
Erlang in Real TimeMaurie CastroCopyright 1998, 2001

This is the seond draft of this book and has been used in the ourse `CS584Real Time and Conurrent Systems' at RMIT University.

Erlang in Real TimeMaurie CastroCopyright 1998, 2001Department of Computer SieneRMIT124 Latrobe StMelbourne VICAustraliaISBN:Maurie CastroDepartment of Computer SieneRMITGPO Box 2476VMelbourne VIC 3001Australiamaurie�ser.rmit.edu.au

Prefae
Why Erlang?In 1984 Erisson onduted a series of experiments using a range of program-ming languages and programming tehniques to identify the qualities required ina software development environment for teleommuniations appliations. Theexperiments inluded imperative, funtional and logi languages, and rule basedand objet oriented tehniques. At the onlusion of the experiments there wasno existing language with all the required features, however, the funtionalprogramming languages showed promise as they resembled existing imperativeprograms and allowed funtions to be easily ombined while preserving orret-ness.The Erlang language is designed to meet the requirements of a telephonyenvironment. On the tehnial side telephony software must meet soft real-timetiming onstraints, support onurrent programming, and provide a means forreplaing running ode. When making a telephone all lients expet resultswithin a short period of time. To ensure that servie is delivered within lientexpetations, it is neessary for the programmer to be able to speify ationsthat our within a given time and to program reations if these ations do notour. In addition, telephone exhanges have an inherent parallelism in thatmany similar ations must be handled at the same time, typially the makingand reeiving of telephone alls. The software used in telephone exhanges runsfor long periods of time, and in general an exhange annot be shut down toallow for software hanges. This harateristi makes it neessary to mehanismthat allow software to be updated on the y. On the management side, the pro-gramming language must support large teams of programmers, require minimale�ort in the systems integration phase of development, and be easily and quiklytaught. The development and maintenane of teleommuniations produts arelarge sale endeavours of great omplexity. To meet the hallenge of assemblingthese produts in a timely fashion large teams are neessary, furthermore, re-duing the ost of putting together the parts made by members of the teamseliminates a signi�ant development ost. Finally, if a speial purpose languageis used, short training time allows the produtivity bene�ts of the language tobe gained at a minimal ost and allows large numbers of programmers apablein the language to be proured in a reasonable time.Erlang is a small oneptually simple language that meets these require-ments. i

iiLanguagesIn addition to Erlang this book will use several programming languages in-luding C, Ada and Java to illustrate onepts in a onventional programmingenvironment. A subsidiary aim of this book is to enourage the reader to arryonepts developed in Erlang into other programming languages. Althoughthese languages may not enfore the disipline of Erlang, the restritions im-posed by Erlang are often helpful in reduing oding and debugging when arriedout in other languages.ApproahThe fous of this work is on the transition between programming in proedurallanguages and programming in a delarative funtional language. This leads toan unusual approah to introduing the Erlang language. Early examples tendto have a greater number of if statements and use pattern mathing in the headsof funtions less than the best of Erlang programmers would. This style is aompromise between the imperative programming approah and the delarativeapproah and is used while introduing the building bloks of the language.Hopefully this approah should make the early hapters less intimidating toprogrammers making the transition from an imperative languages to Erlang.Getting ErlangErisson has released a number of implementations of Erlang under a free ofharge liense. Further information about these implementations an be foundat: http://www.erlang.se/erlang/sure/main/download/Other ResouresFurther information on the language an be found in the original Erlang book`Conurrent Programming in Erlang' by Joe Armstrong, Robert Virding, ClaesWikstr�om and Mike Williams and published by Prentie-Hall. The �rst part ofthe book has been made available online at:http://www.erlang.se/erlang/sure/main/news/erlang-book-part1.pshttp://www.erlang.se/erlang/sure/main/news/erlang-book-part1.pdfThe book itself is available in print:Joe Armstrong, Robert Virding, Claes Wikstr�om and Mike Williams`Conurrent Programming in Erlang'Seond EditionPrentie HallEnglewood Cli�s, New JerseyISBN: 0-13-508301-X

iiiAknowledgementsThe author was fortunate to have the assistane of Torbj�orn T�ornkvist fromErisson's CS labs to larify aspets of the Erlang programming language andits use.The author also wishes to thank Doug Bagley for his proof reading of thedoument.Thanks also to Rihard O'Keefe for his suggestions on writing truly fun-tional solutions.

iv

Contents
Prefae i1 Introdution to Erlang 11.1 Programming Environment . 11.1.1 Starting and Leaving the Erlang Shell 11.1.2 Funtions Provided by the Shell 11.1.3 Compiling and Running Programs 21.1.4 Starting Additional Shells 21.2 Anatomy of An Erlang Program 21.3 Fatorial: The Classi Reursion Example 61.4 Anatomy of a Funtion . 61.5 Resoures . 71.6 Exerises . 72 Fundamentals 92.1 Data Types . 92.1.1 Integers . 102.1.2 Floats . 102.1.3 Numbers . 102.1.4 Atoms . 112.1.5 Pids . 112.1.6 Referenes . 122.1.7 Tuples . 122.1.8 Lists . 132.2 Variables . 152.3 Memory Management . 172.4 Funtions . 172.5 Guards . 182.6 Modules . 192.7 Built In Funtions . 202.8 Resoures . 222.9 Exerises . 223 Writing Funtions 233.1 Proedural versus Delarative . 233.2 A Taxonomy of Funtions . 263.2.1 Transformation . 273.2.2 Redution . 27v

vi CONTENTS3.2.3 Constrution . 273.2.4 Redution / Constrution 303.3 Resoures . 323.4 Exerises . 324 Choies 354.1 If . 364.2 Case . 364.3 Funtion Heads . 374.4 Resoures . 404.5 Exerises . 405 Proesses and Messages 435.1 Proesses . 435.1.1 Finding a Proesses Name 435.1.2 Proess Ditionary . 455.1.3 Message Bu�er . 455.2 Messages . 455.3 Time Delays . 485.4 Distribution . 485.5 Registered Names . 515.6 Resoures . 515.7 Exerises . 526 Meta-programming 536.1 Resoures . 536.2 Exerises . 557 Writing EÆient Code 577.1 Last Call Optimisation . 577.2 Hashable Construtions . 587.3 Resoures . 627.4 Exerises . 628 Robust Programs 638.1 Cath and Throw . 638.2 Termination . 678.3 Error Handlers . 698.4 Defensive Programming . 708.5 Linked Proesses . 708.6 Trapping Exits . 728.7 Robust Servers . 728.8 Generi Servers . 748.9 Resoures . 768.10 Exerises . 76

CONTENTS vii9 Code Replaement 779.1 Loading and Linking . 779.2 Code Replaement . 789.3 Limitations . 789.4 Code Management . 789.5 Resoures . 819.6 Exerises . 8110 Programming Style 8510.1 Comments and Doumentation 8510.1.1 Comments . 8510.1.2 Attributes . 8810.2 Modules . 8810.3 Funtions . 8810.4 Messages . 8810.5 General . 8910.6 Resoures . 8910.7 Exerises . 8911 Graphis 9111.1 Model . 9111.2 Interfae . 9311.2.1 Funtions . 9311.2.2 Objets . 9411.2.3 Events . 9511.3 Example . 9611.4 Resoures . 9911.5 Exerises . 10012 Internet 10312.1 Basi Funtions . 10312.2 A Simple Web Server . 10312.3 Resoures . 10712.4 Exerises . 10713 Reliable Communiations 10913.1 No Reovery . 10913.2 Bakward Error Corretion . 10913.2.1 Simple Retransmission . 10913.2.2 Retransmission with Windows 11313.3 Forward Error Corretion . 11313.4 Resoures . 11413.5 Exerises . 11414 Reliability and Fault Tolerane 11514.1 Terminology . 11514.2 Fault Prevention . 11614.3 Fault Tolerane . 11614.3.1 Redundany . 11614.4 When Reovery is Undesirable 122

viii CONTENTS14.5 Resoures . 12314.6 Exerises . 123Index 125Glossary 129

Chapter 1Introdution to ErlangThis is a `Quik Start' hapter. It does not over Erlang in detail, instead itfouses on getting the user going in the language as quikly as possible so thatthe user an try out the material in subsequent hapters.1.1 Programming EnvironmentLike Java, the most generally available implementation of Erlang is interpreted.Erlang ode is ompiled into a byte ode whih is interpreted. This allows theode to be easily transported between systems. Unlike Java, Erlang provides anadditional environment whih allows the programmer to diretly interat withthe funtions in their ode. This environment, known as the Erlang Shell, isdesribed in this setion. The ability to diretly interat with funtions is apowerful and very useful feature of Erlang.1.1.1 Starting and Leaving the Erlang ShellThe Erlang shell is invoked from the ommand line using the erl ommand (see�gure 1.1). The shell an be exited by typing ontrol-g and then q.% erlErlang (JAM) emulator version 4.3.1Eshell V4.3.1 (abort with ^G)1> Figure 1.1: Starting the Erlang Shell1.1.2 Funtions Provided by the ShellThe shell interprets user input as fragments of Erlang ode. The shell allowsvariables to be assigned and funtions to be alled just as if the ations tookplae inside a ompiled Erlang program. The only di�erenes between the shelland a program are that the shell does not allow the user to de�ne their ownfuntions and allows bindings to be removed.The shell provides some on line help. It an be aessed by typing1

2 CHAPTER 1. INTRODUCTION TO ERLANGhelp().at the shell prompt. Shell internal ommands an be aessed just by typingthe funtion name with its arguments in brakets. Commands in modules areaessed by prefaing the funtion name with the module name and a olon.The ompiler funtion is in the module and its use is shown in setion 1.1.3.1.1.3 Compiling and Running ProgramsThe �rst example is a Ti-Ta-Toe game. The program �le is alled ttt.erl . Toompile the program, invoke Erlang and issue the ommand :(ttt). and torun it use the ommand ttt:init(). Figure 1.2 shows the ompilation and �gure1.3 shows a game in progress.% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> :(ttt).{ok,ttt}2> ttt:init().Figure 1.2: Compiling and Running Ti-Ta-Toe1.1.4 Starting Additional ShellsThe run time environment whih supports the shell an be invoked by pressingontrol-g. The environment provides a set of ommands whih allow the user toreate, kill, and onnet to many proesses. Figure 1.4 illustrates aessing theenvironment, its help information, and reating and swithing between shells.1.2 Anatomy of An Erlang ProgramAn Erlang program onsists of a set of funtions whih may be olleted intomodules. A short program that ounts the number of lines and haraters in a�le will be used as an example. The ode for the �lent program is shown in�gure 1.5. Some sample output is shown in �gure 1.6.Some interesting features of the program:� An Erlang module is a devie for olleting together funtions. Modulesare also the unit of ompilation. Thus a �le whih is to be ompiled mustontain a module delaration (line 1 of �gure 1.5.� The visibility of funtions are ontrolled through the export delaration(line 2). The only funtions in the module that an be seen by ode outsidethe module are those listed in the export delaration. It is important tonote that funtions have an arity equivalent to the number of argumentsof the funtion. The funtion name and the number of arguments takenby the funtion uniquely identify the funtion.

1.2. ANATOMY OF AN ERLANG PROGRAM 3

Figure 1.3: Ti-Ta-Toe in Ation

4 CHAPTER 1. INTRODUCTION TO ERLANG
% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> h().ok2>^GUser swith ommand--> h [nn℄ - onnet to jobi [nn℄ - interrupt jobk [nn℄ - kill jobj - list all jobss - start loal shellr [node℄ - start remote shellq - quit erlang? | h - this message--> s--> j1 {}2 {shell,start,[℄}3* {shell,start,[℄}--> Eshell V4.5.3 (abort with ^G)1>^GUser swith ommand--> 22>^GUser swith ommand--> 31> Figure 1.4: Aessing the Environment

1.2. ANATOMY OF AN ERLANG PROGRAM 51 -module(filent).2 -export([filent/1℄).34 % Aept a filename and attempt to open the file56 filent(FileName) ->7 {Status, Data} = file:open(FileName, [read℄),8 if9 Status == error ->10 io:format("Unable to open file ~w beause ~w~n",11 [FileName, Data℄);12 true ->13 f(FileName, Data, {0,0})14 end.1516 % ount haraters and lines, return tuple1718 f(FN, Fd, {Chars, Lines}) ->19 C = file:read(Fd, 1),20 if21 C == eof ->22 {Chars, Lines};23 true ->24 {Result, Data} = C,25 if26 Result == error ->27 io:format("Unable to read file ~w beause ~w~n",28 [FN, Data℄);29 true ->30 if31 Data == "\n" ->32 f(FN, Fd, {Chars+1, Lines+1});33 true ->34 f(FN, Fd, {Chars+1, Lines})35 end36 end37 end. Figure 1.5: Filent Soure CodeErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> :(filent).{ok,filent}2> filent:filent('filent.erl').{1006,37}3> Figure 1.6: Sample output from �lent

6 CHAPTER 1. INTRODUCTION TO ERLANG� Comments are preeded with a perent sign (lines 4 and 16).� Two funtions are de�ned: �lent (lines 6{14) and f (lines 18{37).� Variables are assigned to exatly one and start with apital letters.(lines 7, 19, and 24)� Reursion is used to perform any repeating ations (lines 32 and 34).� Funtions in other modules are aessed by pre�xing the name of themodule and a olon to the name of the funtion (lines 7, 10, 19, and 28).1.3 Fatorial: The Classi Reursion ExampleThis setion provides the lassial explanation of the fatorial funtion. It isinluded to provide a link bak to the mathematial basis of reursion. The fa-torial funtion is one of simplest the most used examples of a reursive funtion.Card games and games of hane were signi�ant driving fore in the develop-ment of probability. Questions similar to the following are not unommon:If you were presented with �ve playing ards labeled `A' to `5' inhow many ways an you arrange those ards?
The lassi answer is: you have 5 hoies for the �rst ard, then 4 hoiesfor the seond ard and so on until you have 1 hoie for the �nal ard. Giving5� 4� 3� 2� 1 = 120 hoies.This answer an be generalised to any number of starting ards and the gen-eralisation is known as the fatorial funtion. It an be written as a reurrenerelationship: x! = � 1 if x < 1x � (x� 1)! otherwiseThe Erlang funtion fat in �gure 1.7 implements the reurrene relationship.1.4 Anatomy of a FuntionThe fatorial funtion in �gure 1.7 illustrates a number of interesting aspets ofthe Erlang programming language:� Funtions are omposed of funtion heads (lines 4 and 6) and funtionbodies (lines 5 and 7)

1.5. RESOURCES 71 -module(fatprg).2 -export([fat/1℄).34 fat(0) ->5 1;6 fat(N) ->7 N * fat(N-1).Figure 1.7: The fatorial funtion: fat� Funtions are omposed of lauses (lines 4{5 and lines 6{7). A lause isomposed of a funtion head and a funtion body. The lauses of a funtionare separated by semiolons (line 5). The �nal lause of a funtion endsin a full-stop (line 7).� When a funtion exeutes eah of the funtion heads is tested in turn. The�rst funtion head whih mathes the argument the funtion was invokedwith has its body exeuted. If no funtion head mathes an error ours.In the example line 6 is only exeuted when fat is alled with an argumentof 0 .� The arguments in the funtion head are known as a pattern and the proessof seleting the funtion head is known as pattern mathing.1.5 ResouresThe ode �les mentioned in this hapter are:ttt.erl�lent.erlfatprg.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/erlintro.1.6 Exerises1. Extend the �lent program to ount full-stops in �les.2. The algorithm used in the Ti-Ta-Toe game for automati play has noinsight into the game. Rewrite the play funtion to play better. Hint: useErlang's pattern mathing failities to math grid positions and hard-odethe rules for winning play.

8 CHAPTER 1. INTRODUCTION TO ERLANG

Chapter 2FundamentalsThis hapter desribes the fundamental parts of the Erlang programming lan-guage inluding: basi and ompound data types, variables, funtions, guards,and modules.2.1 Data TypesNouns, verbs, and adjetives in languages like English and Swedish are ol-letions of words whih perform partiular roles in the language. These rolesrestrit the words to be used in a partiular ontext and in a partiular way.The types and subtypes of words and arrangements of words in language aresometimes alled the `parts of the language'. Programming languages also haveparts. In partiular, the data a program works on is divided into a number ofdi�erent types. Normally there are onstants assoiated with this data.Erlang supports 5 simple data types:� Integer - a positive or negative number with no frational part (ie. nodeimal point)� Float - a number with a frational part (ie. no deimal point)� Atom - a onstant name� Pid - a proess identi�er� Referene - a unique value that an be opied or passed but annot begenerated againTwo ompound data types are supported in Erlang� Tuple - a �xed length olletion of elements� List - a variable length olletion of elementA term is a value made from any of the above data types9

10 CHAPTER 2. FUNDAMENTALS2.1.1 IntegersThe Erlang programming language requires that integers have at least 24 bitspreision. This means that any number between 224 � 1 and �224 � 1 must berepresentable as an integer. There are several ways of writing integer onstantssome examples are illustrated below:16777215�16777215$A2#10116#1A0In order, the examples are: the largest integer guaranteed to be presentin Erlang (some implementations may o�er larger values); the smallest integerguaranteed to be present in Erlang (some implementations may o�er smaller val-ues); the integer orresponding to the harater onstant `A' (integer value 65);the integer orresponding to `1012' (integer value 5); the integer orrespondingto `1A16' (integer value 26); and 0.The examples introdued 2 Erlang spei� notations. The `$' and the `#'.The `$' returns the position of the harater following it in the ASCII har-ater set:$harThe `#' allows integers in the bases 2 : : : 16 to be spei�ed using the notation:base#value2.1.2 FloatsErlang uses the onventional notation for oating point numbers. Some exam-ples are:16:0�16:22�1:8e2�0:36e� 21:0e31:0e6In order the examples are: 16:0; �16:22; �180:0; �3:6� 10�3; 1000:0; and1:0� 106.2.1.3 NumbersFloats and integers an be ombined into arithmeti expressions. Table 2.1 is atable of operators used for arithmeti.

2.1. DATA TYPES 11Op Desription+X +X�X �XX � Y X � YX=Y X=Y (oating point division)X div Y X=Y (integer division)X rem Y integer remainder of X / YX band Y bitwise and of X and YX + Y X + YX � Y X � YX bor Y bitwise or of X and YX bxor Y bitwise xor of X and YX bsl Y arithmeti shift left of X by Y bitsX bsr Y shift right of X by Y bitsTable 2.1: Arithmeti Operations2.1.4 AtomsAn atom is a onstant name. The value of an atom is its name. Two atoms areequivalent when they are spelt identially. Atom onstants either begin witha lower ase letter and are delimited by white spae; or an atom is quoted insingle quotes (` ' ').The following are atoms:startbegin here'This is an atom''Fred'Atoms de�ned using single quotes may inlude non-printing and speial har-aters. Table 2.2 ontains sequenes that an be inluded in a quoted atom torepresent speial haraters.Some examples of quoted atoms ontaining speial haraters are:'hello, worldnn''�rst linennseond linenn''1nt2'Long quoted atoms an be split aross lines by ending the line with a bak-slash harater ('n').'this is a long atom \ontinued on the next line'2.1.5 PidsThe programming environment that supports Erlang is designed to run manyErlang programs in parallel. Eah program operates independently to otherprograms: parameters and memory are not shared between Erlang programs.

12 CHAPTER 2. FUNDAMENTALSChar Meaningnb Bakspaend Deletene Esapenf Formfeednn Newlinenr Carriage returnnt Tabnv Vertial tabnn Bakslashn^A . . . n^Z Control A (0) to Control Z (26)n' Quoten" Double QuotenOOO Charater with otal value OOOTable 2.2: Quoted Atom ConventionsThis makes eah thread of exeution in the Erlang programming environmenta proess. A Proess Identi�er (Pid) is a unique name assigned to a proess.Pids are used for ommuniating between proesses and to identify proessesto the programming environment for operations whih a�et the operation of aproess { for example reating, destroying and hanging the sheduling priorityof proesses.2.1.6 ReferenesThe Erlang run time environment provides a funtion whih returns a valuewhih is unique within all running Erlang environments. This value is alleda referene. Note that although no two referenes an be generated whih areidential among running systems, an Erlang environment whih has been failedand is then restarted an produe referenes whih were previously produed bythe failed environment.Unique values an prove useful as tokens in onurrent systems.2.1.7 TuplesTuples are data strutures whih are used to store a �xed number of items.They are written as a a group of omma separated terms, surrounded by theurly brakets.Examples of tuples are:f1,2,3gffred,20.0,3gf15,'�fteen'gf3,fa,b,ggf3,[a,b,℄gThe items that ompose a tuple are alled elements. The elements are identi-�ed by their position in the tuple and may be extrated using pattern mathing.

