX

80 /0 ib  ADD imm8, r/m8

81 /0 iw ADD imm16, r/m16

81 /0 id ADD imm32, r/m32

00 /r ADD 78, r/m8

01 /r ADD r16, r/m16

01 /r ADD r32, r/m32

02 /r ADD r/m8, r8

03 /r ADD r/ml16, r16

03 /r ADD r/m32, r32
The fields of an instruction are more clearly seen in a fixed length in-
struction set. The following example, the R2000 encoding, is taken from
Henessy & Patterson.
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R-Type instruction:

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
| op [ rs | rt | 1rd [ shamt [ funct |
I-Type instruction:
6 bits 5 bits 5 bits 16 bits
| op [ rs T 1t ] address |
op operation
s source register
rt second register
rd destination register
shamt shift amount
funct variant of operation

address address
With this simpler instruction format it can be easily seen that the bits of
the instruction are grouped and simple combinations of the bits are used
to determine the function, the source and destination of the operation.
As with the 486 instruction set the bits of the opcode (op field in the
case of the R2000) determine the interpretation of the rest of the bits of

the field. Specifically, the value of the OP field determines if an I-type
or an R-type instruction format is used.
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Sequencing Control Signals
There are 2 distinct classes of control units:

e Microprogrammed Control Units
e Hard-Wired Control Units

Microprogrammed Control

A microprogrammed control unit behaves similarly to the processor it-
self. Essentially a microprogrammed control unit has a store of microin-
structions which it fetches and executes to control the processor.

In a microprogrammed control unit

e an instruction is represented as a series of microinstructions

e cach microinstruction consists of several fields there are 2 classes

of fields

— fields which correspond to control fields

— fields which determine which microinstruction to execute next

e a hardware register called the uPC' is used to point to the next
microinstruction to be executed

+ 166



358 APPENDIX D. OHP SLIDES

+ +

An imaginary microinstruction format:

Control Field | Sequence Field
000 1000000 001 000 000
001 0100000 010 000 000
010 0100000 000 010 000
A simple microprogrammed control unit could generate the following
sequence:

¢ Assert line to output PC
¢ Load returned result into Instruction Decode Register

e Jump to location in microcode indicated by decoded instruction

e Set uPC to zero

Decisions are made in the microcode by controlling which instruction is
next to be executed. There are a number of mechanisms available to
implement this:

e Skip next instruction if condition met
e Set puPC to value if condition met

e Set uPC to one of a set of values depending on condition
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Microprogrammed control units may be broken up into 2 classes:

Horizontal control units These resemble the simple control units in
that the microinstruction is wide and contains a bit for each control
line

Vertical control units Are narrower than horizontal control units as
the instruction is divided into fields which are either decoded or
translated into the control signals.

A real world example: 8088

e 504 microinstructions

e 21 bits wide

5 bits 5 bits 3 bits 4 bits 3 bits 1 bits
src dest | type | ALU | reg [ cc |

e Length of sequence: Average 5 or 6, Maximum 16
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Hard-wired control units

A hard-wired control unit is essentially a synchronous circuit which pro-
duces the control sequence which fetches instructions and then generates
the sequence which corresponds to the fetched instruction.

A comparison of the two mechanisms

Microprogrammed control units

e require relatively simple logic to construct the controller

e majority of the work is concentrated in producing correct mi-
crocode for the instruction set

e microcode is relatively easy to generate and check - it is regular
and often repeated

e microcode can be represented symbolically making it easier for
humans to understand
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Hard-wired control units
¢ allow a more flexible and hence optimizable approach to design

e it is easier to construct parallel operations in a hard-wired control
unit

e are hard to verify
e are complex
e are not necessarily regular
e difficult to represent symbolically
At present hard-wired control units are the preferred for:

¢ high-performance machines such as super computers - the need for
maximum performance

e simple RISC CPUs - a sufficiently simple design to allow the faster
implementation
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Microprogrammed control units are used in:
o the last generation of CPUs - 8086, 80286, 68000 - simplifies design

e very complex instruction set machines - VAX - the cost of attempt-
ing to implement a vast number of instructions in hard-wired con-
trol cannot be justified in a medium performance computer

It is now common to adopt a hybrid design approach which has complex
instructions implemented using microcode and simple instructions im-
plemented in hard-wired control. The convergence of architectures will
be discussed in a future lecture.
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Interrupts
In this lecture we will be covering:

Interrupts & Traps
Implementation of interrupts
Masks & Priorities
Non-maskable interrupts

Interrupt Service Routines (ISRs)

Key Definitions

Interrupt Interrupts are a form of forced procedure call which are

caused by an event external to the program. Interrupts are asyn-
chronous to the program. Interrupts are typically caused by a
peripheral asserting a wire connected via some circuitry to an in-
terrupt pin on the processor.