2.1. DATA TYPES 13An example is shown in �gure 2.1.% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> T = {1,2,3}.{1,2,3}2> {A,B,C} = T.{1,2,3}3> A.14> B.25> C.36> Figure 2.1: Manipulating a Tuple in the Erlang ShellThe size of a tuple is equivalent to the number of elements in the tuple.2.1.8 ListsThe list data struture does not have a predetermined size. The Erlang pro-gramming language de�nes a number of operators and funtions that allow newlists to be reated from an existing list whih either have more elements or fewerelements than the original list.Lists are written as a a group of omma separated terms, surrounded by thesquare brakets.Examples of lists are:[1,2,3℄[fred,20.0,3℄[15,'�fteen'℄[3,[a,b,℄℄[fa,bg; fa,b,g℄[℄Erlang has a speial notation for generating lists of haraters easily. Astring of haraters enlosed in double quotation marks is onverted to a listof integers representing the haraters. The onventions used for quoted atoms�gure 2.2 also apply. An example of this speial notation is shown in �gure 2.2.The vertial separator (j) is used in the list notation to separate the spei�edhead part of a list from the remainder of the list. Some examples of the use ofthis notation are shown in �gure 2.3.The majority of Erlang funtions are written to manipulate and returnproper or well formed lists. Proper or well formed lists have an emptylist ([℄) as their last element.Some useful funtions that operate on lists are found in table 2.3.

14 CHAPTER 2. FUNDAMENTALS% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> A = "hello"."hello"2> B = [a | A℄.[a,104,101,108,108,111℄3> [X | Y ℄ = B.[a,104,101,108,108,111℄4> X.a5> Y."hello"6> C = [$a | A ℄."ahello"7> hd(C).978> $a.979>Figure 2.2: Manipulating a String / List of Charaters in the Erlang Shell% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> Z = [a,b,,d,e,f℄.[a,b,,d,e,f℄2> [A, B | R℄ = Z.[a,b,,d,e,f℄3> A.a4> B.b5> R.[,d,e,f℄6> X = [A, B | R℄.[a,b,,d,e,f℄7> X.[a,b,,d,e,f℄8> Figure 2.3: Manipulating a List Using j in the Erlang Shell

2.2. VARIABLES 15Fun Desriptionatom to list(X) return the list of ASCII haratersthat form the atom Xoat to list(X) return the list of ASCII haratersthat represent the value of the oat Xinteger to list(X) return the list of ASCII haratersthat represent the value of the integer Xlist to atom(X) return an atom omposed of the haratersformed from the list of ASCII haraters Xlist to oat(X) return a oat omposed of the haratersformed from the list of ASCII haraters Xlist to integer(X) return an integer omposed of the haratersformed from the list of ASCII haraters Xhd(L) The head { �rst element { of the list Ltl(L) The tail { last element { of the list Llength(L) The number of elements in the list LTable 2.3: Seleted List Funtions2.2 VariablesErlang's variables behave di�erently to variables in proedural languages like C,Ada and Java. Erlang's variables have the following properties:� The sope (region of the program in whih a variable an be aessed) ofa variable extends from its �rst appearane in a lause through to the endof the lause in an Erlang funtion.� The ontents of an Erlang variable persist from assignment until the endof the lause.� Erlang variables may be assigned to (bound) exatly one.� It is an error to aess an unbound Erlang variable.� Erlang variables are not typed. Any term an be bound to a variable.The property of allowing a variable to bound exatly one is known as singleassignment.One way of alulating elementary funtions suh as exp (ex) and sine is touse a Taylor Series. The ode in �gure 2.4 illustrates how these funtions maybe implemented. This ode an also be used to show the sope of variables.The funtion sin whih takes 4 arguments is omposed of two lauses (lines 30{ 37) and (lines 38 { 45). Eah of these lauses has the variables Z , N , Epsilon,and R. Although the variables have the same names in the two funtions, thevariables are in fat di�erent. Furthermore, the ontents of these variables anonly be aessed within the lause where they have been de�ned.

16 CHAPTER 2. FUNDAMENTALS
1 -module(tayser).2 -export([exp/1, sin/1℄).34 epsilon() ->5 1.0e-8.67 fat(0) ->8 1;9 fat(N) ->10 N * fat(N-1).1112 taylorterm(Z, N) ->13 math:pow(Z, N) / fat(N).1415 exp(Z) ->16 exp(Z, 0, epsilon()).1718 exp(Z, N, Epsilon) ->19 R = taylorterm(Z, N),20 if21 R < Epsilon ->22 0;23 true ->24 R + exp(Z, N+1, Epsilon)25 end.2627 sin(Z) ->28 sin(Z, 0, 1, epsilon()).2930 sin(Z, N, 1, Epsilon) ->31 R = taylorterm(Z, (2*N)+1),32 if33 R < Epsilon ->34 0;35 true ->36 R + sin(Z, N+1, -1, Epsilon)37 end;38 sin(Z, N, -1, Epsilon) ->39 R = taylorterm(Z, (2*N)+1),40 if41 R < Epsilon ->42 0;43 true ->44 -R + sin(Z, N+1, 1, Epsilon)45 end. Figure 2.4: Tayser Soure Code

2.3. MEMORY MANAGEMENT 172.3 Memory ManagementLanguages like C and C++ support funtions that expliitly alloate and deallo-ate memory (C provides many funtions inluding alloa, mallo, allo andfree; C++ provides new and delete). Erlang does not have expliit memorymanagement, freeing the programmer from having to alloate and dealloatememory. Instead the language reates spae to hold the ontents of a vari-able when neessary and automatially frees the alloated spae when it an nolonger be referened. The proess of freeing the alloated memory is sometimesalled garbage olletion.2.4 FuntionsIn mathematis a funtion desribes a relationship between its inputs and itsoutputs. The key harateristi of this relationship is that if the same ombi-nation of inputs is supplied then the same output is produed eah and everytime the funtion is used. This funtional relationship is often illustrated usinga diagram similar to �gure 2.5. Funtions are sometimes said to have a manyto 1 relationship.

Input Set Output SetFunction

many 1:Figure 2.5: A funtionThe property of always getting the same result regardless of when a funtionis used is highly desirable. This means that a funtion that has been tested inone environment an be used in any other environment without worrying aboutthe environment a�eting the funtion. Of ourse the new environment mayprovide inputs to the funtion that were not present in the test environment,and hene disover a aw in the funtion. However, after �xing the problem,the �xed funtion should be operable in both environments. In general, Erlangfuntions do not interat with their environment, exept through their inputparameters, and hene exhibit this desirable property.

18 CHAPTER 2. FUNDAMENTALS1 -module(fatprg2).2 -export([fat/1℄).34 fat(N) when N > 0 ->5 N * fat(N-1);6 fat(N) when N == 0 ->7 1. Figure 2.6: The fatorial funtion: fatA funtion whih a�ets or interats with its environment is said to have sidee�ets. Very few funtions in Erlang have side e�ets. The parts of Erlang whihexhibit side e�ets inlude: Input / Output operations, proess ditionaries, andmessage passing. These lasses of operation will be disussed later.As noted earlier (see setion 1.4), Erlang funtions are omposed of lauseswhih are seleted for exeution by pattern mathing the head of lause. Onea lause is seleted it is exeuted until it returns a value. This value is returnedto the alling funtion. The lauses of a funtion are separated by semiolonsand the last lause of a funtion ends in a full-stop.2.5 GuardsIn addition to mathing patterns, the head of a lause an be augmented witha guard lause. Figure 2.6 shows the fatorial funtion (�gure 1.7) rewritten touse a guard lause. Guard lauses are also used in onditional expressions andmessage reeption.Some funtions are allowed to be used in guards (see table 2.4). Table 2.5shows a table of operations permitted in guards. Guard lauses an be ombinedusing a logial-and operator by separating the lauses with ommas.Guard Testatom(X) X is an atomonstant(X) X is not a list or tupleoat(X) X is a oatinteger(X) X is an integerlist(X) X is a listnumber(X) X is an integer or a oatpid(X) X is a proess identi�erport(X) X is a portreferene (X) X is a referenetuple (X) X is a tupleThe following funtions are also permitted: element/2, oat/1, hd/1, length/1,round/1, self/1, size/1, trun/1, tl/1Table 2.4: Guard TestsThe ot program demonstrates the aspets of guards disussed. The soureode is shown in �gure 2.7 and a sample run is shown in �gure 2.8. The ot

2.6. MODULES 19OP DesriptionX > Y X greater than YX < Y X less than YX =< Y X less than or equal to YX >= Y X greater than or equal to YX == Y X equal to YX= = Y X not equal to YX =:= Y X exatly equal to Y (no type onv)X = = = Y X not exatly equal to Y (no type onv)Table 2.5: Guard Operationsprogram determines the type of its argument and reports it.1 -module(ot).2 -export([ot/1℄).34 ot(X) when integer(X), X > 0 ->5 'positive natural';6 ot(X) when integer(X), X < 0 ->7 'negative integer';8 ot(X) when integer(X) ->9 integer;10 ot(X) when float(X) ->11 float;12 ot(X) when list(X) ->13 list;14 ot(X) when tuple(X) ->15 tuple;16 ot(X) when atom(X) ->17 atom. Figure 2.7: ot.erl2.6 ModulesModules are a mehanism for olleting funtions together in Erlang. No storageis assoiated with a module, nor are any proesses assoiated with a module.The module is the unit of ode loading. Erlang o�ers a faility for dynamiallyreplaing ode while a system is running. When this ours a whole module isimported into the system to replae a previously loaded module.A module begins with a number of delarations whih are followed by thefuntions of the module. The Wobbly Invaders program (�gure 2.9 and �gure2.10) will be used to illustrate the delarations (these delarations are sometimesknown as attributes).The module delaration on line 1 identi�es the module name. Note: the

20 CHAPTER 2. FUNDAMENTALS% erlErlang (JAM) emulator version 4.6Eshell V4.6 (abort with ^G)1> ot:ot(1).'positive natural'2> ot:ot(0).integer3> ot:ot(-1).'negative integer'4> ot:ot({1}).tuple5> ot:ot([1,2,3℄).list6> Figure 2.8: Output from using ot�le ontaining the module must be named with the module name suÆxed witha .erl . In this ase the module wi is stored in the �le wi.erl . The importdelaration on line 2 allows the reate and on�g funtions ontained in the gsmodule to be aessed without pre�xing them with their module names. The useof these funtions an be ompared with their use in the Ti-Ta-Toe programin hapter 1. The export delaration makes funtions ontained in this moduleavailable to other modules. If a funtion is not exported it is inaessible tofuntions outside its own module.Funtions in other modules an be aessed in 2 ways:� Importing the funtion allows the funtion to be alled without mentioningthe module name. Eg:start()� A fully quali�ed funtion name inludes the module name a olon and thefuntion name. Eg:gs:start()If a module ontains a funtion with the same name as an imported funtion,fully quali�ed names should be used to aess the funtion in the other module.A fully quali�ed funtion name is required to aess two funtions with the samename and number of arguments that are exported from two di�erent modules.2.7 Built In FuntionsErlang de�nes a speial lass of funtions known as Built In Funtions or BIFs.In an interpreted environment these funtions are built in to the interpreter.BIFs are members of the module erlang .

2.7. BUILT IN FUNCTIONS 21
1 -module(wi).2 -import(gs, [reate/3, onfig/2℄).3 -export([init/0℄).45 init() ->6 S = gs:start(),7 Win = reate(window, S, [{width, 200}, {height, 200},8 {title, 'Attak of the Wobbly Invaders'}℄),9 Canvas = reate(anvas, Win, [{width, 200}, {height, 200},10 {bg, white}℄),11 onfig(Win, {map, true}),12 loop(Canvas, 0, 0, 1).131415 loop(C, X, Y, P) ->16 drawwi(C, X, Y, P),17 reeive18 {gs, Id, destroy, Data, Arg} ->19 bye20 after 500 ->21 erasewi(C, X, Y),22 if23 Y == 200 ->24 bye;25 X == 200 ->26 loop(C, 0, Y+20, -P);27 true ->28 loop(C, X+20, Y, -P)29 end30 end.3132 drawwi(C, X, Y, 1) ->33 reate(image,C,[{load_gif,"thing1.gif"}, {oords, [{X,Y}℄}℄);34 drawwi(C, X, Y, -1) ->35 reate(image,C,[{load_gif,"thing2.gif"}, {oords, [{X,Y}℄}℄).3637 erasewi(C, X, Y) ->38 reate(retangle,C,[{oords,[{X,Y},{X+20,Y+20}℄},39 {fg, white}, {fill,white}℄).Figure 2.9: Wobbly Invaders Soure Code (wi.erl)

22 CHAPTER 2. FUNDAMENTALS

Figure 2.10: The Wobbly Invaders in Ation2.8 ResouresThe ode �les mentioned in this hapter are:tayser.erlfatprg2.erlot.erlwi.erlthing1.gifthing2.gifThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/fund.2.9 Exerises1. Alter the tayser program so that all variable names are not reused indi�erent lauses. Test the program to onvine yourself that the old andnew versions of the program work identially.2. Alter theWobbly Invaders program to use fully quali�ed funtions insteadof the import diretive.

Chapter 3Writing FuntionsThis hapter initially looks at the di�erenes between Erlang and other lan-guages. It then proeeds to desribe how funtions an be lassi�ed and usingthe lassi�ation illustrates how funtions an be written in the language.3.1 Proedural versus DelarativeLanguages like C, Pasal, C++, Ada, Java, Cobol and Fortran are proedurallanguages. In these languages the programmer desribes in detail how to solvea problem. Erlang is a delarative language. In a delarative language, theprogrammer desribes what the problem is. The di�erene between the twostyles of programming is best seen by example. Two programs have been writtento solve the following problem:The problem: A person takes a mortgage of $10000 at 6.15% perannum and makes monthly payments of $200. How many monthsdoes it take to lear the debt?The solution in Fortran 77 is given in �gure 3.1. This solution is typialfor other proedural languages as it uses a loop to alulate the outstandingamount of the loan while the loan is greater than zero dollars. The proess ofsolving the problem is stated more learly than the objetives of the program.The solution in Erlang is given in �gure 3.2. The Erlang solution di�ersfrom the Fortran solution in many ways. The most striking di�erene is in thent funtion. The �rst lause of the nt funtion states that a solution has beenfound when the outstanding amount (Outs) has dropped to or below zero. If asolution has not been found the seond lause of the funtion desribes whereto look for the next result. Naturally there remains a proedural element to theseond lause { it desribes how to alulate the next step { but the emphasis ison the what of the problem. Another signi�ant di�erene between the Erlangsolution and the Fortran solution is the lak of an iteration onstrut in Erlang.Erlang employs reursion instead. The absene of iteration enourages delara-tive programming praties. Guards and pattern mathing are two methods oflearly desribing aspets of the problem.The output from the two programs is shown in �gure 3.3.23

24 CHAPTER 3. WRITING FUNCTIONS
1 PROGRAM MORT23 C Calulate the length of a morgage in months4 C OUTS - outstanding amount5 C INTR - interest harged6 C RATE - monthly interest rate7 C N - number of months8 C REPAY - Repayment9 REAL OUTS, INTR, RATE, REPAY10 INTEGER N1112 C Initial values13 OUTS = 10000.014 RATE = (6.15 / 100.0) / 12.015 REPAY = 200.016 N = 01718 10 INTR = OUTS * RATE19 OUTS = OUTS + INTR20 OUTS = OUTS - REPAY21 N = N + 122 IF (OUTS .GT. 0.0) GO TO 102324 20 WRITE (6, FMT=100) N25 100 FORMAT (I5)2627 CLOSE(6)28 STOP29 ENDFigure 3.1: Solution to Mortgage problem in Fortran 77: mort.f

3.1. PROCEDURAL VERSUS DECLARATIVE 25
1 -module(mort).2 -export([mort/4℄).34 % Calulate the number of repayments required to pay5 % a mortgage of Amt repaid at NumRep payments of Repay per6 % year with interest taken NumRep times using an annual7 % interest rate of Rate89 mort(Amt, Rate, NumRep, Repay) ->10 AddRate = Rate / 100.0 / NumRep,11 nt(Amt, Repay, AddRate, 0).1213 nt(Outs, Sub, AddRate, N) when Outs =< 0.0 ->14 N;15 nt(Outs, Sub, AddRate, N) ->16 Add = Outs * AddRate,17 nt(Outs - Sub + Add, Sub, AddRate, N+1).Figure 3.2: Solution to Mortgage problem in Erlang: mort.erl
% mort58% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> mort:mort(10000.0, 6.15, 12, 200.0).58 Figure 3.3: The output of mort.f and mort.erl

26 CHAPTER 3. WRITING FUNCTIONSBoth the Fortran solution and the Erlang solution presented have used asimulation approah to solving the mortgage problem. With deeper insight intothe problem a more diret mathematial solution an be reated. This solutionis shown in �gure 3.4.1 -module(mort2).2 -export([mort/4℄).3 -import(math, [log/1℄).45 % Calulate the number of repayments required to pay6 % a mortgage of Amt repaid at NumRep payments of Repay per7 % year with interest taken NumRep times using an annual8 % interest rate of Rate910 mort(Amt, Rate, NumRep, Repay) ->11 AddRate = Rate / 100.0 / NumRep,12 repayments(Amt, AddRate, Repay).1314 repayments(Loan, Rate, Payment)15 when Loan >= 0, Rate == 0, Payment > Loan*Rate ->16 eiling(Loan/Payment);17 repayments(Loan, Rate, Payment)18 when Loan >= 0, Rate > 0, Payment > Loan*Rate ->19 eiling(-log(1.0 - Rate*Loan/Payment)/log(1.0 + Rate)).2021 eiling(X) ->22 N = trun(X),23 if24 N < X -> N+1;25 N >= X -> N26 end.27Figure 3.4: A More Insightful Solution to Mortgage problem in Erlang:mort2.erl3.2 A Taxonomy of FuntionsFuntions an be olleted into groups based on the relation between the volumeof their input data to their output data. One set of groups ollets funtionsinto the ategories:� Transformation� Redution� Constrution� Redution and Constrution

3.2. A TAXONOMY OF FUNCTIONS 27In general all funtions transform their input data into their output data, how-ever, in this lassi�ation the volume of data is not hanged, it is merely on-verted into another form. Construtive funtions make larger data struturesfrom their input data and reduing funtions ondense their input data into asmaller data struture. These lassi�ations of funtions an be demonstratedwith both tuples and lists, although it is somewhat easier to write examplesusing lists.3.2.1 TransformationThe sine funtion math:sin in the Erlang math library is a simple example of atransformation.3.2.2 RedutionA lassi example of a funtion that redues its inputs is the len funtion (see�gure 3.5) whih operates similarly to the length funtion provided by Erlang.This funtion aepts a list and returns the number of elements in the list.1 -module(len).2 -export([len/1℄).34 len([℄) ->5 0;6 len([H | T℄) ->7 1 + len(T).Figure 3.5: An implementation of length in Erlang: len.erlThe redutionist approah taken here stems from knowing what the zerolength ase looks like; and knowing that a list with one less element an bemade by taking the tail of the input list and the urrent list length is one morethan the tail of the list. The list is redued until it is empty then eah stageadds one to the value returned by its redued list. The top level funtion returnsthe length of the list. Figure 3.6 shows a modi�ed program and the output ateah stage.3.2.3 ConstrutionA funtion that inserts a node in a Binary Searh Tree (BST) is an example ofa onstrutive funtion. Funtion insert from the bst module (see �gure 3.7)demonstrates the onstrution of a tree.As with redution, at least one base ase needs to be known and indution isused to onstrut other ases. In the BST example the base ase is the onstru-tion of a single node tree from an empty tree. All other ases are onstrutedby loating a suitable nil leaf node, replaing it with a newly onstruted nodeand then opying the remainder of the tree.Redution type funtions have a fairly obvious point at whih they are om-pleted, when they have exhausted the resoure they are reduing. Constrution

28 CHAPTER 3. WRITING FUNCTIONS
1 -module(lens).2 -export([len/1℄).34 len([℄) ->5 0;6 len(X) ->7 [H|T℄ = X,8 io:format("~w ~w~n", [H, T℄),9 LenT = len(T),10 io:format("~w ~w ~w ~w~n", [1 + LenT, H, LenT, T℄),11 1 + LenT.% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> (lens).{ok,lens}2> lens:len([a,b,,d,e,f,g℄).a [b,,d,e,f,g℄b [,d,e,f,g℄ [d,e,f,g℄d [e,f,g℄e [f,g℄f [g℄g [℄1 g 0 [℄2 f 1 [g℄3 e 2 [f,g℄4 d 3 [e,f,g℄5 4 [d,e,f,g℄6 b 5 [,d,e,f,g℄7 a 6 [b,,d,e,f,g℄73> Figure 3.6: len in Ation: lens.erl

3.2. A TAXONOMY OF FUNCTIONS 291 -module(bst).2 -export([insert/2, prefix/1, list_to_bst/1℄).34 % A BST is omposed of nodes {Left, Item, Right}5 % an empty tree is denoted by a nil.67 % insert(Tree, Item) - Insert an item into a tree89 insert(nil, Item) ->10 {nil, Item, nil};11 insert({Left, Val, Right}, Item) ->12 if13 Item =< Val ->14 {insert(Left, Item), Val, Right};15 Item > Val ->16 {Left, Val, insert(Right, Item)}17 end.1819 % prefix(Tree) - Prefix Searh2021 prefix(nil) ->22 nil;23 prefix({Left, Val, Right}) ->24 LR = prefix(Left),25 RR = prefix(Right),26 if27 LR =/= nil, RR =/= nil ->28 lists:append(LR, lists:append([Val℄, RR));29 LR =/= nil ->30 lists:append(LR, [Val℄);31 RR =/= nil ->32 lists:append([Val℄, RR);33 true ->34 [Val℄35 end.3637 % list_to_bst(List) - Convert a list to a bst3839 list_to_bst(L) ->40 list_to_bst(L, nil).4142 list_to_bst([℄, Tree) ->43 Tree;44 list_to_bst([H|T℄, Tree) ->45 list_to_bst(T, insert(Tree, H)).Figure 3.7: bst.erl

30 CHAPTER 3. WRITING FUNCTIONStype funtions must be limited to stop onstruting larger and larger data stru-tures without limit. Several methods are available inluding the Redution /Constrution type funtion provides one method (see setion 3.2.4). Two othermethods will be disussed here: performing only N steps, and ounters.The insert funtion uses the performing only N steps mehanism. Thisfuntion reates a tree whih has exatly one extra node, one step in the proessof reating a tree. There is no risk of this funtion regressing in�nitely.An example of a funtion using a ounter is the ndupl funtion in �gure 3.8.This funtion reates a list of a spei�ed size with opies of a value.1 -module(ndupl).2 -export([ndupl/2℄).34 % ndupl(Item, N) - make a list ontaining N Items56 ndupl(_, 0) ->7 [℄;8 ndupl(Item, N) ->9 [Item | ndupl(Item, N-1)℄.Figure 3.8: ndupl.erlThe performing only N steps mehanism di�ers from the ounter mehanismand Redution / Constrution type funtions in that there are no ounters andno data strutures are redued.3.2.4 Redution / ConstrutionThe Redution / Constrution mehanism uses the Redution mehanism toextrat data from one data struture and the Constrution mehanism to addthe element to a new data struture. Using redution ensures that the operationis �nite.The funtion list to bst from the bst module (see �gure 3.7) redues a listand builds a tree.Another example of this mehanism is the funtion atten (see �gure 3.9)whih takes in a list of lists and produes a list ontaining the elements of thelist of lists but without any lists. The work is done in the funtion l2:atten/2 .This funtion removes elements from its seond argument and appends them toits �rst argument. If the head of the seond argument is a list atten is invokedon it and the result is appended to the �rst argument. This funtion an bethought of as stripping the brakets o� eah list until a single list remains andthen appending the single list to the end of an already attened list. When theseond argument is empty the funtion returns the �rst argument.The output of the funtion atten an be seen in �gure 3.10.

3.2. A TAXONOMY OF FUNCTIONS 31
1 -module(l2).2 -export([flatten/1℄).3 -import(lists,[append/2℄).45 flatten(L) ->6 flatten([℄, L).78 flatten(L, [℄) ->9 L;10 flatten(L, [H|T℄) when list(H) ->11 flatten(append(L, flatten(H)), T);12 flatten(L, [H|T℄) ->13 flatten(append(L, [H℄), T).Figure 3.9: l2.erl

% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> l2:flatten([1,2,3,[4,5,6,7℄,8,[9℄℄).[1,2,3,4,5,6,7,8,9℄2> l2:flatten([[1,2,3℄,[[[4℄,5℄,6℄,[℄,7℄).[1,2,3,4,5,6,7℄3> Figure 3.10: The output of atten

32 CHAPTER 3. WRITING FUNCTIONS3.3 ResouresThe ode �les mentioned in this hapter are:mort.fmort.erlmort2.erllen.erllens.erlbst.erlndupl.erll2.erlapp.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/wrtfn.3.4 Exerises1. Erlang provides a funtion lists:append whih joins two lists together, im-plement your own funtion app that performs the append operation. (DoNOT peek; the answer is given in �gure 3.11).2. Write a narrative desription of how the app funtion in �gure 3.11 works.

3.4. EXERCISES 331 -module(app).2 -export([app/2℄).34 app([℄, L) ->5 L;6 app([H|T℄, L) ->7 [H | app(T, L)℄.Figure 3.11: The append funtion (app) in app.erl

34 CHAPTER 3. WRITING FUNCTIONS

Chapter 4ChoiesIn previous hapters seletion of whih piee of ode to exeute has generallybeen made using pattern mathing and funtion head guards. A number ofhoie funtions have been mentioned and used in examples, but without de-tailed explanation. This hapter will introdue the if and ase funtions.Care must be taken when using hoie funtions to ensure that the singleassignment property of variables in Erlang is not violated. Runtime errors willbe generated if an unbound variable is aessed or a bound variable is assignedto. The fragment of C in �gure 4.1 illustrates two hoie mehanisms present inthe C language. The if mehanism is a statement and hene does not returna value. The ?: mehanism is an operator and behaves like a funtion in thatit returns a value. Languages suh as Ada, Java, and Fortran, tend to providestatement based hoie mehanisms. In ontrast, Erlang's hoie mehanismsreturn values.1 int max(int a, int b)2 {3 if (a > b)4 return a;5 else6 return b;7 }89 int min(int a, int b)10 {11 return a < b ? a : b;12 }13 Figure 4.1: max and min in CFigure 4.2 shows the Erlang ode that implements the funtions max andmin in Erlang.The following setions will disuss the implementation of hoie using if, aseand funtion heads. A funtion that determines the orret minimal hange to35

36 CHAPTER 4. CHOICES1 -module(maxmin).2 -export([max/2,min/2℄).34 max(A,B) ->5 if6 A > B -> A;7 true -> B8 end.910 min(A,B) ->11 if12 A < B -> A;13 true -> B14 end. Figure 4.2: max and min in Erlangbe delivered by a vending mahine will be used as an example. The ent is theunit of urreny in Australia and the available oins are 2 dollar, 1 dollar, 50ent, 20 ent, 10 ent, and 5 ent. As the 2 ent and 1 ent oins were withdrawnfrom servie the following additional rule applies: values are rounded to thenearest 5 ents. This rule requires 2 and 1 ent amounts be rounded to 0, andthat 3 and 4 ent amounts be rounded to 5 ents.4.1 IfThe if onstrut onsists of a series of guards and sequenes separated by semi-olons. The syntax of the if onstrut is shown below:if Guard1 � >Seq1;� � �GuardN � >SeqNendThe sequene assoiated with the �rst mathing guard is exeuted. If noguard mathes an error ours. When the atom true is used as a guard it atsas a ath all { a ath all will math any pattern. Figure 4.3 ilustrates the useof the if onstrut.4.2 CaseThe ase onstrut onsists of a series of patterns { with optional guards { andsequenes separated by semiolons. The syntax of the ase onstrut is shownbelow:

4.3. FUNCTION HEADS 371 -module(hg1).2 -export([hange/1℄).34 hange(X) ->5 BaseSum = (X div 5) * 5,6 Delta = X - BaseSum,7 if8 Delta >= 3 -> hange(BaseSum + 5, [℄);9 true -> hange(BaseSum, [℄)10 end.1112 hange(X, L) ->13 if14 X >= 200 -> hange(X - 200, ['2.00' | L℄);15 X >= 100 -> hange(X - 100, ['1.00' | L℄);16 X >= 50 -> hange(X - 50, ['50' | L℄);17 X >= 20 -> hange(X - 20, ['20' | L℄);18 X >= 10 -> hange(X - 10, ['10' | L℄);19 X >= 5 -> hange(X - 5, ['5' | L℄);20 true -> L21 end. Figure 4.3: hg1.erlase Expr ofPattern1 [when Guard1℄ � >Seq1;Pattern2 [when Guard2℄ � >Seq2;� � �PatternN [when GuardN℄ � >SeqNendThe expression { Expr { is evaluated before any of the patterns are evaluated.The sequene assoiated with the �rst mathing pattern to the output of Expris exeuted. If no pattern mathes the result of the expression a math errorwill our. The pattern ` ' is a ath all will math anything and an be usedto avoid the risk of a math error.Figure 4.4 ilustrates the use of the ase onstrut.4.3 Funtion HeadsAs mentioned earlier in hapter 2 the lauses of a funtion an be seleted forexeution based on the arguments ontained in the head of the lause or byguards.Figure 4.4 ilustrates the example problem implemented ode seleted usingthe guards present in the funtion heads.

38 CHAPTER 4. CHOICES
1 -module(hg2).2 -export([hange/1℄).34 hange(X) ->5 BaseSum = (X div 5) * 5,6 Delta = X - BaseSum,7 ase Delta of8 3 -> Rounded = BaseSum + 5;9 4 -> Rounded = BaseSum + 5;10 _ -> Rounded = BaseSum11 end,12 hange(Rounded, [200, 100, 50, 20, 10, 5℄, [℄).1314 hange(X, VL, L) ->15 ase {X, VL} of16 {X, [℄} ->17 L;18 {X, [H|T℄} when X >= H ->19 hange(X - H, VL, [toatom(H) | L℄);20 {X, [H|T℄} ->21 hange(X, T, L)22 end.2324 toatom(X) ->25 ase X of26 200 -> '2.00';27 100 -> '1.00';28 50 -> '50';29 20 -> '20';30 10 -> '10';31 5 -> '5'32 end. Figure 4.4: hg2.erl

4.3. FUNCTION HEADS 39

1 -module(hg3).2 -export([hange/1℄).34 hange(X) ->5 BaseSum = (X div 5) * 5,6 Delta = X - BaseSum,7 hange(round(BaseSum, Delta), [℄).89 round(X, Y) when Y >= 3 ->10 X + 5;11 round(X, Y) ->12 X.1314 hange(X, L) when X >= 200 ->15 hange(X - 200, ['2.00' | L℄);16 hange(X, L) when X >= 100 ->17 hange(X - 100, ['1.00' | L℄);18 hange(X, L) when X >= 50 ->19 hange(X - 50, ['50' | L℄);20 hange(X, L) when X >= 20 ->21 hange(X - 20, ['20' | L℄);22 hange(X, L) when X >= 10 ->23 hange(X - 10, ['10' | L℄);24 hange(X, L) when X >= 5 ->25 hange(X - 5, ['5' | L℄);26 hange(X, L) ->27 L. Figure 4.5: hg3.erl

40 CHAPTER 4. CHOICES4.4 ResouresThe ode �les mentioned in this hapter are:h.maxmin.erlhg1.erlhg2.erlhg3.erlerasto.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/hoie.4.5 Exerises1. Eratosthenes (276 - 196 BC) a Greek astronomer developed a tehniquefor extrating prime numbers from a set of numbers. A prime number isonly divisible by 1 and itself. His tehnique (The Sieve of Eratosthenes)involves writing down all the numbers from 3 to some value N . He thenmarked eah number that was a multiple of 2. He then loated the nextunmarked number and removed all multiples of it. This proess is repeateduntil the next unmarked number is greater than the square root of N .Implement the Sieve of Eratosthenes in Erlang. (Hint you may want tothink about what marking means in the algorithm.)(Do NOT peek; the answer is given in �gure 4.6).2. Examine the examples of hange in this hapter and identify whih hoiemehanisms best suit the problem. Disuss the bene�ts and drawbaks ofeah mehanism. Write an Erlang implementation whih uses the mostappropriate hoie mehanisms for eah deission point in the program.3. Rewrite the Sieve of Eratosthenes shown in �gure 4.6 using other hoiemehanisms.

4.5. EXERCISES 411 -module(erasto).2 -export([era/1℄).34 era(N) ->5 [1 | era(math:sqrt(N), fill(2, N))℄.67 fill(L, L) ->8 [L℄;9 fill(L, H) when H > L ->10 [L | fill(L+1, H)℄.1112 era(Max, L) when hd(L) =< Max ->13 Prime = hd(L),14 [Prime | era(Max, sieve(Prime, L))℄;15 era(Max, L) ->16 L.1718 sieve(N, [℄) ->19 [℄;20 sieve(N, [H|T℄) when H rem N == 0 ->21 sieve(N, T);22 sieve(N, [H|T℄) ->23 [H | sieve(N, T)℄.Figure 4.6: The Sieve of Eratosthenes: era in erasto.erl

42 CHAPTER 4. CHOICES

Chapter 5Proesses and MessagesErlang provides easy aess to lightweight proesses, simple but powerful Inter-Proesses Communiation (IPC) mehanisms, and easy to use distributed pro-essing. This hapter addresses the mehanisms whih provide these failities.5.1 ProessesA proess is the basi unit of exeution of an Erlang program. The name of aproess or Proess IDenti�er (PID) is used. Proesses are reipients of messagesand hold the running state of a thread of exeution.A proess is started in Erlang by using the spawn funtion. The simpleform of the spawn funtion takes a series of arguments inluding the modulename, the name of the funtion and a list of arguments to a funtion. The PIDof the new proess is returned to the alling proess.The syntax of the spawn funtion is:pid = spawn(module, funtion, [args : : : ℄)pid = spawn(fmodule, funtiong, [args : : : ℄)Figure 5.1 shows an interative way of using the spawn funtion to reatea new shell (whih takes over terminal IO).In general, spawn reates a proess and returns immediately to the allingproess. The alled proess is then independent of its reator.5.1.1 Finding a Proesses NameErlang proesses an determine their Proess ID by alling the self funtion.Figures 5.2 and 5.3 illustrate the use of the spawn and self funtions.The result of the self funtion is a data element alled a pid . PIDs are nothuman readable, however, there is an on-sreen representation that is displayedwhenever a pid is output. Typing in this representation in the Erlang shell touse it as a pid will fail. 43

44 CHAPTER 5. PROCESSES AND MESSAGES% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> F = 2.22> spawn(shell, start, [[℄℄).<0.29.0>Eshell V4.6.4 (abort with ^G)1> F.** exited: {{unbound,'F'},{erl_eval,expr,3}} **2> exit().** Terminating shell **3> F.24> Figure 5.1: Spawning a Seond Shell From an Erlang Shell1 -module(spwslf).2 -export([start/0, newfn/0℄).34 start() ->5 MyPid = self(),6 io:format("demo: ~w~n", [MyPid℄),7 NewPid = spawn(spwslf, newfn, [℄),8 io:format("demo: ~w~n", [MyPid℄).910 newfn() ->11 MyPid = self(),12 io:format("newfn: ~w~n", [MyPid℄).Figure 5.2: Spawning and Identifying Proesses: spwslf.erl% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> spwslf:start().demo: <0.20.0>demo: <0.20.0>newfn: <0.23.0>ok2> Figure 5.3: Exerising spwslf.erl

5.2. MESSAGES 455.1.2 Proess DitionaryEah proess has an assoiative store { known as the Proess Ditionary { thatis private to the proess. Use of the proess ditionary is disouraged as theproess ditionary breaks aspets of the funtional paradigm, and programswhih use it tend to be harder to modify and maintain.The funtions put, get, erase, and get keys are used to aess the proessditionary.The funtion put adds a key value pair to the proess ditionary. If the keyalready exists in the proess ditionary the key value pair in the ditionary isreplaed and the old value is returned, otherwise the atom unde�ned is returned.The ontents of the proess ditionary an be returned as a set of key value tuplesby using get with no arguments. The value assoiate with a partiular key anbe found by alling get with the key. The entire proess ditionary an bedeleted by alling erase with no arguments. The erased ontents of the proessditionary are returned. An individual key value pair an be erased by allingerase with the key. If the key to be erased exists in the proess ditionary, theold value is returned, otherwise the atom unde�ned is returned. A list of all thekeys whih orrespond to a value in the proess ditionary an be found usingthe get keys funtion with the value as the argument.The proess ditionary is exerised in �gure 5.4 and the ode is shown in�gure 5.5. This example implements a simple rolodex or phone book.5.1.3 Message Bu�erAssoiated with eah proess is a logial bu�er whih ontains all messages thatare waiting to be reeived by the proess. Most implementations of Erlang usea ommon pool of bu�er spae whih is shared by all the proesses on a node.5.2 MessagesMessages are sent to proesses using the ! operator. this operator takes twoarguments the PID or a registered name and an expression:pid ! expressionThe ! operator always appears to send a message. If there is no destinationor there is no spae to queue the message at its destination then the message isdisarded. Erlang o�ers NO guarantee of message delivery.The result of the expression is transmitted to the proess named by pid . Themessage is stored until the proess hooses to reeive it by exeuting a reeiveexpression. Reeive has a similar struture to ase, exept that it operates onthe proess's message queue.reeiveMessage1 [when Guard1℄ � >At1;Message2 [when Guard2℄ � >At2;� � �MessageN[when GuardN℄ � >AtNafterTimeOut � > AtTend

46 CHAPTER 5. PROCESSES AND MESSAGES
% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> prdt:teldir().Enter name and phone number (blank line to end)name phone> john 92914592name phone> max 93442156name phone> fred 9834231name phone>Operation1) Searh 2) Add/Change 3) List Names 4) Delete 0) Quitop > 3fredmaxjohnop > 4name > fred9834231op > 1name > fredundefinedop > 3maxjohnop > 2Enter name and phone number (blank line to end)name phone> jane 94514567name phone>op > 3janemaxjohnop > 1name > jane94514567op > 0true2> Figure 5.4: Exerising the Proess Ditionary

5.2. MESSAGES 471 -module(prdt).2 -export([teldir/0℄).34 teldir() -> getdata(), menu(), querylp().56 getdata() ->7 io:format("Enter name and phone number ", [℄),8 io:format("(blank line to end)~n", [℄),9 getlp().1011 getlp() ->12 Line = io:get_line('name phone> '),13 Lst = string:tokens(Line, " \n"),14 getlp(Lst).1516 getlp([Name, Phone℄) ->17 put(Name, Phone),18 getlp();1920 getlp(Lst) when length(Lst) == 0 ->21 true;22 getlp(_) ->23 io:format("Error~n"),24 getlp().2526 menu() ->27 io:format("Operation~n 1) Searh 2) Add/Change "),28 io:format("3) List Names 4) Delete 0) Quit~n", [℄).2930 querylp() -> querylp(io:fread('op > ', "~d")).3132 querylp({ok, [0℄}) -> true;33 querylp({ok, [1℄}) -> searh(), querylp();34 querylp({ok, [2℄}) -> getdata(), querylp();35 querylp({ok, [3℄}) -> lstname(), querylp();36 querylp({ok, [4℄}) -> delete(), querylp().3738 getnam() ->39 Line = io:get_line('name > '),40 getnam(string:tokens(Line, " \n")).4142 getnam([L℄) -> L;43 getnam(_) -> io:format("Error~n"), getnam().4445 searh() -> io:format("~s~n", [get(getnam())℄).4647 lstname() -> lstname(get()).4849 lstname([℄) -> true;50 lstname([{Key, Value}|T℄) -> io:format("~s~n", [Key℄), lstname(T).5152 delete() -> io:format("~s~n", [erase(getnam())℄).Figure 5.5: Code for Exerising the Proess Ditionary: prdt.erl

48 CHAPTER 5. PROCESSES AND MESSAGESUnbound variables in Message at as wildards and are bound to valueswhen a suitable math is found. If Message is an unbound variable it willmath any message and be bound to the ontents of the message. An unboundvariable ats as a ath all. AtT is exeuted if TimeOut milliseonds elapseand there is no message that is mathed by a pattern in the reeive funtion. Ifthe value of TimeOut is in�nity then the reeive does not time out and AtTis not exeuted. If the value is 0 then all the messages are heked and if nonemath AtT is exeuted immediately.The time order of messages from one proess to another is preserved and thereeive statement selets the oldest message that suessfully pattern mathes.It is the responsibility of the proess to remove irrelevant or invalid messagesfrom its message bu�er. Failure to do this an result in losing valid messageswhen spae is no longer available to store messages. Long running proessesusually have a ath all at some point in the program to remove messages whihdo not math any pattern required by the program.In setion 5.1.2 the use of a proesses ditionary was disouraged, the next ex-ample illustrates how the funtionality of the proess ditionary an be ahievedin an extensible manner without using the existing proess ditionary funtionsdisussed earlier.Figure 5.6 provides an implementation of Proess Ditionary funtionalitythrough the use of messages and proesses. Only two funtions are illustrated:get and put . The program is exerised in �gure 5.7.A proess reeiving a message does not know whih proess sent it. Beausemessages are anonymous, a proess an only reply to a message if the messageontains the pid of the sending proess. The self all is used to gain a proess'spid whih an then be sent in a message so the destination proess an reply tothe message.5.3 Time DelaysErlang uses a degenerate form of reeive to generate a time delay. Figure 5.8shows ode that implements a 10 seond ount down.5.4 DistributionDistribution is almost trivially easy in Erlang. Starting a proess on anothernode is a straight forward extension of the syntax of the spawn funtion.The �rst task is to start a remote node with a name. This an be done intwo ways using the -sname option or the -name option.The example in �gure 5.9 shows both methods and assumes that the mahinethe Erlang node is being started on is alled atum.astro.aus.net . The nodename in eah ase will be maurie.The two methods are almost idential with the exeption that the lattergenerates a fully quali�ed name.To start a proess on a remote node the node name is introdued into thespawn funtion:pid = spawn(node, module, funtion, [args : : : ℄)