Trap A trap is a form of forced procedure call which is caused by an

exceptional event within a program that has been detected by the
processor hardware. Traps are synchronous to the program. An
example of an event that might cause a trap would be arithmetic
overflow.
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Implementation

The typical implementation for a microprocessor based interrupt mech-
anism is for the processor to check for an external interrupt condition at
the end of or the beginning of an sequence that implements an instruc-
tion.

In a microprogrammed control unit this would correspond to a branch
to the microcode to implement interrupts at the end of the sequence of
microinstructions that implements an instruction if an interrupt signal
is present.

This mechanism does not require the processor to restart an instruction
part way through.

Interrupts are implemented as a forced procedure call. This means that
after the interrupt condition is noted at least the following actions are
required: a return address is stored and the interrupt routine called.
There are two major implementation forms:

e Mechanisms which use an interrupt vector
e Mechanisms which use vectored interrupts
¢ Mechanisms which use a status register

These mechanisms differ in the mechanism in which they convey to the
Interrupt Handler the cause of the interrupt.
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Interrupt Vectors

The destination addresses for each type of interrupt are stored in a table.
When an interrupt occurs the processor makes a forced procedure call
to the location indicated in the interrupt vector.

Vectored Interrupts

In a vectored interrupt system the location called by the processor is
determined by the cause of the interrupt. Typically this is implemented
as a set of addresses a fixed distance apart which the processor calls
when an interrupt occurs.

Status Register

In this case a processor jumps to a single address when any interrupt
occurs. It is the task of the interrupt handler to consult the status
register to determine the cause of the interrupt. This register is called
the cause register in the MIPS architecture.
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Two Examples - 80386 & R4000

80386

The 80386 uses an interrupt vector with 256 entries. When an interrupt
oceurs:

¢ push EFLAGS onto the stack

e push Instruction pointer onto the stack

o clear interrupt flag

e the processor jumps to the location indicated by the interrupt type

R4000

The R4000 uses a single entry point which is jumped to when an excep-
tion occurs (the exact memory location depends on the operating mode
of the processor).

When an interrupt occurs:

e the EPC (exception program counter) is loaded with the current
program counter value

e the bit in the Cause register corresponding to the interrupt value
is set

e the processor jumps to the interrupt handler
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Masks & Priorities

As an interrupt can effectively occur at any time within a program’s
execution they are essentially unpredictable. At times it is inconvenient
to have to handle an interrupt. An interrupt mask is used to prevent an
interrupt having an effect.

An interrupt mask is a set of bits which - if set - allow the interrupt to
be noticed by the processor.

Under what circumstances is it necessary to not notice an interrupt im-
mediately?

e While executing a time critical routine
e During the initial phase of handling another interrupt
¢ When handling a more important activity

The first two of these problems are solved by setting the mask to prevent
interruption while performing critical tasks. The second is solved by
introducing priorities.

In a priority based interrupt scheme each interrupt is allocated a priority.

o If the currently executing interrupt handler has a lower priority
than a new interrupt then the currently executing interrupt handler
is pre-empted and the new one commenced.
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o If the currently executing interrupt handler has a higher priority
than a new interrupt then the new interrupt is recorded and dealt
with when all higher priority interrupt handlers have completed.

Non-maskable Interrupts

Processors frequently have an interrupt that cannot be masked out or ig-
nored. This is typically used to indicate a failure in a critical component
of the computer. A classic example would be a power failure detection.
If the power fails the system should attempt to perform necessary house
keeping before function is fully lost.

Only critical functions should use the NMI as there is no mechanism to
ensure the correct return from interrupt after an NMI.

Real time systems

A real time system needs to respond in a predictable way to any set
of input conditions. As noted in the section on masks a problem arises
when an interrupt pre-empts an interrupt in a stack based system. This
is caused by the requirement for saving state on the stack. Some real
time systems solve this problem by having an area of storage assigned
to each interrupt routine and storing the state in that region when an
interrupt occurs. This ensures that there is always a place for the state
to be stored that is rapidly accessible. In extremely critical applications
hardware assistance is provided for saving the state.
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Interrupt Service Routines
An Interrupt Service Routine (ISR) performs the following operations

1. Save all registers

2. Save any status information relating to the cause of the interrupt
3. Enable higher priority interrupts

4. Perform required service

5. Clear the cause of the current interrupt

6. Return from interrupt

The first two tasks fall in a critical section. By ensuring that this infor-
mation is correctly saved it is possible to be interrupted and returned to
transparently.

The mechanism described is sufficiently general and conservative to be
used on both normal and real time systems. In a normal system the
data in 1 and 2 would be stored upon the stack. In a real time system
the information would be stored in a location local to the ISR.
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Transparency Transparent code stores the necessary process state and
register values to ensure that when it returns the interrupted code
is unable to determine that an interruption has occurred

Critical Section A critical section is a section of code which must be
executed atomically.
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Input / Output
Why I/0 is important:

e Few jobs are completely CPU bound thus nearly all jobs depend
on I/O performance to limit at least part of their operation.

e The speed of I/0 is orders of magnitude slower than the speed of
the processor. Minor mismanagement of I/O has a greater impact
than minor mismanagement of the CPU.

Types of Devices
There are two major classes of devices:

Block Mode Transfers are made in blocks. A block is defined as a
regular structure with some maximum size and some minimum
size. Typically block mode devices employ blocks of exactly the
same size. If error detection is employed then processing of the
information within a block cannot commence until the full block is
available. Examples of block mode devices: Disk drives & Network
Controllers.

Stream Mode This is a generalization of character mode. Information
is transferred in typically byte sized quantities and each item is
processable immediately on reception. Examples of stream mode
devices: Terminals & Serial devices.
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Device Properties

Block mode devices place a lower load on the system resources on a per
byte basis. This is because the system needs only to notice and handle
a transfer on the completion of a block transfer. In contrast, a stream
mode device requires the system to intervene with the arrival of each
new item.

Block mode devices tend to have better error correction than stream
mode devices as stronger error detection and correction techniques can
be applied.

Software and hardware can convert the behavior of a stream mode in-
put to partly resemble block mode input or vice versa. Although this
conversion is possible the properties of the underlying device cannot be
completely masked. In many cases attempting to a hide the mode of
access results in undesirable behavior.

Interrupts & Polling

There are two major mechanisms available to the programmer for inter-
acting with external devices:

e Interrupts

¢ Polling
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Interrupts an external event causes an interrupt the ISR deals with
the device.

Each time an interrupt occurs the processor performs the sequence of op-
erations described in previous lecture. This sequence of events is known
as the overhead of the interrupt as it occurs each time an interrupt occurs
and does not directly contribute to the handling of the event.

Polling The processor regularly checks each device and notes the state
of the device. If the device requires servicing the required opera-
tions are carried out

For polling to work it is necessary to ensure that the polling loop can be
completed sufficiently quickly that the fastest device will not have made
more than one request in the time it takes to go round the loop handling
all possible requests. Failure to do this leaves the system vulnerable to
data overruns.
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Comparison

Polling has lower overhead

Polling is capable of greater throughput
Polling requires greater use of the system
Polling is inflexible

Polling must be designed for the worst case

Interrupts are more flexible but must handle unusual cases such as
a repeated interrupt.

Interrupts place a lower load on a system when infrequent.
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DMA & Co-processors

These mechanisms allow part of the work associated with dealing with
a device to be done by an entity other than the processor.

DMA

A DMA or Direct Memory Access device is essentially a simple processor
attached to the memory bus of the system. DMA devices may be used
to accomplish several tasks:

e Memory to Memory - a DMA device can copy a block of memory
from one point in the system memory to another with minimal
processor intervention.

e Device to Memory - A DMA device can be used to interact with
a device to copy the results returned by the device into the sys-
tems memory. Both block mode and stream mode devices may be
interfaced this way.

As the DMA device shares the bus with the processor the action of
the DMA device affects the ability of the processor to interact with
memory. The DMA device and the processor arbitrate for the memory
bus. The effect of this is that neither processor nor DMA device can have
unrestricted use of the bus, but due to the burst nature of bus traffic
the delay introduced by the sharing of the bus is not proportional to the
usage of the bus.
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The design and parameters of DMA devices vary from unit to unit,
however, there are common features to the designs.

The common operations to DMA controllers are the need to setup the
device to transfer and to inform the system that the transfer is complete.
The information required to setup the transfer is the source of the data,
the destination address and the size of the transfer. At the completion
of a DMA operation the processor is notified by an interrupt raised by
the DMA controller.