5.4. DISTRIBUTION 491 -module(dt).2 -export([start/0,get/2,put/3,dt/1℄).34 start() ->5 spawn(dt,dt,[[℄℄).67 get(Pid, Key) ->8 Pid ! {get, self(), Key},9 reeive10 X -> X11 end.1213 put(Pid, Key, Value) ->14 Pid ! {put, self(), Key, Value},15 reeive16 X -> X17 end.1819 dt(L) ->20 NewL = reeive21 {put, Pid, Key, Value} ->22 {Code, List} = insert(L, [℄, Key, Value),23 Pid ! Code,24 List;25 {get, Pid, Key} ->26 Code = find(L, [℄, Key),27 Pid ! Code,28 L;29 X ->30 L31 end,32 dt(NewL).3334 insert([℄, N, Key, Value) ->35 {undefined, [{Key, Value}|N℄};36 insert([{Hkey, HVal} |T℄, N, Key, Value) when Key == Hkey ->37 {HVal, lists:append(N,[{Key, Value} | T℄)};38 insert([H|T℄, N, Key, Value) ->39 insert(T, [H|N℄, Key, Value).4041 find([℄, N, Key) ->42 undefined;43 find([{Hkey, HVal}|T℄, N, Key) when Key == Hkey ->44 HVal;45 find([H|T℄, N, Key) ->46 find(T, [H|N℄, Key).Figure 5.6: Soure ode for a Ditionary: dt.erl

50 CHAPTER 5. PROCESSES AND MESSAGES% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> P = dt:start().<0.28.0>2> dt:put(P,fred,123).undefined3> dt:get(P,fred).1234> dt:get(P,fred).1235> dt:put(P,john,456).undefined6> dt:get(P,fred).1237> dt:get(P,john).4568> dt:put(P,john,678).4569> dt:get(P,john).67810> dt:get(P,fred).12311> Figure 5.7: Exerising dt.erl1 -module(ntdwn).2 -export([start/0℄).34 start() ->5 ntdwn(10).67 ntdwn(N) when N > 0 ->8 io:format("~w~n", [N℄),9 reeive10 after 1000 ->11 true12 end,13 ntdwn(N-1);14 ntdwn(_) ->15 io:format("ZERO~n").Figure 5.8: Soure ode for a Count Down: ntdwn.erl

5.5. REGISTERED NAMES 51atum_1% erl -sname maurieErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)(maurie�atum)1>atum_1% erl -name maurieErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)(maurie�atum.astro.aus.net)1>Figure 5.9: Starting a Distributed NodeSending messages to a proess on a remote node is idential to sendingmessages to a proess on a loal node.5.5 Registered NamesAll the prior examples of message sending have used expliit pids to identifywhere a message is to be sent. Registering a proess allows a symboli name tobe assoiated with a Proess ID. A symboli name is partiularly useful wherea proess is o�ering a servie and that is widely used as it avoids the need todistribute the pid of that servie to its potential users.The funtion register is used to assoiate a name on the loal node with apid: register(name, pid)The assoiation an be removed using unregister:unregister(name)And a pid an be reovered for a name using whereis, unde�ned is returnedif the name is not assoiated with a pid.whereis(name)Registered names on the loal node an be used instead of a pid in the `!'operation. Names on remote nodes an be aessed using `fName, Nodeg !Message'5.6 ResouresThe ode �les mentioned in this hapter are:spwslf.erlprdt.erldt.erlntdwn.erl

52 CHAPTER 5. PROCESSES AND MESSAGESThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/promsg.5.7 Exerises1. Modify dt.erl (see �gure 5.6) to implement all the funtions provided bythe proess ditionary.2. Modify prdt.erl to use the ditionary ode you wrote in the previousexerise.

Chapter 6Meta-programmingIn C it is possible to use a pointer to a funtion to name a funtion and evaluateit. Figure 6.1 shows an example of where alling a funtion through a pointerto the funtion is used. The qsort funtion provided by C is made exible byallowing the user to hoose their own omparison funtions.The tehnique of writing funtions whih deal with a partiular strutureor problem, but use some funtion whih is supplied by the user to ustomisethe behaviour of the funtion to the exat situation is sometimes alled meta-programming.Erlang allows funtions to be alled by name. The apply funtion exeutesthe funtion named in its arguments with a supplied set of arguments. Twoforms of apply are supported by Erlang:retval = apply(module, funtion, [args : : : ℄)retval = apply(fmodule, funtiong, [args : : : ℄)The return value, retval , is the value returned by exeuting the funtionmodule:funtion with the arguments args : : :. The apply funtion is partiularlyuseful for transforming lists and other data strutures.The lassi example of apply is the map funtion. This funtion applies thesupplied funtion to eah element of a list. An implementation of this funtionis shown in �gure 6.2 and a sample of its output is shown in �gure 6.3.6.1 ResouresThe ode �les mentioned in this hapter are:ptf.map.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/meta.53

54 CHAPTER 6. META-PROGRAMMING1 #inlude <stdio.h>2 #inlude <stdlib.h>34 har strarr[5℄[10℄ =5 {6 "one", "two", "three", "four", "five"7 };89 int intarr[5℄ =10 {11 5, 4, 3, 2, 112 };1314 int strmp(onst void *, onst void *);1516 int intmp(onst void *a, onst void *b)17 {18 if (* (int *) a > * (int *) b)19 return 1;20 else if (* (int *) a < * (int *) b)21 return -1;22 else23 return 0;24 }2526 int main(void)27 {28 int i;29 for (i=0; i < 5; i++)30 printf("%s ", strarr[i℄);31 printf("\n");32 qsort(strarr, 5, 10, &strmp);33 for (i=0; i < 5; i++)34 printf("%s ", strarr[i℄);35 printf("\n");36 for (i=0; i < 5; i++)37 printf("%d ", intarr[i℄);38 printf("\n");39 qsort(intarr, 5, sizeof(int), &intmp);40 for (i=0; i < 5; i++)41 printf("%d ", intarr[i℄);42 printf("\n");43 return 0;44 } Figure 6.1: Sorting with qsort in C: ptf.

6.2. EXERCISES 551 -module(map).2 -export([map/2℄).34 map(L, Fn) ->5 map(L, [℄, Fn).67 map([℄, N, Fn) ->8 N;9 map([H|T℄, N, Fn) ->10 map(T, [apply(Fn, [H℄) | N℄, Fn).Figure 6.2: Soure ode for map: map.erl% erlErlang (JAM) emulator version 4.5.3Eshell V4.5.3 (abort with ^G)1> map:map([[1,2,3℄,[℄,[a,b℄℄,{erlang,length}).[2,0,3℄2> Figure 6.3: Exerising map.erl6.2 Exerises1. Write a funtion whih takes a list of lists and applies the head of theinner list as a funtion to the arguments remaining in the inner list. Theresults of this funtion should be returned as a list.2. Write a version of map whih applies its funtion to eah element of eahlist in a potentially in�nitely deep list of lists. The list of lists struturemust be retained.

56 CHAPTER 6. META-PROGRAMMING

Chapter 7Writing EÆient CodeErlang is a relatively impoverished programming language in terms of the num-ber of mehanisms it o�ers the programmer. This limits the omplexity of thelanguage, making it easy for programmers to learn and master. However, theabsene of mehanisms like iteration make it harder for the programmer to om-muniate with the ompiler the intention of the writer's ode and hene makeit harder for the ompiler to generate eÆient ode.This hapter overs methods used to make Erlang ode both time and spaeeÆient.7.1 Last Call OptimisationA simple model of a omputer program onsists of a stak, some memory anda set of instrutions (ode) that operate on these elements (see �gure 7.1).The stak is used to store ontext information for funtions and proedures.Arguments and a return address are pushed onto the stak before a funtion isalled, these arguments are preserved until the funtion returns. Variables loalto a funtion are also alloated on the stak. This allows a funtion to all otherfuntions to do work for it without the other funtions disturbing values loalto the alling funtion. A stak pointer (SP) and a base pointer (BP) are usedto identify where the stak ends and where the return address is loated.In proedural languages, suh as C and Ada, iteration onstruts suh asloops are used to repeat operations. Erlang does not support iteration diretly inthe language and, furthermore, prevents the values of variables being reassigned.A naive implementation of Erlang would add a new stak frame to the stakeah time a funtion was alled and the system would soon run out of memory.Fortunately there exists a ase in whih an Erlang funtion never returnsto its alling funtion. In this ase the alling stak frame an be overwritten(provided the original return address is preserved) with the new stak frameand as a result the stak does not grow.If the last ation of a lause is to all another funtion then the stak frameof the alling funtion an be overwritten. The overwriting of the stak frameis alled last all optimisation. It is highly desirable to write lauses so thatthe last ation of the lause is a funtion all as it both saves time and spae.Time savings are gained in that an additional stak frame does not need to be57

58 CHAPTER 7. WRITING EFFICIENT CODE
SP

Local
Variables

BP

Previous
Functions

Stack
Frames

Memory

Stack
Frame

Free

Ret Addr

Parameters

Code

StackFigure 7.1: A Simple Model of a Programtraversed on returning from a funtion and spae is saved by preventing stakgrowth.Figure 7.2 shows two implementations of the length funtion whih omputesthe length of a list. Both implementations are based on the observations that alist is one item larger than a list with the �rst element removed and a list withno elements has zero length. The �rst implementation, len1 , uses a straightforward translation of the observations and as a onsequene onsumes onestak frame for eah element in the list. The seond implementation, len2 , ismore onservative in its use of the stak. Eah time the �nal lause is alled itsstak frame is replaed resulting in more ompat exeution.The seond implementation an take advantage of last all optimisation sinethere are no operations remaining in the alling funtion whih must be per-formed after the all to the new funtion.7.2 Hashable ConstrutionsThere are wide range of Erlang ompilers deployed. This setion will desribesome programming praties that will allow suitably equipped Erlang ompilersto produe faster ode. The emphasis in this setion is to disuss tehniqueswhih do not unduly ompliate ode nor slow down ode on ompilers whihare not �tted with these optimisations. Some programming onstrutions inErlang are well suited to optimisation.A ommon optimisation for pattern mathing language ompilers is to exam-ine the arguments for the pattern math and generate a hash of the arguments.This hash is used to jump diretly to a funtion lause or ase lause ratherthan performing a sequential math. Some Erlang ompilers support this opti-

7.2. HASHABLE CONSTRUCTIONS 591 -module(len2).2 -export([len1/1, len2/1℄).34 len1([H|T℄) ->5 1 + len1(T);6 len1([℄) ->7 0.89 len2(L) ->10 len2(0, L).1112 len2(N, [℄) ->13 N;14 len2(N, [H|T℄) ->15 len2(N+1, T).Figure 7.2: Two implementations of length: len2.erlmisation on the �rst argument of a funtion head and the �rst argument of aase head.Bit stuÆng in the HDLC protool will be used as an example of how afuntion an be oded to take advantage of these optimisations. HDLC is a linklevel protool whih uses the sequene 01111110 to designate both the beginningand the end of the message. This sequene annot appear in the payload of themessage on the wire. If sender of the message wants to transmit the data01111110 to the reeiver it is neessary to alter the data transmitted and toreover the original pattern at the reeiving end of the link. The algorithm usedis: Transmitter:If the previous �ve digits have been ones send a zero then trans-mit the next bit in the streamOtherwise, Transmit eah bit as it appearsReeiver:If the previous �ve digits have been ones and a zero arrives thezero is disarded.If the previous six digits have been ones and a zero arrives thenthe end of frame has been enountered.If the previous six digits have been ones and a one arrives thenan error has ourred.Figure 7.3 shows an unoptimised implementation of the HDLC protool.Figure 7.4 shows an improved version. The improvements onsist of greater useof funtion heads for deision making and a reordering of the funtion argumentsto allow hashing on the �rst argument to be exploited. A side e�et of the rewritehas been to improve readability, the presene of two states { message and start{ in the deoder has been made learer.

60 CHAPTER 7. WRITING EFFICIENT CODE
1 -module(hdl).2 -export([en/1,de/1℄).34 delimit() ->5 [0, 1, 1, 1, 1, 1, 1, 0℄.67 en(L) ->8 X = en(L, 0),9 lists:append(delimit(), lists:append(X, delimit())).1011 en(L, 5) ->12 [0 | en(L, 0)℄;13 en([H|T℄, N) ->14 if15 H == 1 ->16 [1 | en(T, N+1)℄;17 H == 0 ->18 [H | en(T, 0)℄19 end;20 en([℄, _) ->21 [℄.2223 de(L) ->24 {Code, List} = de(L, start, [℄),25 {Code, lists:reverse(List)}.2627 de([0, 1, 1, 1, 1, 1, 1, 0 | T℄, start, _) ->28 de(T, message, [℄);29 de([H | T℄, start, _) ->30 de(T, start, [℄);31 de([℄, start, _) ->32 {error, [℄};33 de([0, 1, 1, 1, 1, 1, 1, 0 | T℄, message, L) ->34 {ok, L};35 de([1, 1, 1, 1, 1, 1 | T℄, message, L) ->36 {error, L};37 de([1, 1, 1, 1, 1, 0 | T℄, message, L) ->38 de(T, message, [1, 1, 1, 1, 1 | L℄);39 de([H|T℄, message, L) ->40 de(T, message, [H | L℄);41 de([℄, message, L) ->42 {error, L}.Figure 7.3: An Implementation of the HDLC Protool: hdl.erl

7.2. HASHABLE CONSTRUCTIONS 61
1 -module(hdl2).2 -export([en/1,de/1℄).34 delimit() ->5 [0, 1, 1, 1, 1, 1, 1, 0℄.67 en(L) ->8 X = en(0, L),9 lists:append(delimit(), lists:append(X, delimit())).1011 en(5, L) ->12 [0 | en(0, L)℄;13 en(N, [1|T℄) ->14 [1 | en(N+1, T)℄;15 en(N, [0|T℄) ->16 [0 | en(0, T)℄;17 en(_, [℄) ->18 [℄.1920 de(L) ->21 {Code, List} = de(start, L, [℄),22 {Code, lists:reverse(List)}.2324 de(start, [0, 1, 1, 1, 1, 1, 1, 0 | T℄, _) ->25 de(message, T, [℄);26 de(start, [H | T℄, _) ->27 de(start, T, [℄);28 de(start, [℄, _) ->29 {error, [℄};30 de(message, [0, 1, 1, 1, 1, 1, 1, 0 | T℄, L) ->31 {ok, L};32 de(message, [1, 1, 1, 1, 1, 1 | T℄, L) ->33 {error, L};34 de(message, [1, 1, 1, 1, 1, 0 | T℄, L) ->35 de(message, T, [1, 1, 1, 1, 1 | L℄);36 de(message, [H|T℄, L) ->37 de(message, T, [H | L℄);38 de(message, [℄, L) ->39 {error, L}.Figure 7.4: An Improved Implementation of the HDLC Protool: hdl2.erl

62 CHAPTER 7. WRITING EFFICIENT CODE7.3 ResouresThe ode �les mentioned in this hapter are:len2.erlhdl.erlhdl2.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/eff.7.4 Exerises1. Examine your earlier programs and determine where last all optimisationan be applied to them. Rewrite the programs and on�rm that the newprograms provide the same answers as the original programs.

Chapter 8Robust ProgramsRunning programs an fail for many reasons. Some of these failures an beontrolled by the programmer, others are beyond the programmer's ontrol.Robust systems must ontinue to funtion in the fae of unexpeted problems.Robust programs must be able to handle problems suh as a lak of a ritialresoure like memory or disk spae. Erlang provides a number of mehanismsthat allow robust programs to be written. This hapter desribes some of thosemehanisms.8.1 Cath and ThrowExeption mehanisms are provided by many languages inluding C++, Java,and Ada. Instead of sattering error trapping ode throughout a program, theexeption mehanism allows error handling ode to be entralised. Under theexeption paradigm, when a funtion enounters a problem that it annot dealwith an exeption data struture is generated. The funtion stops and the ex-eption is propagated up through eah of the subroutines whih are awaitingreturn values and aused the subroutine where the exeption ourred to bealled. The alling subroutines an hoose to handle the exeption and proess-ing resumes in the exeption handler with the exeption data struture providedas an argument. Figure 8.1 shows a typial implementation of an exeption inC++.Erlang provides ath and throw mehanism whih resembles the exeptionmehanism. In Erlang, the argument to throw is thrown up the hain of allingfuntions until it is aught by a ath. Note: Unlike C++ or Ada where anexeption an be handled or passed on to another exeption handler, Erlangrequires that the �rst ath enountered handle the result of a throw.Failures an result in throw like behavior. If a math operation fails, a fun-tion is evaluated with an inorret or unsupported argument, or an arithmetiexpression is evaluated with an invalid argument, then the Erlang run timesystem generates a throw ontaining a reason for the failure.If a failure or a throw is not aught then the default behavior of the runtime system is to terminate the proess that failed abnormally.Figure 8.2 shows how ath ode an be used to protet a divide operationfrom bad data. Figure 8.3 shows the result of alling the ode with various63

64 CHAPTER 8. ROBUST PROGRAMS1 #inlude <iostream.h>23 lass DivZeroErr4 {5 publi:6 DivZeroErr() {}7 };89 int div(int a, int b)10 {11 if (b == 0)12 throw DivZeroErr();13 return(a / b);14 }1516 int main()17 {18 int a, b, r;19 in >> a >> b;20 try21 {22 r = div(a, b);23 out << r << endl;24 }25 ath (DivZeroErr error)26 {27 out << "Attempt to Divide by Zero" << endl;28 }29 } Figure 8.1: An Example of Exeption Handling in C++: div.Corret and inorret data.Two types of errors generated by the Erlang run time system are shown in�gure 8.3. The �rst and seond errors are the produt of the io:read funtionreturning something other than the pattern fok, [A, B℄g. These resulted in abadmath error. The �nal error shown was a result of attempting to divide byzero and a badarith error was returned.The syntax of the ath operator is unusual in that it and its argumentsmust be surrounded by parenthesis. The syntax of the operator is shown below:(ath expr)The expression expr is evaluated and if no failure or throw ours in theexpression ath returns the result of the evaluation. If a failure or a throwours then ath returns a data struture. This data struture is either theargument of a throw or generated by the run time system.Throw looks and behaves like a funtion, exept it never returns. The syntaxof throw is shown below:throw(expr)The expression is evaluated and the result is passed to the nearest ath.Throw an be used to simulate failures whih would normally be generated by

8.1. CATCH AND THROW 651 -module(divide).2 -export([divide/0℄).34 divide() ->5 X = (ath getarg()),6 ase X of7 {'EXIT', Reason} ->8 io:format("Error ~w~n", [X℄);9 {A, B} ->10 Y = (ath divide(A, B)),11 ase Y of12 {'EXIT', Reason} ->13 io:format("Error ~w~n", [Y℄);14 Y -> Y15 end16 end.1718 getarg() ->19 {ok, [A, B℄} = io:fread('Enter 2 numbers > ', "~d ~d"),20 {A, B}.2122 divide(A, B) ->23 D = A div B,24 io:format("~w~n", [D℄).Figure 8.2: Proteting Divide: divide.erl% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> divide:divide().Enter 2 numbers > 4 22ok2> divide:divide().Enter 2 numbers > 1 20ok3> divide:divide().Enter 2 numbers > a 1Error {'EXIT',{{badmath,error},{divide,getarg,0}}}ok4> divide:divide().Enter 2 numbers > 1 aError {'EXIT',{{badmath,error},{divide,getarg,0}}}ok5> divide:divide().Enter 2 numbers > 2 0Error {'EXIT',{badarith,{divide,divide,2}}}ok6> Figure 8.3: Exerising divide.erl

66 CHAPTER 8. ROBUST PROGRAMSthe run time system.Some ommon failures generated by the run time system inlude:badarg is aused by attempting to use an inorret argument type with afuntion. Eg. math:sin(a)badarith is aused by providing an invalid argument to a mathematial oper-ator. Eg. 1 + abadmath is aused by attempting to assign to an inompatible pattern. Eg.fok, [A℄g = ffoogase lause ours when no lause of a ase statement mathes the argumentof ase. Eg.ase {1,2} of{A} -> 1;{A,B,C} -> 3;{A,B,C,D} -> 4endfuntion lause ours when no funtion lause mathes the argument of athe funtion. Eg. bin:bin(2)-module(bin).-export([bin/1℄).bin(0) -> 0;bin(1) -> 1.if lause ours when no if lause is true. Eg.if a == b -> 1;b == -> 3endnoath is aused by a throw not being aught.nopro is aused by attempting to link (see setion 8.5) to a non-existentproess.timeout value is aused by attempting to use a non-integer as a timeout pe-riod in a reeive. Eg.reeiveX -> Xafter 3.4 ->timeoutendunbound is aused by attempting to aess an unbound variable.