Co-processors

DMA devices are a special restricted form of co-processor. High per-
formance I/O devices may have significant autonomy. In this case the
device carries out a sequence of operations based on a sequence of high
level instructions passed from the main processor. Examples of this type
of device are graphics co-processors which accept lists of operations to
carry out and intelligent serial interfaces which poll a large number of
serial ports and make available the ports information as blocks of char-
acters.
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Architectural Consequences
The choice of the mechanism for handling I/O devices depends on a
number of factors:

o Mode of device

e Data rate
e Tolerable latency
e Available hardware

Where large amounts of data are to be transferred or a high data rate
is required either a block mode device or a DMA controller should be
provided. This reduces the load on the processor by ensuring that the
processor deals with large lumps of information. The alternative of hav-
ing to keep up with a large number of interrupts or a tight polling loop
would have a detrimental effect on the performance of the machine.
Where the volume of data is small or the data rate is low then the
processor can in general be used to handle the type of operation using
interrupts or polling started by a timer interrupt (A regular timer tick
interrupt occurs and the system polls the required devices).

If fast response to asynchronous inputs is required - low latency - then
interrupts should be used.

Frequently the type of access mechanism is determined by the existing
hardware and the improvement of performance of using additional hard-
ware is traded for the reduced cost of using existing - less optimal -
hardware.
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Memory
The importance of Memory:

e The majority of the frequently used data in the computer is stored
in memory.

Thus the data rate from memory typically limits the speed of CPU bound
processes. The data rate of memory also limits the performance of I/O
devices as - in general - I/O devices transfer data to and from memory.
Principles

Temporal Locality The principle of temporal locality states that if an
item has been accessed recently it is likely to be accessed in the
near future.

Spatial Locality The principle of spatial locality states that if an item
has been accessed it is likely that items close to it will be accessed
in the near future.

Motivation for Caching

Approximate RAM costs:

Type Speed | Cost  Size $/M byte
SRAM 25nS | $29 256K bit | 928
DRAM 80nS | $160 1M byte | 160

In general: Fast memory is more expensive than slow memory.
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A processor operating at 33MHz has a maximum demand on memory of
1 item every ~30nS. Thus if the complete memory was required to keep
up with the processor the system would be made up of very expensive
RAM.

If it were possible to store more frequently used items in faster memory
and less frequently used items in slower more expensive memory then
performance could be improved so that it approached the fast memory
speed and cost reduced to approach the slow memory cost.

Cache Operation

The cache sits between the CPU and the main memory and contains a
quantity of fast RAM which is used to store recently accessed informa-
tion.

CPU Cache Memory

The cache deals with two types of access:
e Processor reads
e Processor writes

Both accesses are prefixed by the processor sending an address to the
cache.
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Processor Reads:
e If the cache contains a copy of the location: The cache returns a

copy of the information to the processor

e If the cache does not contain a copy of the location: The cache
forwards the address to the memory. On completion of the memory
request, the cache stores the returned result and passes the result
to the processor.

Processor Writes:

e The cache stores a copy of the location’s contents and subsequently
forwards a copy to the memory.

There are two major variants of caches available which are distinguished
by their behavior on writes:

Write Through The data is written into the cache and into the next
stage of the memory hierarchy simultaneously.

Write Back The data is written into the cache only. Only when a cache
flush is issued is the data written to the next stage of the memory
hierarchy.
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Cache Implementation

Address
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Part of the address is used as an index into the cache’s table. If the tag
and the upper component of the address match and the cache entry is
valid then a cache hit is said to have occurred and the value is returned
to the processor or updated in the cache depending on whether the

operation is a read or a write.

Cache Hit
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Exploiting Locality

The principle of locality implies that a cache yields profit if it holds
recently used information and information close to recently used infor-
mation. This is exploited by the expedient of replacing items that hash
to the same location in the table each time a new item is encountered
and extending the cached data beyond the accessed word to a set of
words adjacent to the fetched word.

Even simple caching schemes yield high cache hit rates more complex
multiway associative schemes yield more marginal improvements for a
given amount of cache memory.
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Virtual Memory

e Modern processors have a large address range

e Modern processors have a small amount of memory compared to
address range

¢ Programmer’s frequently want to express programs that will not
fit into main memory completely at one time.

Virtual memory is a mechanism which allows programmers to use a large
portion of the processor’s address space and load the required compo-
nents of a program on demand.

There are 2 mechanisms which can be used for virtual memory:

Paging Under paging the memory is divided into equal sized objects
know as pages which are paged into and out of the physical memory

to disk.

Segmentation Under segmentation objects called segments of a size se-
lected by the programmer are swapped into and out of the memory
of the computer to disk.

Both mechanisms employ an additional layer of translation to convert
an uttered address into a physical address.
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A program larger than the physical memory is made possible as when
a program utters either the name of a segment not in memory or the
address of a page not in memory a page or segment can be copied to
disk and the required page or segment brought in.

Paging

In a paged system a page table is used to translate logical addresses into
physical addresses. The translation consists of:

e The more significant part of the logical address is used as an index
into the page table

e The physical address of the base of the page is extracted from the
page table

e The less significant of the logical address is added to the base of
the page to give the physical address in memory of the reference

In practice multi level page tables are used to conserve the amount of
memory consumed by the page tables. A multi level page table requires
only the active page tables to be present in memory.
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Physical Address

All address translation for paging is carried out transparently by the

hardware.
Segmentation

As previously mentioned in these lectures a segment is defined as

A section of memory denoted by a base address, an extent

and a set of rights.

Hence all accesses in a segmented system are expressed as offsets within

a segment.
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In a segmented system the segments are loaded into memory to allow
process’s to access information contained in the segment when a process
names a segment it wishes to load.

Fragmentation

Fragmentation occurs when there is unused or unusable space in the
memory of the system.

Internal Fragmentation lost space is contained in unused parts of a
loaded element.

External Fragmentation space is lost because uneven sized objects
cannot be loaded in a way to ensure that all the space is filled.

Both paging and segmentation suffer form fragmentation. Paging suf-
fers from internal fragmentation. Segmentation suffers from external
fragmentation.

External fragmentation is one of the causes for segmentation’s unpopu-
larity as a memory management technique. Currently Intel is the only
manufacturer bringing out new microprocessors that support segmenta-
tion. The management of external fragmentation adds complexity to an
operating system and forces part of the task of space management onto
the programmer.
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Memory Protection

Both paging and segmentation allow access rights to be attached to the
page or segment. Typically these access rights specify that the data
contained may be accessed by:

e read
e write
e execute
e privileged code only
The Memory Hierarchy
e Registers - reside in the processor.

e On chip memory - small primary cache on processor chip (in the
order of 8K bytes size, < 10nS5).

Off chip caches (in the order of 100K bytes to 4M bytes size, 15nS).
¢ Main memory (in the order of 10M bytes, < 80nS)

e hard disks or secondary storage (in the order of 1G bytes)
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Advanced Topics
The topics:

e Pipelined processors
e Superscalar processors

e The RISC / CISC controversy

Pipelining and Superscaling are techniques for increasing the throughput
of a microprocessor by introducing parallelism into the processor.

The RISC / CISC topic covers the definition, differences and motivations
behind the two major processor types.

Pipelining

e A technique for overlapping instruction execution

e Breaks the execution of an instruction up into phases

e A step in the pipeline processes that phase of the instruction and
allows the instruction to proceed to the next step in the pipeline.

e This allows as many instructions as there are pipeline steps to be
in execution at one time.
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Pipelining is similar to a production line. In a production line instead of
devoting a single worker to completing the full task of creating a product
from start to finish, a group of specialised workers work on a single part
of the process. Only after the product has passed through all steps of
the process is it complete.

Balancing a pipeline:

e The speed of a pipeline is restricted by the throughput of the slow-
est element of the pipeline

e A balanced pipeline has all the stages take the same time

The effect of pipelining is to improve the throughput of the processor by
increasing the number of instructions processed per unit time. Pipelining
does not decrease the time an individual instruction takes.
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Pipeline Implementation
Pipelines may vary in length and in the tasks assigned to each step
in the pipeline. An example of the division of pipeline stages and the
overlapping of execution.

Time

i IFIDOFOE@

i+l IF [ID ||OF| | OE ﬂ
i+2 IF |ID ||OF| | OE ||OS

Steps in the pipeline:

IF Instruction Fetch
ID  Instruction Decode
OF Operand Fetch

OE Operand Execution
OS Operand Store
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Data Hazards

Data dependency in a pipeline arises when the input of an instruction
depends on the output of another instruction, both of which are execut-
ing in the pipeline. A number of mechanisms have been suggested to
deal with this problem:

e Stall the pipeline. This involves stopping the progression of in-
structions entering a pipeline at the stage of the pipeline a de-
pendency has been detected at and only resuming the progress of
earlier stages after the dependent value has been set.

e Ignore the problem and have the compiler reorder the instructions,
where possible, and insert no-ops where necessary to prevent data
dependencies in the pipeline.