8.2. TERMINATION 67undef is aused by attempting to aess a funtion whih has not been de�ned.Eg. string:len("ab","a")Sometimes it is not onvenient or possible to handle a failure at the �rst athenountered. In this ase the ath an re-throw the failure data struture toallow the failure to be handled at a higher level.Figure 8.4 shows a program that adds hexadeimal numbers and outputsthe result in deimal. The program uses ath and throw failure detetion andgeneration. The hexde funtion transforms one type of error (funtion lause)aused by the presene of a non-hexadeimal digit into a badhar error. Inaddition the funtion re-throws thrown 2 element tuples ontaining the failatom.The output of the program is shown in �gure 8.5. The seond exeutionsequene was aused by entering a spae at the prompt, resulting in an emptylist being passed to the hexvt funtion.The ath and throw onstrut an be used to generate a non-loal returnfrom a funtion. Results an be passed diretly up the all hain, avoidingintermediate funtions by throwing the result to a ath. This pratie an leadto onfusing ode and should be used with are.8.2 TerminationA proess an be terminated either by returning from the funtion that theproess was started with or by alling the exit funtion.The result of an exit ourring within the sope of a ath an be trappedusing ath.Exit looks and behaves like a funtion, exept it never returns. Exit generatesa signal of the form f`EXIT`, Reasong. Signals are similar to the data thrownby a throw to the extent that they an be aught by a ath. Signals an begenerated by the proess reeiving them or by another proess whih knows thepid of the proess to whih the signal is to be sent. The syntax of exit is shownbelow: exit(expr)The expression expr is evaluated and the result beomes the reason eitheraught by a ath or displayed by the interpreter. The atom normal is spe-ial in that when a proess exits normally no error report is displayed by theinterpreter.Another form of the exit funtion operates on proesses other than thealler. exit(pid , expr)This funtion returns to its alling proess. The proess named by pid issignaled with the reason resulting from evaluating expr . The named proessthen behaves as if it had exeuted exit(expr).Note that the seond form of exit annot be aught by a ath as it oursoutside the sope of the ath.

68 CHAPTER 8. ROBUST PROGRAMS1 -module(hex).2 -export([hexde/1, hexadd/0℄).34 hexadd() ->5 X = (ath adder()),6 ase X of7 {'EXIT', Reason} ->8 io:format("Error ~w~n", [X℄);9 {fail, badhar} ->10 io:format("Error hex digits must are 0-9 a-f~n");11 {fail, nullarg} ->12 io:format("Error value required~n");13 Y -> Y14 end.1516 adder() ->17 {ok, [A℄} = io:fread('Enter first number > ', "~a"),18 {ok, [B℄} = io:fread('Enter seond number > ', "~a"),19 hexde(A) + hexde(B).2021 hexde(Atom) ->22 L = atom_to_list(Atom),23 ase (ath hexvt(L)) of24 {'EXIT', {funtion_lause, _}} ->25 throw({fail, badhar});26 {fail, X} ->27 throw({fail, X});28 R -> R29 end.3031 hexvt([℄) ->32 throw({fail, nullarg});33 hexvt(L) ->34 hexvt(L, 0).3536 hexvt([℄, N) ->37 N;38 hexvt([H|T℄, N) ->39 V = deval(H),40 hexvt(T, N * 16 + V).4142 deval($0) -> 0; deval($1) -> 1; deval($2) -> 2;43 deval($3) -> 3; deval($4) -> 4; deval($5) -> 5;44 deval($6) -> 6; deval($7) -> 7; deval($8) -> 8;45 deval($9) -> 9; deval($a) -> 10; deval($b) -> 11;46 deval($) -> 12; deval($d) -> 13; deval($e) -> 14;47 deval($f) -> 15.Figure 8.4: Hex Conversion and Addition: hex.erl

8.3. ERROR HANDLERS 69% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> hex:hexadd().Enter first number > 1Enter seond number > 232> hex:hexadd().Enter first number > 1Enter seond number >Error value requiredok3> hex:hexadd().Enter first number > 1Enter seond number > gError hex digits must are 0-9 a-fok4> hex:hexadd().Enter first number > 1Enter seond number > a115> Figure 8.5: Exerising hex.erl8.3 Error HandlersErlang de�nes a number of default behaviors whih our in response to parti-ular types of errors. These behaviors are de�ned by the error handler module.This module an be replaed by alling proess ag(error handler, module),where module is the name of the module ontaining funtions whih implementthe interfaes desribed below.When an unde�ned funtion ours error handler:unde�ned funtion is in-voked: unde�ned funtion(module, fun, Args)where module is the name of the module, fun is the name of the funtionand Args is the list of arguments.When an unde�ned global name ours error handler:unde�ned global nameis invoked:unde�ned global name(name, message)where name is the name, and message is the message sent to the unde�nedname.These funtions operate in a ompliated and sensitive environment. Chang-ing the default behavior is risky and may lead to system deadlok.

70 CHAPTER 8. ROBUST PROGRAMS8.4 Defensive ProgrammingData provided to an Erlang program an ause a run time failure. Causes forthese failures inlude division by zero or being unable to math a piee of data.Programs need to guard against the problems introdued by bad data. Twostrategies are available:� A test before use strategy ensures that data is orretly formatted andmeets preonditions before using it.� A try and reover if neessary strategy proeeds as if the data is orretand only worries about error handling if an error ours.The former strategy is useful if performing part of an operation without om-pleting is undesirable. The latter strategy is in general more desirable. Errortrapping ode adds to the omplexity and size of the working ode, the seondstrategy redues the volume of error trapping ode and allows it to be separatedfrom the ode that handles the general ase. If errors tend to be rare events,traversing ode to prevent errors adds a ost to eah run for an event that oursinfrequently. The seond strategy eliminates the test ode for the general ase.The programs in �gures 8.6 and 8.7 divide 2 integers to produe a dividend.The ode in �gure 8.6 guards data by testing to see if it is valid before use. Atry and reover if neessary strategy is used by the ode in �gure 8.7.8.5 Linked ProessesErlang proesses may be linked to other Erlang proesses. Links are bidire-tional. The linking mehanism is used to notify linked proesses of the failureof a proess. This noti�ation takes the form of a signal:'EXIT' , Exiting PID , ReasonIf the Reason is not normal and a linked proess does not handle the exitsignal then the linked proess will terminate and send exit signals to all itslinked proesses.Links an be reated when a proess is spawned or they an be added orremoved after a proess has been spawned. The spawn link funtion reates aproess and links the urrent proess to it.spawn link(Module, Funtion, Arglist)The spawn link funtion takes the same arguments as spawn, after thearguments are evaluated a new proess is reated and started by alling Mod-ule:Funtion with the arguments ontained in Arglist . The funtion link reatesa link between proesses:link(Pid)If a link already exists the link funtion has no e�et. If the proess doesnot exist an exit signal of the form f'EXIT', PID, noprog is generated in theproess alling link. A link between two proesses is removed using the unlinkfuntion.unlink(Pid)

8.5. LINKED PROCESSES 711 -module(divide2a).2 -export([divide/0℄).34 divide() ->5 io:format("Enter numbers "),6 {R1, A} = readint(),7 {R2, B} = readint(),8 if9 R1 == ok, R2 == ok ->10 if11 B =/= 0 ->12 D = A div B,13 io:format("~w~n", [D℄),14 D;15 true ->16 io:format("Attempt to divide by zero~n"),17 divide()18 end;19 true ->20 io:format("Please enter 2 numbers~n"),21 divide()22 end.2324 readint() ->25 io:format("> "),26 {ok, [L℄} = io:fread('', "~s"),27 Len = string:span(L, "0123456789"),28 if29 Len == 0 ->30 {nodata, 0};31 true ->32 V = list_to_integer(string:substr(L,1,Len)),33 {ok, V}34 end. Figure 8.6: Handing Bad Data: divide2a.erl1 -module(divide2b).2 -export([divide/0℄).34 divide() ->5 ase (ath getdiv()) of6 {'EXIT', Reason} ->7 io:format("Error ~w~n", [Reason℄),8 divide();9 X -> X10 end.1112 getdiv() ->13 {ok, [A, B℄} = io:fread('Enter 2 numbers > ', "~d ~d"),14 D = A div B,15 io:format("~w~n", [D℄).Figure 8.7: Handling Bad Data: divide2b.erl

72 CHAPTER 8. ROBUST PROGRAMSThis funtion has no e�et if there is no link between the urrent proessand the named proess. As links are bidiretional, this all removes both thelink from both the aller and the named proess.8.6 Trapping ExitsTwo forms of the exit are supported in Erlang. An exit exeuted by a proessan be aught by a proess using ath. Exits from outside a proess are ausedeither by a link or using the two argument form of exit. Exits from outsidea proess annot be aught by a ath. Erlang provides a proess ag whihallows these external signals to be onverted to messages. Exeutingproess ag(trap exit, true)auses all inoming signals to be onverted to messages so that they an behandled.8.7 Robust ServersSelf healing is a highly desirable property in a long running system. The setiondesribes how a server an be implemented and monitored so that the serviean be restarted and hene provide near ontinuous availability of a servie.Figure 8.8 shows the ode for restart . This proess monitors its hildren andrestarts them when they fail, ensuring servie availability. It does not addressthe issues of preserving state or reovery.The restart proess is shown in ation with the mtoon program. The sourefor mtoon is shown in �gure 8.9. The output of the run is shown in �gure 8.10.The ode in �gures 8.8 and 8.9 employ the following mehanisms and teh-niques to provide a robust servie to their lients:� Registered Names: Both programs employ registered names to provideeasy aess to the servie. The mtoon relies on the use of registerednames to provide ontinuity of referene to the servie after it is restarted.� Defensive Programming: is employed by the restart program. Bad datais guarded against when a proess is reated using ath on lines 21 and57. Failures are ignored by returning an unhanged list. Suess resultsin the list of proesses being hanged.� Exit Trapping: is used by the restart program to determine when itslients have failed and to initiate an attempt to restart them.

8.7. ROBUST SERVERS 731 -module(restart).2 -export([start/0, init/0, add/3, remove/3℄).34 start() ->5 spawn(restart, init, [℄).67 init() ->8 proess_flag(trap_exit, true),9 register(restart, self()),10 manage([℄).1112 add(M, F, A) ->13 restart ! {add, M, F, A}.1415 remove(M, F, A) ->16 restart ! {remove, M, F, A}.1718 manage(ListPro) ->19 NewList = reeive20 {add, Moda, Funa, Arga} ->21 ase (ath newpro(Moda, Funa, Arga, ListPro)) of22 X when list(X) ->23 X;24 _ ->25 ListPro26 end;27 {remove, Modr, Funr, Argr} ->28 rempro(Modr, Funr, Argr, ListPro);29 {'EXIT', Pid, Reason} ->30 restart(Pid, ListPro);31 Unknown ->32 ListPro33 end,34 manage(NewList).3536 newpro(M, F, A, L) ->37 Pid = spawn_link(M, F, A),38 [{M, F, A, Pid} | L℄.3940 rempro(M, F, A, L) ->41 rempro(M, F, A, L, [℄).4243 rempro(M, F, A, [℄, L) ->44 L;45 rempro(M, F, A, [{HM, HF, HA, HP}|T℄, L)46 when M==HM, F==HF, A==HA ->47 rempro(M, F, A, T, L);48 rempro(M, F, A, [H|T℄, L) ->49 rempro(M, F, A, T, [H|L℄).5051 restart(P, L) ->52 restart(P, L, [℄).

74 CHAPTER 8. ROBUST PROGRAMS5354 restart(P, [℄, L) ->55 L;56 restart(P, [{HM, HF, HA, HP}|T℄, L) when P==HP ->57 NL = ase (ath newpro(HM, HF, HA, T)) of58 X when list(X) ->59 X;60 _ ->61 T62 end,63 lists:append(NL, L);64 restart(P, [H|T℄, L) ->65 restart(P, T, [H|L℄).Figure 8.8: A Program to Restart Proesses: restart.erl
1 -module(mtoon).2 -export([start/1℄).34 start(N) ->5 register(N, self()),6 io:format("Starting ~w~n", [N℄),7 loop(N).89 loop(N) ->10 reeive11 {exit, Reason} ->12 io:format("Exiting ~w beause ~w~n", [N, Reason℄),13 exit(Reason);14 X ->15 io:format("~w reeived ~w", [N, X℄)16 end,17 loop(N).Figure 8.9: A Program That Outputs its Messages: mtoon.erl8.8 Generi ServersThe gen server module provides the basi servies required to implement aserver. The module uses allbak funtions to provide the spei� behaviorrequired for the servie. A allbak is ahieved by passing the module andfuntion names to the generi server. The use of generi servers is enouragedas it allows the programmer to fous on writing the sequential parts of theservie, and eliminates the need to test the shared server omponent eah timea server is written.

8.8. GENERIC SERVERS 75% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> restart:start().<0.28.0>2> restart:add(mtoon,start,[one℄).{add,mtoon,start,[one℄}Starting one3> restart:add(mtoon,start,[two℄).{add,mtoon,start,[two℄}Starting two4> one ! hi.one reeived hihi5> two ! hi.two reeived hihi6> one ! {exit, normal}.Exiting one beause normal{exit,normal}Starting one7> one ! hi.one reeived hihi8> restart:remove(mtoon,start,[one℄).{remove,mtoon,start,[one℄}9> one ! hi.one reeived hihi10> one ! {exit, done}.Exiting one beause done{exit,done}11> one ! hi.=ERROR REPORT==== 10-Jun-1998::10:29:17 ===<0.21.0> error in BIF send/2(one,hi)<0.21.0> error: badarg in erl_eval:eval_op/3** exited: {badarg,{erl_eval,eval_op,3}} **12> two ! hi.two reeived hihi13> restart:add(mtoon,stop,[one℄).{add,mtoon,stop,[one℄}14> restart:add(mtoon,start,[three℄).{add,mtoon,start,[three℄}Starting three15> three ! hi.three reeived hihi16> restart:remove(mtoon,start,[two℄).{remove,mtoon,start,[two℄}17> restart:remove(mtoon,start,[three℄).{remove,mtoon,start,[three℄}18> three ! {exit, done}.Exiting three beause done{exit,done}19> Figure 8.10: Exerising restart.erl with mtoon.erl

76 CHAPTER 8. ROBUST PROGRAMS8.9 ResouresThe ode �les mentioned in this hapter are:div.Cdivide.erlhex.erldivide2a.erldivide2b.erlrestart.erlmtoon.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/robust.Further information on the gen server module an be found in the `The Stan-dard Erlang Libraries: Referene Manual' in `Open Teleom Platform (OTP)'doumentation set by Erisson Software Tehnology AB, Erlang Systems. Thisdoumentation is provided in HTML and Postsript form with the Erlang dis-tribution.8.10 Exerises1. Identify some of the faults whih restart (�gure 8.8) does not address.Suggest alterations to the ode that would allow restart to address thesefaults.2. The Roman satirist Juvenal reeted `Quis ustodiet ipsos ustodes?'whih may be translated as `Who is to guard the guards themselves?'Desribe the problems likely to be enountered in building a robust serverand identify a strategy for onstruting a robust server.

Chapter 9Code ReplaementSome ommerial systems run for many years at a time with no opportunityfor downtime. Telephone exhanges and power grids are examples of systemswhere a design objetive is to have one hundred perent availability. Basedon experienes drawn from other ommerial omputing endeavors, it would beunreasonable to expet that ode used in these systems would be orret in allaspets and not require alteration during the life of the system. The normalmode of ode replaement, bringing down the system and restarting it withnew ode is unaeptable for this type of system. Erlang was designed withtelephone exhanges as an appliation, and provides a mehanism for replaingparts of the program ode while the system remains running.This hapter disusses the mehanisms that Erlang provides for ode loadingand replaement.9.1 Loading and LinkingErlang groups funtions into olletions alled modules. Loading is the proessof reading a module into the systems memory for use. Linking is the proess ofresolving names to addresses. Linking an be arried out one when a programis ompiled (stati linking) or it an be deferred until a program is running(dynami linking).Modules are loaded into memory when a funtion in that module is �rstnamed.Erlang dynamially links a module when a fully quali�ed funtion name isused for a funtion ontained in that module. A fully quali�ed name onsistsof the module name and the funtion name separated by a olon. Eah time afully quali�ed funtion name is enountered the ode transfers exeution to thelatest instane of the module loaded.Funtions named in a module, that are referred to only by the funtion name(not fully quali�ed) are statially linked at ompile time. Stati linkages annotbe altered at run time. 77

78 CHAPTER 9. CODE REPLACEMENT9.2 Code ReplaementModules are the base unit of ode replaement. More than 1 image of a modulemay be present in memory at one time (urrent systems support a maximum of2 images). When a fully quali�ed all is made the funtion named is exeutedfrom the latest version of the module urrently in memory. Partially quali�edreferenes, whether internal (stati) or from an import lause refer to the versionof the module present when the fully quali�ed all was made.An arti�ial example of ode replaement is shown in �gures 9.1 and 9.2.The ode in �gure 9.1 is modi�ed half way through the output shown in �gure9.2 hanging the version number from 1 to 2 .1 -module(oderep).2 -export([msglp/0℄).34 vers() ->5 1.67 msglp() ->8 Msg = reeive9 X -> X10 end,11 io:format("~w ~w~n", [Msg, vers()℄),12 oderep:msglp().Figure 9.1: Soure ode for oderep (initial version): oderep.erlIn the example a new version of the ode is reated at the 6th step in �gure9.2 by reompiling the altered module. The new ode is �rst used at the endof the 7th step when the fully quali�ed funtion all oderep:msglp is exeuted.When that statement is exeuted the new module is loaded into memory andontrol is transfered to it. All referenes to the funtion vers are statially linkedat ompile time. The result of the ode hange is seen at the 8th step when theversion number is shown as 2 .9.3 LimitationsIn setion 9.2 it was noted that only 2 images of a module are supported on-urrently. If a proess requires an old image and it is moved out of memory, theproess an no longer run. Figure 9.3 illustrates a proess that uses old odeand �gure 9.4 shows how it fails.When the proess attempts to aess the old funtion stale in the originalmodule, it fails as the ode has been displaed by 2 newer instanes of themodule.9.4 Code ManagementErlang provides a set of funtions to manage module images and the proessesrunning old images. These funtions an be used to avoid the problem demon-

9.4. CODE MANAGEMENT 79% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> (oderep).{ok,oderep}2> Pid=spawn(oderep,msglp,[℄).<0.32.0>3> Pid ! 1.1 114> Pid ! 2.2 125> Pid ! 3.3 136> (oderep).{ok,oderep}7> Pid ! 1.1 118> Pid ! 2.2 229> Pid ! 3.3 2310> Figure 9.2: Demonstrating Code Replaementstrated in setion 9.3. The interfae to the management funtions is found inthe ode module. The funtions found in this module inlude:The load �le funtion attempts to load the named Erlang module. If themodule loaded replaes an existing module the existing module is made old andany other opies of the module are removed from memory.load �le(Module)The delete funtion makes the ode for Module old. New invoations of themodule will not be able to aess the deleted module. It returns true on suess,and false on failure.delete(Module)The purge funtion removes the ode of the named module marked as oldfrom the system. Proesses running the old module ode will be killed. If aproess has been killed the funtion returns true, otherwise false.purge(Module)

80 CHAPTER 9. CODE REPLACEMENT1 -module(stale).2 -export([start/0, stale/0, vers/0℄).34 vers() ->5 1.67 start() ->8 spawn(stale, stale, [℄).910 stale() ->11 reeive12 startver ->13 io:format("Start Version ~w~n", [vers()℄);14 urver ->15 io:format("Current Version ~w~n", [stale:vers()℄)16 end,17 stale(). Figure 9.3: Soure for stale: stale.erlThe soft purge funtion is similar to purge exept it will not purge amodule if it is urrently been used by a module. If a proess is using old odethe funtion returns false, otherwise true.soft purge(Module)The is loaded funtion returns a tuple ontaining the atom �le and eitherthe �lename from whih the module was loaded or the atoms preloaded or in-terpreted for loaded modules. If the module is not loaded then it returns false.is loaded(Module)The all loaded funtion returns a list of tuples ontaining the name of themodule, and either the �lename from whih the module was loaded or the atomspreloaded or interpreted for all loaded modules.all loaded()Using these funtions and another mehanism of invoking the ompiler it ispossible to write a program that hanges its ode when required. The programin �gure 9.5 uses a new version of itself only after a new message is sent to it.Figures 9.6 shows that ode an be hanged and ompiled but does not beomeative until a message is sent. The ompile:�le funtion is similar to but itdoes not automatially load the ompiled module.

9.5. RESOURCES 81% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> (stale).{ok,stale}2> P=stale:start().<0.32.0>3> P ! startver.Start Version 1startver4> P ! urver.Current Version 1urver5> (stale).{ok,stale}6> P ! startver.Start Version 1startver7> P ! urver.Current Version 2urver8> (stale).{ok,stale}9> P ! startver.startver10> Figure 9.4: Proess Failure Caused by Code Replaement9.5 ResouresThe ode �les mentioned in this hapter are:oderep.erlstale.erlnofstale.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/oderep.9.6 Exerises1. Write some programs that use the funtions desribed in this hapter toexplore ode replaement.

82 CHAPTER 9. CODE REPLACEMENT

1 -module(nofstale).2 -export([start/0, nofailstale/0, vers/0℄).34 vers() ->5 3.67 start() ->8 spawn(nofstale, nofailstale, [℄).910 nofailstale() ->11 Msg = reeive12 X -> X13 end,14 nofailstale(Msg).1516 nofailstale(new) ->17 ode:purge(nofstale),18 ode:load_file(nofstale),19 nofstale:nofailstale();20 nofailstale(ver) ->21 io:format("Start Version ~w~n", [vers()℄),22 nofailstale().Figure 9.5: Soure for nofailstale: nofstale.erl

9.6. EXERCISES 83% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> ompile:file(nofstale).Erlang BEAM Compiler 4.6.4/22Objet file: nofstale.beam{ok,nofstale}2> P=nofstale:start().<0.32.0>3> P!ver.Start Version 1ver4> P!ver.Start Version 1ver5> ompile:file(nofstale).Erlang BEAM Compiler 4.6.4/22Objet file: nofstale.beam{ok,nofstale}6> P!ver.Start Version 1ver7> P!new.new8> P!ver.Start Version 2ver9> P!ver.Start Version 2ver10> ompile:file(nofstale).Erlang BEAM Compiler 4.6.4/22Objet file: nofstale.beam{ok,nofstale}11> P!new.new12> P!ver.Start Version 3ver13> P!ver.Start Version 3ver14> Figure 9.6: nofailstale in Ation

84 CHAPTER 9. CODE REPLACEMENT

Chapter 10Programming StyleThis hapter provides an introdution to good programming style and format-ting in Erlang. Readers are referred to the referene setion (setion 10.6) for amore omprehensive guide.Many of the suggestions made in this hapter will be for partiular on-ventions. Conventions are agreed means for handling spei�ed irumstanes.They need not be enfored and may be arbitrary in nature. The general use ofonventions in programming is to improve the readability and understandabilityof ode. Conventions an be used to provide additional information about theprogram to programming tools that is not present in the ompiled ode. Thisinformation often relates to the intentions of the authors or the antiipated useof the ode.10.1 Comments and DoumentationErlang provides two mehanisms for internal doumentation: omments and at-tributes . Figure 10.1 illustrates the doumentation onventions and implementsa semaphore.10.1.1 CommentsComments are introdued using a `%' in Erlang. A ommenting onventiondesribes how and where omments should be used in soure ode. In general, aompiler does not enfore a onvention, however, tools an be written that heka onvention is at least being partly met. Furthermore, a omment onventionan be exploited to assist in the automati generation of doumentation.The following is the reommended onvention for omments in Erlang:� Module desriptions should begin with 3 perent signs (`%%%')� Funtion desriptions should begin with 2 perent signs (`%%')� Comments within a funtion should begin with 1 perent sign (`%'). Thepreferred pratie is to plae the omment at the end of the line that isbeing ommented on. If a omment does not �t it should be plaed on theline above. 85

86 CHAPTER 10. PROGRAMMING STYLE1 -module(do).2 -author('Maurie Castro').3 -opyright('Copyright () 1998').4 -vsn('$Id: do.erl,v 1.4 1998/06/22 02:33:07 maurie Exp $').5 -modified('Mon Jun 22 08:38:16 EST 1998').6 -modified_by('maurie�ser').7 -modified('Mon Jun 22 12:17:35 EST 1998').8 -modified_by('maurie�ser').910 -export([start/0, start/1, p/1, v/1, msglp/2℄).1112 %%% --13 %%% This module illustrates doumentation onventions desribed in14 %%% `Erlang in Real Time' by Maurie Castro15 %%% It implements a Counting Semaphore as defined by Hwang K,16 %%% `Advaned Computer Arhiteure' MGraw Hill, 1993, p638.17 %%% Warning this ode assumes no messages are lost.18 %%% --1920 %% ---21 %% This is the speial ase of a binary semaphore, use general22 %% start routine to perform start.23 %% ---2425 start() ->26 start(1).2728 %% ---29 %% The start/1 funtion starts a server and returns its pid.30 %% This is the general ase31 %% ---3233 start(N) ->34 % spawn the message loop with initial data of N35 spawn(do, msglp, [N, [℄℄).363738 %% ---39 %% P(s): if s > 0, then s = s - 1; else put in wait queue40 %% ---4142 p(S) ->43 S ! {semaphore, p, self()}, % ont requires proess name44 % wait for a ontinue message to indiate exiting queue45 reeive46 {semaphore, ont} ->47 true48 end.4950 %% ---51 %% V(s): if wait queue not empty, wake up one; else s = s + 152 %% ---

10.1. COMMENTS AND DOCUMENTATION 875354 v(S) ->55 S ! {semaphore, v}. % Server handles v5657 %% ---58 %% The msglp funtion handles ases:59 %% ---6061 msglp(S, L) ->62 {NewS, NewL} = reeive63 {semaphore, p, Pid} ->64 if65 % P(s): if s > 0, then s = s - 1;66 S > 0 ->67 Pid ! {semaphore, ont},68 {S - 1, L};69 true ->70 % else put in wait queue71 {S, [Pid, L℄}72 end;73 % V(s): if wait queue not empty,74 {semaphore, v} when length(L) =/= 0 ->75 [H|T℄ = L,76 % wake up one;77 H ! {semaphore, ont},78 {S, T};79 % if the list is empty on a v80 {semaphore, v} ->81 % else s = s + 182 {S+1, L}83 end,84 msglp(NewS, NewL).Figure 10.1: Doumentation Example - Semaphore Soure Code: do

88 CHAPTER 10. PROGRAMMING STYLE10.1.2 AttributesA module attribute appears at the beginning of an Erlang module, before anyErlang ode. An attribute onsists of a `-' a name and a braketed Erlang term.-name(term).A number of module attributes have speial meanings suh as -module(),-export(), and -import(). Other attributes an be used for doumentationpurposes suh as identifying the reator and those who have inuened ode.10.2 ModulesThis setion provides a series of reommendations that apply to Erlang modules.� Minimise the number of funtions exported from a module. Re-dues the possibility for oupling between modules to a small number offuntions. This minimises the number of interfae funtions that need tobe maintained.� Use funtions to enapsulate ommon ode. Avoid ut and pasteprogramming, instead write a funtion to represent the repeated aspet ofthe ode.� Do not presume that the data strutures provided by a moduleare unhanging. A module should provide a suÆient interfae to arryout all required operations on the data strutures it generates. If a userknows the strutures generated by a module they should avoid aess theelements of those strutures diretly.� Use interfae funtions. Use funtions as an interfae where possible.Avoid sending messages diretly.10.3 FuntionsThis setion provides a series of reommendations that apply to Erlang fun-tions.� Avoid side e�ets.� Do not assume what the user of a funtion wants to do with itsresults. The at of printing an error message when an error ours in afuntion assumes that the user wants an error displayed. If the error werereturned silently then the user of the funtion ould hoose to display theerror or not.10.4 MessagesThis setion provides a series of reommendations that apply to Erlang mes-sages.� Tag messages. This redues the sensitivity of messages to order.

10.5. GENERAL 89� Dispose of unknown messages. Every server should inorporate amath all pattern in at least one of its reeives to ensure that unhandleablemessages are removed from the message queue.10.5 GeneralThis setion provides a series of general reommendations.� Avoid defensive programming. The majority of a systems programsshould trust that their inputs are orret. Exeptions an be aught whereneessary. Only a small fration of the ode in a system should hek itsinputs.� Separate handling of error ases from normal ode.� Write delaritive ode. Use guards in funtion heads where possibleto delare the appliability of the ode rather than hiding the hoies inif and ase operations.10.6 ResouresThe ode �les mentioned in this hapter are:do.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/style.Further information on programming style an be found in Eriksson, K.,Williams, M., Armstrong, J., `Program Development Using Erlang - Program-ming Rules and Conventions', 1995, http://www.erlang.se/erlang/sure/main/news/programming_rules.ps.gzor http://www.erlang.se/erlang/sure/main/news/programming_rules.shtml.10.7 Exerises1. Study the style guidelines and identify a rationale for eah guideline.2. Rewrite �lent (�gure 1.5) using the style reommendations made in thishapter.3. Examine the examples in this book and reommend style improvements.

90 CHAPTER 10. PROGRAMMING STYLE

Chapter 11GraphisAlthough Erlang supports at least 2 graphis subsystems (gs and pxw) thishapter will limit itself to desribing the portable graphis subsystem known asgs . This subsystem was used in the previous examples of graphial ode (�gures1.3 and 2.9).11.1 ModelThe gs subsystem is built on an event model. Messages are sent between theontrolling proess and a gs server to ause or report events. Figure 11.1 showsthe relationship between the omponents of the system, the noti�ation of anevent and an operation being performed.

Input Devices

Output Devices

gs

Object

Event Operation

Graphics
Hardware/Software

Graphics
Server

Controlling
Process

Figure 11.1: The Components of the GS Graphial ModelObjets are reated in a hierarhy. Eah objet has a parent and may have91

92 CHAPTER 11. GRAPHICS1 -module(thrbut).2 -export([init/0℄).34 init() ->5 Server = gs:start(),6 Win = gs:reate(window, Server, [{width, 300}, {height, 80}℄),7 Display = gs:reate(label, Win, [{label, {text, "0"}},8 {x, 0}, {y, 0}, {width, 200}, {height, 50}℄),9 Plus = gs:reate(button, Win, [{label, {text, "+"}},10 {x, 0}, {y, 50}℄),11 Minus = gs:reate(button, Win, [{label, {text, "-"}},12 {x, 100}, {y, 50}℄),13 Quit = gs:reate(button, Win, [{label, {image, "q.xbm"}},14 {x, 200}, {y, 50}℄),15 gs:onfig(Win, {map, true}),16 event_loop(0, Display, Plus, Minus, Quit).1718 event_loop(N, D, P, M, Q) ->19 reeive20 {gs, P, lik, Data, Args} ->21 RP = N+1,22 gs:onfig(D, {label, {text, RP}}),23 event_loop(RP, D, P, M, Q);24 {gs, M, lik, Data, Args} ->25 RM = N-1,26 gs:onfig(D, {label, {text, RM}}),27 event_loop(RM, D, P, M, Q);28 {gs, Q, lik, Data, Args} ->29 gs:stop(),30 N31 end. Figure 11.2: Soure Code for thrbut.erlone or more hildren. When an objet is reated an objet identi�er is returnedto the reator. Objets an be reated with a spei�ed name, allowing theprogram to ontrol the hoie of identi�er.Figures 11.2 and 11.3 show a simple example of a server with 3 buttons anda text display. This example illustrates:� Starting and stopping the graphis server (lines 5 and 29) using gs:start()and gs:stop()� Creating a window (line 6) using gs:reate� Creating buttons inside a window (lines 9 to 14)� Creating a label inside a window (lines 7 and 8)� Changing the options onneted with a graphial objet (lines 15, 22 and26) using gs:on�g� Handling events generated in an even loop (lines 18 to 31)

11.2. INTERFACE 93

Figure 11.3: Display from thrbut.erlThe example has a simple two level hierarhy whih is shown in �gure 11.4(Note: the atual names of the entities are not shown in the diagram, only thevariables in whih the names of the graphial objets were initially stored). Thehierarhy is onstruted by naming the parents when the gs:reate funtionis alled. The hierarhy is used to desribe the layout relationships betweenobjets, for instane it allows objets to be grouped so that they an moved aspart of a single entity.
Button
(Minus)

Button Button

Window
(Win)

(Display)
Label

(Plus) (Quit)Figure 11.4: The GS Hierarhy Found in thrbut.erl11.2 Interfae11.2.1 FuntionsThe interfae to gs is built on 6 basi funtions: gs:start, gs:stop, gs:reate,gs:on�g, gs:destroy, and gs:read.The gs:start funtion starts the gs server. The funtion takes no arguments.An identi�er is returned whih is used as the parent for top level objets (win-dows). If the funtion is alled more than one it returns the same identi�er.gs:start()The gs:stop funtion stops the gs server and loses any windows opened bythe server. The funtion takes no arguments.gs:stop()

94 CHAPTER 11. GRAPHICSThe gs:reate funtion is used to make graphial objets. The funtion hasseveral forms. The types of the arguments used in the forms are: Objtype {atom identifying objet type; Parent { identi�er returned by parent; Options{ list of options to be set for objet; Option { option to be set for objet; andName { identi�er to be used to refer to objet. An identi�er for the new objetis returned.gs:reate(Objtype, Parent)gs:reate(Objtype, Parent , Options)gs:reate(Objtype, Parent , Option)gs:reate(Objtype, Name, Parent , Options)gs:reate(Objtype, Name, Parent , Option)The gs:on�g funtion sets an option for an objet. The funtion has twoforms. It takes an objet identi�er or a name and either a single option valuetuple or a list of option value tuples as arguments. It returns ok on suess orferror, Reasong on failure.gs:on�g(Identi�er , fOption, Valueg)gs:on�g(Identi�er , [fOption, Valueg : : : ℄)The gs:destroy funtion destroys a graphial objet and its hildren. Thefuntion takes an objet identi�er or a name as an argument.gs:destroy(Identi�er)The gs:read funtion reads a value from a graphial objet. The funtiontakes an objet identi�er or a name and a key as arguments. It returns thevalue read on suess or ferror, Reasong on failure.gs:read(Identi�er , Key)11.2.2 ObjetsThe gs subsystem provides a large number of built in graphis objets whih anbe used to onstrut displays. A seletion of the available objets is disussedbelow.A window is a sreen objet whih ontains other sreen objets. Only win-dows are allowed to be top level objets. All other objets must be desendentsof a top level objet. A window may have a window or the server as its parent.The atom window is used to denote this objet type.A family of button objets is supported. A button is an objet whih maybe seleted with a mouse. It may be seleted or unseleted. A button may havea window or a frame as a parent. The atom button is used to denote a simplebutton, radiobutton is used to denote a button type where only one memberof a group of buttons may be pressed at one time, and hekbutton denotes abutton type where many buttons may be seleted in a group at one time.

11.2. INTERFACE 95A label is used to display either a text message or a bitmap1. A label mayhave a window or a frame as a parent. The atom label is used to denote thisobjet type.A frame is a ontainer used to group objets. A frame may have a windowor a frame as a parent. The atom frame is used to denote this objet type.An entry allows a single line of text to be entered. An entry may have awindow or a frame as a parent. The atom entry is used to denote this objettype.A listbox displays a list of strings and allows zero or more to be seleted.A listbox may have a window or a frame as a parent. The atom listbox is usedto denote this objet type.A anvas is a drawing area. The following objets may be present in aanvas: ar, image2, line, oval , polygon, retangle, and text . A anvas mayhave a window or a frame as a parent. The atom anvas is used to denote thisobjet type.A olletion of elements have been provided that an be used to onstrutmenus. A menu is a reursive graphial struture whih is used to presentoptions and ations. These hoies an be seleted. A menu may have as aparent: a menubutton, a menuitem with an itemtype of asade, a window ora frame. A menuitem may have a menu as a parent. A menubar may have aframe or a window as a parent. The atoms menu, menuitem, menubutton andmenubar are used to denote objets used to onstrut menus.The subsystem also provides failities to onstrut tables, a multi-line editorand to selet values from a sale (the interfae resembles a sliding potentiome-ter).11.2.3 EventsEvents are represented by tuples whih are sent as messages to the ontrollingproess. These messages have the form:fgs , Identi�er , EventType, Data, ArgsgThe atom gs is used to tag gs related messages. The Identi�er �eld ontainseither an objet identi�er returned by reate or a name (objets reated withthe name form of reate use names here). The EventType de�nes the lass ofevent that has ourred. The Data �eld is used to return user de�ned dataassoiated with an objet that is generating an event. The Args �eld ontainsevent spei� information.All objets return the following events (generi events):A buttonpress is generated when a mouse button is pressed over an objet.A buttonrelease is generated when a mouse button is released over an objet.They both return in Args :[ButtonNo, X, Y j ℄An enter is generated when the mouse pointer enters an objet area. A leaveis generated when the mouse pointer leaves an objet. A list is returned in Argsfor both these events.1At the time of writing only monohrome X11 bitmaps were supported2At the time of writing GIFs and BMP image �les were supported

96 CHAPTER 11. GRAPHICSA fous event is generated when the keyboard fous hanges. The Int in thestruture shown below is 1 if the fous has been gained and 0 if the fous hasbeen lost.[Int j ℄A keypress event is generated for eah keypress. The Args �eld ontains:[KeySym, KeyCode, Shift, Control j ℄where KeySym ontains an atom desribing the key pressed, KeyCode on-tains the key number for the depressed key and Shift and Control ontain 1 ifthe modi�er keys are depressed and 0 otherwise.A motion event is generated when the mouse moves inside an objet. TheArgs �eld ontains:[X, Y j ℄There are two objet spei� events: lik and double-lik . The argumentlists returned for these events depend on the type of objet that was liked on.11.3 ExampleThe program hboard.erl draws a draughts / hekers board and allows movesto be made. Button 1 on the mouse is used to move piees, button 2 kingspiees, and button 3 deletes piees. This example illustrates rubber banding(in movement mode), the use of data elements assoiated with graphial items,menus, and the event driven nature of the interfae. Sample output is shown in�gure 11.5 and the ode is shown in �gure 11.6.