Data Dependency

SUBABC |SUB|ID |[AB| | - |

INC C
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Data Interlocks:
e Detect dependencies
e Add complexity to the processor
e Test if output is used as input in a later stage of pipeline

¢ Need to be applied to both registers and addresses to ensure correct
operation

e Slow the logic of the processor down
Data Forwarding:
¢ Reduces the effect of a pipeline stall

e Passes operation results back to earlier stages instead of waiting
for save phase to complete.

e Reduces stall time & adds to processor complexity

Branch Hazards

A branch hazard occurs when a jump occurs. There are two varieties of
branch hazards: conditional and unconditional. In the case of an uncon-
ditional jump input to the pipeline is stalled until the correct address
for the jump is determined.
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In the case of a conditional jump two solutions are possible for handling
a branch hazard:

e continue executing the following instruction but be prepared to
throw away any of its consequences if the jump occurs

e stall the pipeline until the destination address is known

The former mechanism increases processor performance at the expense
of increasing the complexity of the processor.

An additional mechanism is available for both conditional and uncon-
ditional jumps: The delayed branch. This mechanism redefines the
branch instruction to take place one instruction after the branch in-
struction. This means that the pipeline will never have to stall on a
branch. This technique requires a compiler to re-order instructions to
ensure that there is a suitable instruction or no-op after each branch.
The use of compiler techniques to avoid pipeline stalls caused by branch
hazards or data hazards is advantageous regardless of the hardware sup-
port provided for coping with the hazard when it arises Avoiding pipeline
stalls maintains the throughput of the processor.
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Superscalar Processors

A superscalar processor contains multiple functional units. The func-
tional units may be of the same or different types. In a superscalar
architecture more than one instruction can be #ssued at a time provide
the instructions are independent. The superscalar mechanism differs
from the pipeline mechanism in that it is necessary that the operation
of a dependent instruction not be commenced.

Instruction execution in a two issue superscalar processor:

Time >

i+1 IF | ID [OF]|OE |OS

The absence of a suitable instruction indicates that a given functional
unit should execute a no-op.
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Functional units of different types:

e Are the simplest mechanism for ensuring that instructions issued
are not dependent

¢ Separate floating point and integer units are a classic example.

e simplify the control of the processor as the order of instruction
types can be specified and the functional units loaded in order.

Similar functional units:
e Can have dependent instructions

¢ Require mechanisms similar to the interlocks found in pipelined
systems to cause one or more functional units to execute a no-op
to prevent the dependent instructions being executed at the same
time.

To gain maximum benefit from superscalar processors it is necessary
to supply independent instructions to each of the functional units and
avoid idle time in any unit. This requires that the compiler organize the
instructions into an order which allows parallel operations to take place.
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RISC / CISC Controversy
CISC
The characteristics of a Complex Instruction Set Computer (CISC) are

e a rich instruction set
e many addressing modes
CISC machines were motivated by microcode.

¢ The ease of writing microcode to implement an instruction resulted
in the perception that adding instructions to microcode yielded an
improvement to an instruction set at relatively low cost.

¢ Microcode is stored in small high speed memories and hence it was
perceived that microcode executed faster than assembly code.

¢ Instruction set designers added more complex instructions to per-
formed common operations desired by programmers.

e Finally there was a perception that compilers were complex and
by giving the compiler a wider choice of operations and addressing
modes it would simplify the design of the compiler.
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RISC
The characteristics of a Reduced Instruction Set Computer (RISC) are:

e Simple instructions
¢ Uniform instruction length
¢ Few instruction formats

e Orthogonal instruction set

Few addressing modes

e Load-Store Architecture
e Few data types

¢ Many registers

RISC processors were driven by the invention of caches, an improvement
in compiler technology, and the desire to reduce the complexity of the
processor architectures to simplify the task of introducing pipelining.
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RISC:

e Formed on the observation that the majority of the work of a
processor was done by a minority of the instructions.

e An overall speedup could be had if the frequently executed instruc-
tions were improved.

The steps to RISC:

e The introduction of hybrid microprogram and hardwired con-
trollers increased processor complexity.

e an improvement in compilers and the introduction of caches.

— caches made with the same technology as the control store
allowed instructions to execute at the speed of microcode

— Improved compilers were hampered by more complex instruc-
tions and multiple addressing modes. The compiler was forced
to choose the best mode and instruction from a wide range of
possibilities.

The RISC processor aimed to provide a simple set of instructions that
worked quickly. In addition the processor was designed to be simple
so that the more flexible hardwired control units could be designed at
reasonable cost.
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The load-store architecture simplifies the design of the processor by lim-
iting memory access to only the load and store instructions. All other
instructions have registers as both source and destination.

The regular instruction length simplifies control and decoding logic.
Comparison

RISC & CISC designers driven by same goal of maximum useful
work.

RISC processors commonly include a microcode based floating
point unit because it yields better performance than attempting
to perform the same operations in machine code.

CISC machines have hardwired control for some of their instruc-
tions to achieve single cycle execution on some instructions.

The mechanisms of pipelining and superscaling are applicable to
both architectures, although more difficult to apply to a CISC
processor.

the distinction between the RISC and CISC processor of today is
becoming more blurred.
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Measures of performance:

e simple measures of MIPS (millions of instructions per second) and
processor speed obviously do not serve as adequate measures of
performance

e instructions executed on different processors can perform vastly
different amounts of work

e measurements in terms of MIPS should only be used between pro-
cessors of similar types.

It is strongly recommended that students examine the article:

Patterson, David A., Reduced Instruction Set Computers,
Communications of the ACM, 28(1), January 1985.
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The R2000
General History

MIPS Computer Systems 1987

MIPS is an acronym for Microprocessor without Interlocking Pipe
Stages

Based on work at Stanford University

Hardware interlocks to prevent data and branch hazards are ab-
sent. Relies on compilers aware of the pipeline architecture of the
machine to generate correct results. Resulted in faster operating
speed by simplifying design.

processor can be configured as either a big endian or a little endian
processor in addition to allowing software selection.

Gross Features

32 bit processor
Address range 23!

32 General registers
Load-Store Architecture

RISC
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Register Set

e 32 general registers (32 bit)
— RO - R31

e 2 multiply-divide registers (32 bit)
- HI & LO

— Result of 32 bit Multiplication

— Quotient and Remainder of Integer division

Data Types

The R2000 supports 6 integer data types: signed and unsigned integers
of 8, 16 and 32 bit size.

The R2010 floating point co-processor supports IEEE-754 floating point
numbers of 32 and 64 bit size.
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Instruction Formats
The R2000 supports 3 instruction formats:
R-Type instruction:

6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
| op [ vs | v | vd | shamt | funct |
I-Type instruction:
6 bits 5 bits 5 bits 16 bits
[ op [ rs T rt ] address |
J-Type instruction:
6 bits 26 bits
| op | address |
op operation
s source register
rt second register
rd destination register
shamt shift amount
funct variant of operation

address address
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Addressing Modes
The R2000 supports 4 addressing modes:

Register Addressing The memory location is given by the value of a
register

Base Addressing The address of the memory location is calculated by
adding the contents of a register to the address in the instruction

Immediate Addressing The address of the memory location is the
address in the instruction.

PC-Relative Addressing The address is the sum of the PC and the

address in the instruction.

The jump instruction uses the ‘J-type’ format and exploits the require-
ment that instructions be aligned on 32 bit boundaries. The address of
the destination is calculated:

The 26 bit address field is shifted left 2 bits and combined
with the top 4 bits of the PC to provide a 32 bit address.

A consequence of this arrangement is that a linker must avoid attempting
to make a jump over a 256M byte boundary. If a jump over a 256M byte
boundary is required then the destination address must be loaded into
a register and a jump register instruction issued.
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Instruction Set
The R2000 supports 74 instructions.
The subroutine mechanism is typical of many RISC processors:

¢ the R2000 does not have explicit stack instructions

e subroutine calls are implemented by using a jump-and-link in-
struction - jump to a specified location and store the return address
in a register.

e returning from a subroutine is performed by issuing a jump-to-
register instruction.

It is the responsibility of each subroutine to ensure that the return ad-
dress is saved. In addition the caller must save the registers that it wishes
preserved over a call.

Virtual Memory

The R2000

¢ does not support page tables to provide automatic translation of
virtual to physical addresses.