11.3. EXAMPLE 971 -module(hboard).2 -export([start/0℄).34 start() ->5 Server = gs:start(),6 Win = gs:reate(window, Server, [{width, 8 * sx()},7 {height, 100 + 8 * sy()}℄),8 menu(Win),9 Canvas = newgame(Win),10 gs:onfig(Win, {map, true}),11 event_loop(Win, Canvas, normal, {}).1213 event_loop(Win, Canvas, Mode, StateData) ->14 reeive15 {gs, exit, lik, _, _} ->16 gs:stop(),17 exit(normal);18 {gs, new, lik, _, _} ->19 gs:destroy(Canvas),20 event_loop(Win, newgame(Win), normal, {});21 {gs, Id, buttonpress, {X, Y, Base, Color, man, I},22 [3, _, _ | _ ℄} when Mode == normal ->23 gs:destroy(I),24 gs:onfig(Id, [{data, {X, Y, Base, empty, empty, noimage}}℄),25 event_loop(Win, Canvas, Mode, StateData);26 {gs, Id, buttonpress, {X, Y, Base, Color, man, I},27 [2, _, _ | _ ℄} when Mode == normal ->28 gs:destroy(I),29 piee(Id, X, Y, Base, Color, king),30 event_loop(Win, Canvas, Mode, StateData);31 {gs, Id, buttonpress, {X, Y, Base, Color, Piee, I},32 [1, _, _ | _ ℄} when Mode == normal, Piee =/= empty ->33 gs:destroy(I),34 gs:onfig(Id, [{data, {X, Y, Base, empty, empty, noimage}}℄),35 event_loop(Win, Canvas, move, {Id, X, Y, Base, Color, Piee});36 {gs, Id, enter, _, _ } when Mode == move ->37 gs:onfig(Id, {bg, red}),38 event_loop(Win, Canvas, move, StateData);39 {gs, Id, leave, {X, Y, Base, Color, Piee, I},40 _ } when Mode == move ->41 gs:onfig(Id, {bg, Base}),42 event_loop(Win, Canvas, move, StateData);43 {gs, Id, buttonpress, {X, Y, Base, Color, Piee, I},44 [1, _, _ | _ ℄} when Mode == move, Piee == empty ->45 {OId, _, _, B, C, M} = StateData,46 gs:onfig(Id, [{bg, Base}℄),47 piee(Id, X, Y, Base, C, M),48 event_loop(Win, Canvas, normal, {});49 X ->50 event_loop(Win, Canvas, Mode, StateData)51 end.52

98 CHAPTER 11. GRAPHICS53 menu(Win) ->54 MenuBar = gs:reate(menubar, Win, [℄),55 FileBut = gs:reate(menubutton, MenuBar, [{label,56 {text, "File"}}℄),57 FileMenu = gs:reate(menu, FileBut, [℄),58 gs:reate(menuitem, new, FileMenu, [{label, {text, "New"}}℄),59 gs:reate(menuitem, exit, FileMenu, [{label, {text, "Exit"}}℄).6061 newgame(Win) ->62 Frame = gs:reate(frame, Win, [{width, 8 * sx()},63 {height, 8 * sy()}, {bw, 1}, {x, 0}, {y, 100}℄),64 drawh(Frame, 8, 8),65 setboard(Frame),66 Frame.6768 setboard(Frame) ->69 StartPos = [70 {1, 0, white, man}, {3, 0, white, man}, {5, 0, white, man},71 {7, 0, white, man}, {0, 1, white, man}, {2, 1, white, man},72 {4, 1, white, man}, {6, 1, white, man}, {1, 2, white, man},73 {3, 2, white, man}, {5, 2, white, man}, {7, 2, white, man},74 {0, 5, blak, man}, {2, 5, blak, man}, {4, 5, blak, man},75 {6, 5, blak, man}, {1, 6, blak, man}, {3, 6, blak, man},76 {5, 6, blak, man}, {7, 6, blak, man}, {0, 7, blak, man},77 {2, 7, blak, man}, {4, 7, blak, man}, {6, 7, blak, man}78 ℄,79 SqLst = gs:read(Frame, hildren),80 setboard(SqLst, StartPos).8182 setboard(SqLst, [℄) ->83 true;84 setboard([Sq | T℄, Piees) ->85 SqD = gs:read(Sq, data),86 setboard(T, setsq(Sq, SqD, Piees, [℄)).8788 setsq(Sq, SqD, [℄, L) ->89 L;90 setsq(Sq, {SqX, SqY, SqB, SqC, SqM, I}, [{X, Y, C, M} | T℄, L) ->91 if92 SqX == X, SqY == Y ->93 piee(Sq, SqX, SqY, SqB, C, M),94 lists:append(T, L);95 true ->96 setsq(Sq, {SqX, SqY, SqB, SqC, SqM, I}, T,97 [{X, Y, C, M} | L℄)98 end.99100 drawh(Frame, Nx, Ny) ->101 drawh(Frame, Nx, Ny, Nx-1, Ny-1, white).102103 drawh(F, Nx, Ny, 0, 0, BW) ->104 sq(F, 0, 0, BW);105 drawh(F, Nx, Ny, Px, 0, BW) ->106 sq(F, Px, 0, BW),

11.4. RESOURCES 99107 drawh(F, Nx, Ny, Px-1, Ny-1, BW);108 drawh(F, Nx, Ny, Px, Py, BW) ->109 sq(F, Px, Py, BW),110 drawh(F, Nx, Ny, Px, Py-1, oppolor(BW)).111112 sq(F, X, Y, Color) ->113 Xs = sx(),114 Ys = sy(),115 gs:reate(anvas, F, [{x, X * Xs}, {y, Y * Ys},116 {width, Xs}, {height, Ys}, {bg, Color},117 {enter, true}, {leave, true}, {buttonpress, true},118 {data, {X, Y, Color, empty, empty, noimage}}℄).119120 piee(Canvas, X, Y, Base, Color, Piee) ->121 File = ase {Color, Piee} of122 {white, man} -> "whtbit.gif";123 {blak, man} -> "blkbit.gif";124 {white, king} -> "whtking.gif";125 {blak, king} -> "blkking.gif"126 end,127 I = gs:reate(image, Canvas, [{load_gif, File}℄),128 gs:onfig(Canvas, {data, {X, Y, Base, Color, Piee, I}}).129130 oppolor(white) ->131 blak;132 oppolor(blak) ->133 white.134135 sx() -> 50.136137 sy() -> 50.Figure 11.6: Cheker Board Soure Code (hboard.erl)11.4 ResouresThe ode �les mentioned in this hapter are:thrbut.erlq.xbmhboard.erlblkbit.gifblkking.gifwhtbit.gifwhtking.gifThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/graph.Further information on the gs module an be found in the `The Graphis Sys-tem (GS): GS User's Guide' in `Open Teleom Platform (OTP)' doumentation

100 CHAPTER 11. GRAPHICSset by Erisson Software Tehnology AB, Erlang Systems. This doumentationis provided in HTML and Postsript form with the Erlang distribution.11.5 Exerises1. Add omments to the Cheker Board soure ode (hboard.erl) from �gure11.6. Desribe features and funtions provided by the ode.2. Modify the event loop in Cheker Board so that it an be easily extendedand is more readable. Pay partiular attention to making it possible toadd new features. Suggest methods for heking the orretness of moves.3. Modify Cheker Board to allow two players on di�erent Erlang nodes toplay against eah other.4. MakeWobbly Invaders (�gure 2.9) into a playable game. Only one invaderand one defender is required. Consider using a proess for eah graphialobjet.

11.5. EXERCISES 101

Figure 11.5: A game in play on the Cheker Board

102 CHAPTER 11. GRAPHICS

Chapter 12InternetInternet based appliations and interfaes are rapidly beoming de rigueur forsystems. Many designers hoose to use a TCP/IP based interfae beause of:the simpliity and ubiquity of the WWW interfae; the wide availability ofthe TCP/IP protool; and the high degree of interoperability between systemsprovided by the protool.The Erlang support libraries provide easy aess to TCP/IP funtionality,allowing Erlang programmers to implement both lients and servers easily. Thishapter desribes one of the library interfaes used to aess TCP/IP sokets, thegen tp module. Similar funtionality for UDP or datagram sokets is providedby the gen udp module.12.1 Basi FuntionsThe gen tp module provides many funtions inluding: aept, lose, on-net, listen, rev, and send. The named funtions are suÆient to setup bothlient and server programs. The funtions are desribed below:aept aepts an inoming onnetion request on a listen soket.lose loses an open soket.onnet makes a TCP/IP onnetion to a spei�ed server on a spei�ed port.listen sets up a listen soket to whih lients an onnet.rev reeives a paket.send transmits a paket.12.2 A Simple Web ServerWARNING: This web server desribed in this setion is not seure. It per-forms no heking on �le names and hene an be exploited by third parties toview your �les.Figure 12.1 illustrates a simple WWW server written in Java. In this setionthis program will be rewritten in Erlang.103

104 CHAPTER 12. INTERNET1 import java.net.*; import java.io.*; import java.util.*;23 // Based on TinyHttpd from Niemeyer P, Pek J, Exploring Java,4 // O'Reilly & Assoiates, 1996, pp 244-24556 publi lass httpd7 {8 publi stati void main(String argv[℄) throws IOExeption9 {10 ServerSoket svrsok =11 new ServerSoket(Integer.parseInt(argv[0℄));12 while (true)13 {14 Soket onsok = svrsok.aept();15 new httpdonnetion(onsok);16 }17 }18 }1920 lass httpdonnetion extends Thread21 {22 Soket sok;2324 publi httpdonnetion(Soket s)25 {26 sok = s;27 setPriority(NORM_PRIORITY - 1);28 start();29 }3031 publi void run()32 {33 try34 {35 OutputStream out = sok.getOutputStream();36 PrintWriter outw =37 new PrintWriter(sok.getOutputStream());38 InputStreamReader inr =39 new InputStreamReader(sok.getInputStream());40 BufferedReader in = new BufferedReader(inr);41 String req = in.readLine();42 System.out.println("req " + req);43 StringTokenizer st = new StringTokenizer(req);44 if ((st.ountTokens() >= 2) &&45 (st.nextToken().equals("GET")))46 {47 req = st.nextToken();48 if (req.startsWith("/"))49 req = req.substring(1);50 if (req.endsWith("/") || req.equals(""))51 req = req + "index.html";52 try

12.2. A SIMPLE WEB SERVER 10553 {54 FileInputStream fin =55 new FileInputStream(req);56 byte [℄ data = new byte[fin.available()℄;57 fin.read(data);58 out.write(data);59 }60 ath(FileNotFoundExeption e)61 {62 outw.println("404 Not Found");63 }64 }65 else66 outw.println("400 Bad Request");67 sok.lose();68 }69 ath (IOExeption e)70 {71 System.out.println("IO error " + e);72 }73 }74 } Figure 12.1: A Java WWW Server Implementation: httpd.javaThe Erlang version an be seen in �gure 12.2.The Erlang and the Java HTTP servers take the same approah to the taskof serving web pages. Both programs setup a listening soket on whih theyaept inoming onnetions. When a onnetion request arrives it is aeptedand a new proess or thread is started to handle the request. The �rst line ofthe data sent from the web browser to the server is parsed by the proess orthread and the seond argument on the line names the �le to be sent. The �leis sent to the browser and the onnetion losed.The most notable features of the Erlang version is the duality of lists andbinaries through out the ode, and the use of regular expression routines toperform the name manipulations.The gen tp module allows the ontents of a stream to be seen as either aolletion of binary objets or as strings. In this implementation we have hosento use binary objets as when used in onjuntion with the �le:read �le fun-tion it allows partiularly easy transmission of whole �les bak to the browser.Note that binaries must be onverted to strings for easy pattern mathing andmanipulation.Regular expressions are provided by the regexp module. Using the reg-exp:gsub funtion it was possible to rewrite requests into an aeptable formwithout using onditional statements.Both programs have been written with larity as the primary objetive,rather than making maximum use of language features to redue ode volume.Considering this objetive it should be noted that the Erlang version is slightlyshorter, yet fairly easy to read.

106 CHAPTER 12. INTERNET1 -module(httpd).2 -export([start/1,server/1,reqhandler/1℄).34 start(Port) ->5 spawn(httpd, server, [Port℄).67 server(Port) ->8 {ok, Lsok} = gen_tp:listen(Port, [binary, {paket, 0},9 {ative, false}℄),10 serverloop(Lsok).1112 serverloop(Lsok) ->13 {ok, Sok} = gen_tp:aept(Lsok),14 spawn(httpd,reqhandler,[Sok℄),15 serverloop(Lsok).1617 reqhandler(Sok) ->18 ReqStr = getreq(Sok),19 [FirstArg, SeondArg | Tail℄ = string:tokens(ReqStr, " \n\t"),20 if21 FirstArg =/= "GET" ->22 gen_tp:send(Sok, list_to_binary("400 Bad Request\r\n"));23 true ->24 {ok, BaseName, _} = regexp:gsub(SeondArg, "/$|^$",25 "/index.html"),26 {ok, File, _} = regexp:sub(BaseName, "^/+", ""),27 sendfile(Sok, File)28 end,29 gen_tp:lose(Sok).3031 getreq(Sok) ->32 getreq(Sok, [℄).3334 getreq(Sok, OrigStr) ->35 {ok, Pak} = gen_tp:rev(Sok, 0),36 ReStr = binary_to_list(Pak),37 NewStr = lists:append(OrigStr, ReStr),38 Pos = string:str(NewStr, "\r\n"),39 if40 Pos =/= 0 ->41 string:substr(NewStr, 1, Pos-1);42 true ->43 getreq(Sok, NewStr)44 end.4546 sendfile(Sok, Filename) ->47 ase file:read_file(Filename) of48 {ok, Binary} ->49 gen_tp:send(Sok, Binary);50 _ ->51 gen_tp:send(Sok, list_to_binary("404 Not Found\r\n"))52 end.Figure 12.2: An Erlang WWW Server Implementation: httpd.erl

12.3. RESOURCES 10712.3 ResouresThe ode �les mentioned in this hapter are:httpd.javahttpd.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/inet.Further information on the gen tp and gen udp modules an be found inthe `The Kernel: Kernel Referene Manual' in `Open Teleom Platform (OTP)'doumentation set by Erisson Software Tehnology AB, Erlang Systems. Thisdoumentation is provided in HTML and Postsript form with the Erlang dis-tribution.12.4 Exerises1. Write a lient in Erlang that an read a Web page from a server and storethe page in a �le. It should have the following interfae:gethttp:gethttp(Url, Filename)2. Extend the web server in �gure 12.2 to handle CGI sripts (written inErlang) using the GET method.3. Extend the web server in �gure 12.2 to handle CGI sripts (written inErlang) using the POST method.

108 CHAPTER 12. INTERNET

Chapter 13Reliable CommuniationsMessages are not guaranteed to be delivered (see hapter 5). This hapterdisusses several tehniques whih an be used to deal with unreliable ommu-niation.13.1 No ReoverySometimes it may not be desirable or possible to reover from the loss of amessage. Cirumstanes when this ould arise inlude:� Informational messages - Some messages onvey information that is notrequired for the ontinuing safe or orret operation of a proess. Thesemessages may be disarded.� Timely messages - Some information has a short useful lifetime. Losingthis data may be less harmful than getting delayed data.� Results of a funtional onversion of data - This data an be regeneratedat any time by supplying the same set of input data. Responsibility forreovery of this data an often be deferred to the initiator of the operation.13.2 Bakward Error CorretionBakward error orretion is a family of tehniques that are used to reover dataafter an error in the data has been disovered. The basi mehanism used inthese tehniques is to retransmit data after it has been determined that an errorhas ourred in the transmitted data.13.2.1 Simple RetransmissionThis retransmission mehanism is sometimes known as `Stop and Wait ARQ'. The protool employs a frame number and a timeout. Figure 13.1 shows anerror free exeution and the types of failures that this mehanism an handle.The simple retransmission sheme relies on the initiator of a transmissionre-sending a frame if an ACK (aknowledgment) is not reeived within thetimeout. The frame number and the mathing aknowledgment numbers are109

110 CHAPTER 13. RELIABLE COMMUNICATIONS

Discard
Duplicate
Frame

Prog A Prog B
Frame 0

Ack 0

Ack 1

Frame 1

Frame 0

Timeout

Timeout

Retransmit

Retransmit

Frame 0

Frame 1

Ack 1

Ack 0

Frame 1

Ack 1Figure 13.1: Stop and Wait ARQused to disover and eliminate dupliate transmissions. In the example only 2frame and aknowledgment numbers are used as this is suÆient to disover anyrepeated transmission with at most one outstanding transmission. When thissheme is applied in data ommuniations a NAK (negative aknowledgment)is often used to allow orrupted pakets to be resent before the timeout expires.As Erlang ommuniations are always orret or not present at all NAKs arenot required.Features of the simple retransmission sheme:� Timeout delay must be greater than the round trip time of the messageand the ACK.� Timeout delay enountered before reovery an our.� State must be held until an ACK ours otherwise reovery annot our.� If a proess is ommuniating with many other proesses, the ommuni-ation must be uniquely identi�ed.Figure 13.2 shows one implementation of this reovery mehanism. Theprogram in �gure 13.3 and a test run in �gure 13.4 show how the sawarq.erlmodule an be used. The test program implements a tallier for adding upbilling reords. Billing information should not be lost so a reliable transmissionmehanism is used to transfer the information. Reovering the total from thetallier requires that the information be timely, so an unreliable mehanism fortransferring the data is used.

13.2. BACKWARD ERROR CORRECTION 1111 -module(sawarq).2 -export([open/3, xmit/2, rev/1, proexists/1℄).34 open(Dest, Timeout, Retry) ->5 RefId = make_ref(),6 {Dest, RefId, 0, Timeout, Retry}.78 xmit({Dest, RefId, N, Timeout, Retry}, Mesg) ->9 Dest ! {self(), RefId, N, Mesg},10 reeive11 {RefId, N, ak} ->12 {Dest, RefId, (N+1) rem 2, Timeout, Retry};13 {RefId, OtherN, ak} ->14 error15 after Timeout ->16 ase proexists(Dest) of17 true ->18 reeive19 after Retry ->20 ok21 end,22 xmit({Dest, RefId, N, Timeout, Retry}, Mesg);23 _ ->24 error25 end26 end.2728 rev(N) ->29 reeive30 {Sender, RefId, N, Mesg} ->31 Sender ! {RefId, N, ak},32 {(N+1) rem 2, Mesg};33 {Sender, RefId, _, Mesg} ->34 error35 end.3637 proexists(Pid) when pid(Pid) ->38 Nd = node(Pid),39 ThisNd = node(),40 ListPro = if41 Nd == ThisNd ->42 proesses();43 true ->44 rp:all(Nd, erlang, proesses, [℄)45 end,46 lists:member(Pid, ListPro);47 proexists(Name) ->48 ase whereis(Name) of49 undefined -> false;50 _ -> true51 end.Figure 13.2: Soure ode for implementing `Stop and Wait ARQ': sawarq.erl

112 CHAPTER 13. RELIABLE COMMUNICATIONS
1 -module(total).2 -export([start/0, read/1, add/2, tallier/2℄).34 timeout() -> 10000.5 retry() -> 100000.67 start() ->8 Pid = spawn(total, tallier, [0, 0℄),9 sawarq:open(Pid, timeout(), retry()).1011 read(Connet) ->12 Connetp = sawarq:xmit(Connet, {read, self()}),13 Result = reeive14 X -> X15 after timeout() ->16 error17 end,18 {Connetp, Result}.1920 add(Connet, T) ->21 sawarq:xmit(Connet, {add, T}).2223 tallier(N, Total) ->24 {Np, Msg} = sawarq:rev(N),25 ase Msg of26 {read, Pid} ->27 Pid ! Total,28 tallier(Np, Total);29 {add, T} ->30 tallier(Np, Total + T);31 _ ->32 tallier(Np, Total)33 end. Figure 13.3: Tallier: total.erl

13.3. FORWARD ERROR CORRECTION 113% erlErlang (BEAM) emulator version 4.6.4Eshell V4.6.4 (abort with ^G)1> P = total:start().{<0.28.0>,#Ref,0,10000,100000}2> {Pp, R} = total:read(P).{{<0.28.0>,#Ref,1,10000,100000},0}3> Ppp = total:add(Pp, 10).{<0.28.0>,#Ref,0,10000,100000}4> {Pppp, Rp} = total:read(Ppp).{{<0.28.0>,#Ref,1,10000,100000},10}5> Ppppp = total:add(Pppp, 10).{<0.28.0>,#Ref,0,10000,100000}6> {Pppppp, Rpp} = total:read(Ppppp).{{<0.28.0>,#Ref,1,10000,100000},20}7> Figure 13.4: Testing the Tallier13.2.2 Retransmission with WindowsThe mehanism desribed in setion 13.2.1 works well if ommuniation timesare short. In environments with long ommuniation times the ACKs slowdown the protool. A modi�ation of the protool allows a number of frames tobe outstanding, this set of frames is alled the window. The sender transmitsframes until he reahes the window size. When the �rst frames in the windoware aknowledged the window slides and more frames are transmitted. Frameswhih do not get aknowledged are retransmitted. This approah allows longerlatenies in the response, but without ompromising the throughput as muhas `Stop and Wait ARQ'. These protools are olletively refered to as `slidingwindow' protools.13.3 Forward Error CorretionForward error orretion is a family of tehniques that are used to reover datawhen errors our. Unlike bakward error orretion these tehniques do notwait for an error to be disovered. Instead these tehniques are based on trans-mitting additional redundant information with the transmitted data. The re-dundant information is used to reonstrut the data if it is orrupted or lost.These tehniques an be broken into two lasses. The �rst lass transmitssuÆient data to reonstrut the lost data exatly. The seond lass transmitssome olletive property of the data that an be used for approximating the lostdata. The seond lass tends to be more ompat, but an only be used wherean exat representation is not required.