¢ a 64 entry Translation Lookaside Buffer (TLB) is used for address
translation.

e Fach virtual address is divided into a 20 bit virtual page number
and a 12 bit offset.
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Address translation:

e the processor attempts to match the virtual page number and PID
value with an entry in TLB table

e if there is a match and there is no rights violation then the base
in the TLB entry is added to the offset and a physical address
returned

e otherwise a trap occurs.

This mechanism simplifies the virtual address translation hardware but

requires greater intervention than a page table based system.
Virtual Address:

20 bits 12 bits

Virtual Page Offset

TLB entry:

20 bits 6 bits 6 bits 20 bits 1 1 11 12 bits

[ Virtual Page [ PID | |  Page Frame [N|DJVIG] Offset |
N Not cached
D Dirty
V  Valid
G Global (Suppress PID check)

The PID value in the TLB entry is checked against the PID field in the Entry
HI register. If the Global bit is set then the PID check is avoided.
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Summary

In addition to the RISC characteristics exhibited by the R2000 processor
the designers have opted for the simplest implementation at the cost of
forcing complexity onto the compiler or programmer. The result is a
processor that has a high instruction throughput, a minimal instruction
set and few features aimed at making the compiler’s or the programmer’s
task easier.
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The 80386

e Produced by the Intel Corporation in 1985
e Member of the 80x86 family of microprocessors

e First of the paged architecture processors to serve as the processor
for the popular IBM-PC personal computer range.

¢ A major constraint on the design of the 80386 has been to maintain
backward compatibility with software written for earlier members
of the 80x86 family. This requirement forced the designers to pro-
vide multiple modes of operation and a highly redundant instruc-
tion set. For backward compatibility:

— Virtual 86 mode
— Real Mode
— 16 bit protected mode (286 compatibility)

In addition the architecture added:
— 32 bit protected mode

e Little endian
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Gross Features

¢ 32 bit processor

o Address range 232

o 8 General registers
e CISC
Register Set
e 8 general registers (32 bit)
e 6 segment selector registers (16) bit

The 80386 dedicates some of the general registers to specific functions
for some instructions.

Data Types

The 80386 supports the following integer data types: signed and un-
signed integers of 8, 16 and 32 bit size, and signed 64 bit integers.

In addition bit fields, pointers, and strings are supported.

The 80387 floating point co-processor supports IEEE-754 floating point
numbers.

In all 23 data types are present in the 80386.
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Instruction Formats

The 80386 supports a single variable length instruction format. This is
equivalent to the number of formats that could be formed by taking all
the legal combinations of the variable length format.

Instruction  Address Operand  Segment
Prefix Size Prefix Size Prefix Override
Oor1l Oorl Oorl Oorl

bytes

Opcode MOD SIB Disp Imm

R/M
1lor?2 Qorl Qorl 012o0r4 012o0r4
bytes

Addressing Modes

The 80386 supports 11 addressing modes. The addressing of the 80386
modes have been discussed in the course.

Instruction Set

The 80386 supports 216 instructions. The 80387 supports 80 floating
point operations.

The instruction set contained in the notes contains 86 instructions.
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Virtual Memory
The 80386 supports:

Paging
Segmentation

Paged Segmentation

Segmentation is supported using a descriptor table the segment descrip-
tors index into the descriptor table. Each descriptor table entry contains
the following information:

Base Address
Limit

Presence Bit - Causes a fault if clear and an attempt has been
made to load segment descriptor

Privilege Level - Specifies minimum privilege required to access
segment

Type - Access rights or Special system types

Segment Descriptor bit - used to distinguish system segments from
user or kernel segments
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e Accessed Bit - set if segment has been loaded

e Granularity - if 0 then the limit is in bytes otherwise the limit
specifies the number of 32 bit long words that are accessible.

When a process wishes to use a segment it attempts to load a segment
register with the segment selector for the segment required.
Segment Selector:

13 bits 2

Tndex |;| R.PL |

Index Index into Global or local descriptor table
T Table: 1 for local descriptor table,

0 for global descriptor table
RPL  Requested Privilege Level

The operating system is responsible for dealing with traps caused by
invalid and not present descriptors.

The paging scheme used in the 80386 is based on a two level page table
structure. Similar to that described in earlier lectures.

When performing paged segmentation the segment is decoded to gener-
ate the virtual address which is translated by examining the page tables.
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Summary

The 80386 is processor with a diverse and rich instruction set. The paged
segmentation scheme employed by the 80386 is rare in current micropro-
cessors and few operating systems take advantage of the presence of
segment registers.
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