114 CHAPTER 13. RELIABLE COMMUNICATIONS13.4 ResouresThe ode �les mentioned in this hapter are:sawarq.erltotal.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/relom.Further information an be found on onstruting reliable ommuniationson unreliable media in text books on data ommuniations. One whih has beenused by the author is: Stallings, W., `Data and Computer Communiations', 4Ed, Mamillan, 1994.13.5 Exerises1. Examine the tallier in �gure 13.3 for errors whih will ause it to fail andlose the total.2. Using the ode in �gure 13.2 as a basis write an implementation of a slidingwindow protool with a user spei�able window size

Chapter 14Reliability and FaultToleraneReal time systems are often used in safety ritial situations { situations wherefailure of the system may lead to loss of life { and situations where the time-liness of data or ations is ritial to the ommerial viability of a business.In these irumstanes the failure of a program an have drasti onsequenes.This hapter fouses on how reliable and fault tolerant systems an be built.Tehniques and approahes are introdued that allow systems to reognise andhandle faults.14.1 TerminologyA number of terms will be used in this hapter to desribe the behavior of amalfuntioning system:Failure { The deviation of a system's behavior from the spei�ationError { An instane of a deviation from spei�ationFault { The mehanial or algorithmi ause of an errorFaults an be lassi�ed by their temporal harateristis:Transient Fault { A fault that starts at some time, remains in the system fora time, and then disappears from the systemPermanent Fault { A fault that starts at some time, and remains in thesystem until it is repairedIntermittent Fault { A transient fault that reurs from time to timeFailures in real time systems an be lassi�ed into two modes:Value failure { an inorret value is returnedTime failure { a servie ours at the wrong time115

116 CHAPTER 14. RELIABILITY AND FAULT TOLERANCE14.2 Fault PreventionFault prevention is divided into fault avoidane and fault removal. Fault avoid-ane fouses on writing fault free programs. Tehniques suh as rigorous orformal spei�ation of requirements; and the use of proven design methodolo-gies are used to limit the introdution of errors into programs. Fault removaluses ode reviews and system testing to detet faults and remove them.System testing is imperfet:� a test annot detet the absene of an error� realisti test onditions annot always be reated� requirements stage errors often annot be deteted until the system ismade operationalThe funtional nature of Erlang provides the system tester with the advan-tage of being able to test funtions individually. Furthermore, if funtions havea funtional behavior they an be used with other funtions and result in aknown outome. Programming languages whih allow state to be stored with afuntion or proedure do not have this property.14.3 Fault ToleraneA fault tolerant system an provide either full servie or some redued degreeof servie after a fault ours. Systems an be grouped by the degree of servieprovided:Full fault tolerane { no loss of servie (either funtionality or performane)in the presene of errorsGraeful degradation (a.k.a. Fail soft) { system ontinues to operate, butwith some level of servie degradation, until the system either reovers oris repairedFail safe { system ensures its integrity but stops delivering servies14.3.1 RedundanyTo provide servie in the presene of errors redundany is introdued into thesystem. Extra elements are added to the system to allow the system to reoverfrom faults. Redundany an be either stati or dynami.Stati RedundanyParts of the system are repliated in order to ontinue to provide servie in theevent of the failure of a repliated omponent.Triple Modular Redundany (TMR) is a speial ase of N Modular Redun-dany (NMR). N Modular Redundany (see �gure 14.1) repliates a system Ntimes and employs a voting system to determine the result given. The repli-ated systems are not permitted to interat with eah other. This approahan lead to a less reliable system as it inreases the omplexity of the system

14.3. FAULT TOLERANCE 117

Inputs

VersVers
1

Vers
2 N

Voting
System

Output

Input

Driver

...

Figure 14.1: N Module Redundany

118 CHAPTER 14. RELIABILITY AND FAULT TOLERANCEand the voting sheme may introdue errors (ommon problems inlude failuresin synhronisation and failures in omparisons). Eah of the versions of theprogram must di�er in some way suh that the faults in one version are notrelated to faults in another version. This di�erene may be ahieved throughusing di�erent development teams, di�erent algorithms, or di�erent ompilers.The driver provides both the required inputs and ompares the results re-turned by the versions. Two typial implementations of the driver proess exist.The simpler implementation if for one-shot operations. In this implementation,the driver invokes eah proess, wait for results and ats on the results. Themore omplex implementation allows for ontinuous operation. Continuous in-teration is ahieved by invoking the proesses, providing inputs as required,olleting results when omparison points are reahed, and generating ations.As alulation errors an aumulate in some systems leading to orret pro-grams diverging, some implementations may resynhronise the state of the ver-sions at the omparison points to ensure that any divergene in results is dueto a fault in the system rather than aumulated alulation errors.The time between omparisons (the granularity of the omparison proess)is signi�ant as a longer period tends to inrease the divergene of the results re-turned by eah version. However, a shorter period results in inreased overheadassoiated with the olletion of results from eah of the versions.Another inuene on the time between omparisons is the required aurayof a result and the rate a result is required. There is a lass of numerialalgorithms alled iterative tehniques. These algorithms take an approximationof a value and perform an operation on the value to improve the approximation.The number of iterations and the quality of the initial guess determine therate at whih the approximation onverges with the real target value. Too fewiterations results in a wide variane from the desired target. Too many iterationsmay return a result more aurate than required wasting mahine yles.The method of vote omparison is ritial to the implementation of NMR.Where results are integers or strings, omparisons are a straight forward matterof omparing votes and returning the majority deision. Comparing oatingpoint (real) values is more omplex.Measurements of real systems usually return results whih are more au-rately represented than measured. This typially results in a spread of resultsbeing returned for the same real result measured. Although two alulationsmay be equivalent in exat arithmeti, their results may di�er when performedwith the �nite arithmeti used to express oating point numbers. Thus a spreadof results is also possible when di�ering algorithms and implementations are usedto perform alulations using oating point numbers.One tehnique used for omparing oating point numbers is to omparevalues with a threshold and use the result of this omparison to return a sym-boli result whih an be used in an exat voting sheme (see �gureinexat).This method performs well when the inexat results are not near the threshold.When results are lose to the threshold (within the error in the alulation ormeasurement) the symboli result is unreliable. Adding a tolerane to the resultdoes not solve the problem, it merely moves the unreliability from results aboutthe threshold value to results near the tolerane values (see �gureinextol).With vote omparison based on inexat data disagreement is possible with-out the event of an error.

14.3. FAULT TOLERANCE 119
Output
1 0

Threshold

Measurements Result

1

0

?

Figure 14.2: Inexat Comparisons of Measured Data

Output
1 0

Threshold

Measurements Result

$-\Delta$

$+\Delta$

0

?

1

?

Unknown

Figure 14.3: Inexat Comparisons of Measured Data { with Tolerane

120 CHAPTER 14. RELIABILITY AND FAULT TOLERANCEDynami RedundanyStati redundany dupliates omponents that are used regardless of whether afault has ourred or not. In dynami redundany, the redundant omponentsare only used when a fault has been deteted.The dynamially redundant tehnique for implementing a fault tolerant sys-tem introdued here onsists of four phases: error detetion, damage on�ne-ment and assessment, error reovery, and fault treatment and ontinued servie.Error detetion is ritial to the suess of fault tolerane as the majority offaults eventually lead to errors and no fault tolerant sheme an operate untilan error is deteted.Environmental detetion of errors relies on the environment in whih a pro-gram exeutes to alert the program to a failure. Erlang uses error trapping,ath and linked proesses to report the errors desribed in setion 8.1. Otherlanguages rely on the operating system to generate exeptions (in Unix theseare alled signals) when a program exeeds the restritions provided by theenvironment.In the appliation detetion approah an appliation detets errors itself.Some tehniques whih an be used inlude:� Repliation Cheks { Use of NMR to ompute and ompare results. Typ-ially 2 versions are used and a disagreement indiates a fault.� Timing Cheks: Wath Dog Timer { A timer is assoiated with a ompo-nent. The timer is reset on orret interations with the omponent. Ifthe timer expires the omponent is assumed to be in error. This is relatedto a heart beat . A omponent uses a timer to trigger periodi signals to aproess monitoring it. Failure of these signals to arrive indiates an errorin the omponent.� Timing Cheks: Deadlines { Where timely response is required, missing adeadline is an error.� Reversal Cheks { Where there is a one to one relationship between theinputs and the outputs of a omponent, an output value an be used toompute the value of the input. Comparing the input with the alulatedvalue allows the operation of the omponent to be heked.� Error Deteting Codes { The integrity of data an be heked by usingan error deteting ode to provide redundant data. Common examplesinlude heksums and parity.� Reasonableness Cheks { Using knowledge of the design and onstrutionof the system, programmers an onstrut tests that values or the state ofthe system are reasonable. These tests an be subsetted into: onsistenytests whih hek that related values fall within the expeted relationship;and onstraint tests whih hek that values fall inside an expeted set ofvalues. These tests an either be expliitly oded or impliitly represented.In C these test are often expliitly oded as assertions. Types and subtypesan be used in Ada to impliitly ode an expeted set of values. In Erlang,reasonableness heks are typially expliitly oded with no additionallanguage support.

14.3. FAULT TOLERANCE 121� Strutural Cheks { The integrity of data strutures suh as lists, queuesand trees an be heked by adding redundant information to the stru-ture. Common methods are to inlude element ounts or redundant point-ers. Erlang does not support the seond method as it does not supportpointers.� Dynami Reasonableness Cheks { The output from a omponent anbe related to previous outputs from a omponent. If there is a relation-ship between onseutive outputs a bound an be plaed on the di�erenebetween eah output. If the outputs are too dissimilar an error an beassumed to have ourred.Only some of the tehniques may be feasible or useful in a given situation orprogram.The damage on�nement and assessment phase ours after an error hasbeen deteted. This phase assesses how orrupt the system has been made bythe error. Fators involved in this assessment are: the type of error enountered,the period of time between the fault ourring and the error being deteted, andhow well the system ontains the spread of an error.Design tehniques are used to on�ne damage. Interfaes an test datapassed to them to ensure reasonableness and ontain errors. A modular deom-position de�nes a set of interfaes through whih information is passed. Datatransfers whih avoid these interfaes should be eliminated. In Erlang thesedata transfers would take plae as either: messages sent diretly rather thanusing a funtion provided by a module to orretly format the message; or, di-retly aessing a data struture passed bak by a funtion when the modulehas funtions for manipulating the data struture. The de�ned set of interfaeseases the task of determining the impat of an error. Implementing shifts fromone onsistent state to another onsistent state using atomi ations an on�nean error to a single proess or state within a proess.Error reovery is performed after the damage has been assessed.Forward error reovery attempts to take a system from a damaged state intoa orret state by applying orretions to seleted elements of the system state.Bakward error reovery tehniques restore a system to a safe state beforethe error ourred and an alternative setion of the program is then exeuted.Chekpointing is a tehnique where the system state is stored. These reov-ery points an then be used to restore the system state if an error is deteted.Storing the whole system state an be expensive or impratial. Inrementalhekpointing an be used to redue the ost by storing only the hanges instate from a stable state. Where multiple proesses are employed are must betaken to ensure that the hekpoints used give a onsistent state for the wholesystem, where proesses have ommuniated it may be neessary to undo thee�et of the ommuniation.Although error reovery has removed the fault from the system, the pos-sibility of the fault reurring exists. Fault treatment and ontinued servie isonerned with removing the ause of the fault. Logging should be used to pro-vide information to loate the fault and the omponent should be repaired toprevent the fault reurring. Unlike many other languages Erlang is well suitedto fault repair as its ode modules an be replaed on the y (see hapter 9).In setion 14.3.1 the driver was introdued as an implementation of statiredundany. The reovery blok approah will be introdued as an approah to

122 CHAPTER 14. RELIABILITY AND FAULT TOLERANCEimplementing dynami redundany. The approah is a bakward error reoverytehnique. Reovery bloks an be nested. The tehnique is illustrated as a owhart in �gure 14.4
Select
NRec

Alternative 1 Alternative 2 Alternative N

Accept

Point
Recovery

Establish

Point
Recovery

Discard

...

NRec=NRec+1

NRec=1

NRec<=N

1 2 N

Yes

No

Yes

No

FailExitFigure 14.4: Algorithm for Reovery BloksThe essene of the reovery blok approah is to save a reovery point andtry a series of implementations until the aeptane test is met. It is importantto note that an aeptane test is used not a orretness test. The test is presentto ensure the stability of the system not to test the orretness of the system.14.4 When Reovery is UndesirableThere are some irumstanes when reovery is not desirable in these asesthe reovery ation either ompliates the system without providing gain, orreovery would ome too late to be of bene�t. An example of this is the failureof a telephone exhange. Attempting to restore the alls that were present at thetime of the failure is diÆult as the phone users who were ut o� are probably

14.5. RESOURCES 123not expeting to have their alls restored. Thus a lot of work would be donefor people who no longer require the servie. It should be noted that withinthis system there are still omponents that would require reovery. The billingsystem is an example of this as the owner of the exhange wants to be paid forthe servie provided to the phone users.14.5 ResouresThe ode �les mentioned in this hapter are:exrev1.erlexrev2.erlThese �les an be retrieved from:http://www.ser.rmit.edu.au/~maurie/erlbk/eg/relflt.Further information on the topis disussed in this hapter an be found inBurns, A., Wellings A., `Real-Time System and Programming Languages', 2 ed,Addison Wesley Longman 1997.14.6 Exerises1. Devise a real time system where there are several algorithms whih areappliable to solving the same problem.2. Implement a driver proess in Erlang for the system you devised.3. Implement reovery bloks in Erlang for the system you devised.4. Disuss the advantages and disadvantages of driver proesses and reoverybloks.5. Examine the funtions in �gure 14.5 determine if they are suitable for areversal hek and if possible design a reversal hek for it.1 -module(exrev1).2 -export([f/1℄).34 f(X) ->5 1 + math:sqrt(X).1 -module(exrev2).2 -export([f/1℄).34 f(X) ->5 0.8 * math:os(X).Figure 14.5: exrev1.erl and exrev2.erl

124 CHAPTER 14. RELIABILITY AND FAULT TOLERANCE

Index(, 64), 64*, 11+, 11,, 18-, 11., 18/, 11;, 18, 36?:, 35#, 10$, 10%, 6, 85, 37j, 13abnormal, 63aept, 103ACK, 109after, 48all loaded, 80append, 33appliation detetion, 120apply, 53ar, 95arity, 2ARQ, 109assertion, 120assign, 1, 6atom, 9, 11atom to list, 15atomi ation, 121attribute, 19, 85, 88bakward error orretion, 109bakward error reovery, 121badarg, 66badarith, 66badmath, 66band, 11BIF, 20

bindings, 1, 15bit stuÆng, 59bor, 11bound, 35bsl, 11bsr, 11built in funtion, 20button, 94buttonpress, 95buttonrelease, 95bxor, 11allbak funtion, 74anvas, 95ase, 35, 36, 58ase lause, 66ath, 63, 64, 67, 72ath all, 36, 37, 48hekpoint, 121hoie, 35lause, 7lik, 96lose, 103ode replaement, 19, 77, 78, 121omment, 6, 85omment onvention, 85onnet, 103onsisteny tests, 120onstant, 10onstraint tests, 120onstrution, 27onvention, 85reate, 95damage assessment, 121damage on�nement, 121data types, 9deadline, 120delaration, 19delarative, 23default behavior, 63125

126 INDEXdefensive programming, 70, 72delete, 79distribution, 48div, 11double-lik, 96dynami link, 77dynami reasonableness heks, 121dynami redundany, 120element, 12, 13enter, 95entry, 95environmental detetion, 120erase, 45erl, 1error, 115error deteting odes, 120error detetion, 120error handler, 69error reovery, 121event model, 91events, 95exeption, 63exit, 67, 70, 72exit trapping, 72export, 2, 19fail safe, 116fail soft, 116failure, 63, 115fault, 115fault prevention, 116fault tolerane, 116fault treatment, 121atten, 31oat, 9, 10oat to list, 15fous, 95forward error orretion, 113forward error reovery, 121frame, 95full fault tolerane, 116fully quali�ed name, 20, 77funtion, 6, 17, 77funtion body, 6funtion head, 6, 37, 58funtion lause, 66garbage olletion, 17gen server, 74

gen tp, 103gen udp, 103generi events, 95generi servers, 74get, 45get keys, 45graeful degradation, 116graphis, 91graphis objets, 94gs, 91gs:on�g, 92, 94gs:reate, 92, 93gs:destroy, 94gs:read, 94gs:start, 92, 93gs:stop, 92, 93guard, 18, 23, 35, 37hashable, 58hd, 15HDLC, 59heart beat, 120if, 35, 36, 58if lause, 66image, 78, 95import, 19inremental hekpointing, 121integer, 9, 10integer to list, 15intermittent fault, 115io, 18IPC, 43is loaded, 80iterative tehniques, 118Java, 1keypress, 96label, 94last all optimisation, 57length, 15, 27library, 103line, 95link, 70, 72, 77linked proesses, 70list, 9, 13list to atom, 15list to oat, 15list to integer, 15

INDEX 127listbox, 95listen, 103load �le, 79logial-and, 18map, 53math, 63memory management, 17menu, 95menubar, 95menubutton, 95menuitem, 95message, 18, 45, 109meta-programming, 53modular deomposition, 121module, 2, 19, 20, 77, 78module attribute, 88motion, 96NAK, 109name, 48NMR, 116noath, 66non-loal return, 67nopro, 66oval, 95pattern, 7pattern math, 48, 58, 63pattern mathing, 7, 12, 23, 35permanent fault, 115pid, 9, 11, 43, 48, 51, 67polygon, 95preondition, 70prime number, 41proedural, 23proess, 43proess ditionary, 18, 45proess ag, 72proper list, 13purge, 79put, 45pxw, 91reasonableness heks, 120reeive, 48reovery blok, 121reovery point, 121retangle, 95reursion, 6, 23

rev, 103Redution, 27redundany, 116referene, 9, 12register, 51registered name, 72registered names, 51reliable ommuniation, 109rem, 11repliation heks, 120retransmission, 109reversal hek, 120robust program, 63sope, 15self, 48self(), 43semaphore, 85send, 103shell, 1side e�et, 17Sieve of Eratosthenes, 41signal, 67, 70single assignment, 15, 35sliding window, 113sname, 48soft purge, 79spawn, 48spawn link, 70stak, 57stati linking, 77stati redundany, 116Stop and Wait ARQ, 109strutural heks, 121system testing, 116tp/ip, 103term, 9terminate, 67test before use, 70text, 95throw, 63, 64time delay, 48time failure, 115timeout value, 66tl, 15TMR, 116Transformation, 27transient fault, 115trapping exits, 72

128 INDEXtriple modular redundany, 116try and reover, 70tuple, 9, 12unbound, 66undef, 67unde�ned funtion, 69unde�ned global name, 69unlink, 70unregister, 51value failure, 115variable, 15variables, 6vote omparison, 118wath dog timer, 120well formed list, 13when, 48whereis, 51window, 94

GlossaryACK AknowledgmentARQ Automati repeat requestArity Number fundamentally assoiated with an entity. In Erlang, the arityof a funtion is its number of argumentsAtom a onstant nameBIF are members of a speial lass of funtions known as Built In Funtions.These funtions are built in to the interpreter in an interpreted environ-ment.BST Binary Searh TreeBakward Error Corretion reovers data by having the transmitter re-sendlost or orrupted dataBakward Error Reovery A lass of error reovery tehniques that restorea system to a safe state before the error ourred and exeute an alterna-tive setion of the programBinding The assoiation of a variable name to the ontents of the variable.Cath all mathes any pattern.Convention A onvention is an agreed means for handling a spei�ed irum-stane. It need not be enfored and may be arbitrary in nature. Thegeneral use of onventions in programming is to improve the readabilityand understandability of ode.Elements the items that a tuple or list are onstruted fromErlang Shell An environment whih allows users to diretly interat with Er-lang funtionsError An instane of a deviation from spei�ationFail safe System ensures its integrity but stops delivering serviesFail soft see graeful degradationFailure The deviation of a system's behavior from the spei�ationFault The mehanial or algorithmi ause of an error129

130 GlossaryFloat a number with a frational part (ie. no deimal point)Forward Error Corretion reovers data by augmenting the data from thetransmitter with additional data that an be used to reonstrut lost ororrupted dataForward Error Reovery A lass of error reovery tehniques that attemptto take a system from a damaged state into a orret state by applyingorretions to seleted elements of the system stateFull fault tolerane No loss of servie (either funtionality or performane)in the presene of errorsFully quali�ed name onsists of the module name a olon and the funtionname.Graeful degradation System ontinues to operate, but with some level ofservie degradation, until the system either reovers or is repairedGranularity Size of an element or omponent of a alulationIPC Inter-Proess CommuniationIndution a proess of onstruting a general result for a given problem froma given set of fats relating to the problemInteger a positive or negative number with no frational part (ie. no deimalpoint)List a variable length olletion of elementsNAK Negative aknowledgmentNMR N Modular RedundanyPid a proess identi�erProess Ditionary A proess's private assoiative storeProper list a proper list has an empty list ([℄) as its last elementReursion A funtion whih alls itself or alls a funtion or series of funtionswhih all the original funtionRedundant Additional omponent whih does not ontribute to normal oper-ationReferene a unique value that an be opied or passed but annot be generatedagainSope the sope of an entity is the setion of program in whih an entity anbe aessed or named.Side E�et an interation between a funtion and its environment other thanthrough its input parameters or its output valueSingle assignment a variable may be assigned (bound) exatly one

Glossary 131Stati Redundany Repliation of a omponent or servieTMR Triple Modular RedundanyTerm A value. An integer, oat, atom, pid, referene, list, or tuple and any oflist or tuple omposed of these typesTuple a �xed length olletion of elementsWell formed list a well formed list has an empty list ([℄) as its last element

