SERC-0011
August, 1995

Issue 1

The Walnut Kernel:
Program Implementation Under The

Walnut Kernel
Maurice Castro’

Glen Pringle?
Chris Wallace?

!Software Fngineering Research Center, GTTRT, 723 Swanston St, Melbourne 3053

2Department of Computer Science, Monash University , Clayton 3168
3Department of Computer Science, Monash University , Clayton 3168

SERC-0011
Issue 1
August, 1995

Copies of this document may be obtained by contacting:

Director

SERC

723 Swanston St
Carlton, Victoria, 3053

Prepared by the Software Engineering Research Center.

Copyright ©1995 SERC.
ATl Rights Reserved.

Abstract

The research community has had a long term interest in the use of capabilities in
operating systems. Many advantages have been claimed by designers of systems
based on the capability paradigm. At present only a few capability-based systems
are in use in non-research environments. Relatively little work has been published
describing the implementation of applications in a capability based environment.

This paper describes the Walnut Kernel - a capability-based operating system
developed in the Department of Computer Science, Monash University - and a
number of application programs implemented under it. The development of these
applications resulted in changes to the design of the kernel. These influences and
lessons learned from the design and implementation of these applications are dis-
cussed.

This technical report has been released by both the Software Engineering Re-
search Center, Collaborative Information Technology Research Institute, 723 Swanston
St, Melbourne, Australia 3053 as technical report SERC-0011 and the Department
of Computer Science, Monash University, Clayton, Australia 3168 as technical re-

port, 95/230.

SERC-0011

Issue 1
August, 1995

1 Overview

The Walnut Kernel is a capability based operating system under development in

the Department of Computer Science at Monash University. This paper describes a

number of applications that have been written to operate under the Walnut Kernel.

These applications have allowed programmers to explore the possibilities offered by

a capability-based operating system and provided feedback to the operating system

designers. This feedback in turn has resulted in changes to the design of the kernel.
Four programs are described:

e Initproc - the mnitialization process
e Glui - a screen multiplexor

e Shell - a user shell

e Wyrm - an arcade style game

Initproc is responsible for deriving capabilities used by processes which manage
access to devices. Shell and Glui form a user level interface which allow access to
the functions of the kernel and objects within the system. The game Wyrm is an
example of a highly interactive application which demands fast response times from
the system and is TO bound.

Section 2 briefly describes the kernel and capability based systems. Program
structures and data structures used in the applications are described in section 3.
Sections H to 8 discuss the application programs.

2 Walnut Kernel

The Walnut Kernel is based on the concept of password capabilities which were orig-
nally developed for use in the operating system for the Password-Capability System
[1]. This section briefly introduces capabilities and the environment provided by
the Walnut Kernel to application programmers.

2.1 Capabilities

Capabilities are essentially a naming scheme used to provide a uniform mechanism
for controlling access to and the protection of resources [8]. The naming scheme
can be extended beyond identifying objects by viewing a capability as a form of
address [9]. This allows all system resources to be modelled as memory objects.
Capabilities perform two roles: naming - a capability is used to uniquely identify
an object or part of an object, and access control - associated with a capability are
a set of rights that the possessor of the capability is allowed to exercise over the
object associated with the name. Possession of a capability 1s synonymous with
access to the rights associated with the capability. Tn combination with persistent
memory objects this provides a simple and uniform programming model.

The capability model promotes the sharing of memory objects. Possession of
a capability enables the holder to use the functionality conveyed by the capabil-
ity. This allows multiple processes to access the section of an object covered by a
capability.

The persistent nature of capability-based systems provides the further advan-
tages of a reduced code size and simplicity. Typically 30% of a program is devoted
to accessing data in secondary storage. Capability-based systems eliminate the
need to explicitly access secondary storage resulting in savings in size. Complexity

SERC-0011
Issue 1
August, 1995

is reduced by using a single access mechanism for both temporary and persistent
storage [3].

A number of capability based operating systems have been developed. These
include: Monads, KeyKOS, and Opal.

The development of Monads [11] was motivated by a desire to enforce the use of
modular programming practices. Tt employed capabilities as a naming and access
control mechanism. Specialized hardware was built to support the use of capa-
bilities and enforce the information hiding principles implemented in the Monads
programming model.

KeyKOS [4] is significant because it demonstrates the potential value of capability-
based operating systems in commercial applications. Systems using KeyKOS were
used as the basis of British Telecom’s Tymnet service. This service required ac-
curate accounting, the ability to support mutually antagonistic users and 24-hour
uninterrupted operation. Capabilities provided strong access control?. The persis-
tent nature of memory objects and regular checkpointing, meant that systems could
be restarted rapidly and start functioning from the point of failure.

Opal [6] is a single address space operating system employing password-capabilities
as an access control mechanism. Tt provides a 64-bit address space which 1s sparsely
populated by memory objects. Objects are identified by capabilities which are col-
lected into protection domains. Processes operating in a protection domain can
name an object by its address and exercise the access rights for the object provided
by the capability stored in the protection domain.

2.2 Types of Implementations

Currently there are three major mechanisms for implementing capabilities within
an operating system:

Tagged Architectures employ a hardware supported tag bit which distinguishes
the memory containing capabilities from other user program memory. Only
a limited set of operations are permitted on capabilities, and the hardware is
used to prevent forgery.

Capability Lists are collections of capabilities managed by the operating system.
The operating system moderates all access to the contents of capability lists,
hence preventing forgery. This mechanism does not require specialized hard-
ware support.

Password-Capabilities are statistically secure. The capability consists of an
identifier for an object and a randomly selected value. Only a small number
of the total range of values are valid capabilities. This ensures that forgers
would have to spend a prohibitively large amount of time searching the name
space for a valid capability.

Capability-lists have been the most popular form of implementation as they do
not require specialized hardware support. Monads and KeyKOS both employed
capability-lists. Password-capabilities are a more recent development and have been
employed in: the Password-Capability System, Opal, and Mungi[10].

SERC-0011

Issue 1
August, 1995

Presented Parameters Derived

Cap Capability

Limit

View & = 0

Offset
0 0
View Region View
Rights Mask Rights

Figure 1: Derivation

2.3 The Password-Capability Model

A password capability consists of two parts. The identifier portion of a capability
uniquely identifies an object. The password component identifies the set of rights
and the view associated with the capability.

The rights associable with a capability are system dependent. Typically the
rights include: user accessible, read, write, execute, derive, and suicide. The first
four of the rights are related to access to memory, the other rights are used to
control how the capability 18 used. Capabilities without derive right cannot be used
to make new capabilities. A capability without suicide right cannot be deleted
directly, 1t can only be deleted through the use of a capability able to destroy the
parent capability.

A view is an attribute of a capability. Tt is the region of an object that can be
addressed by a process having the capability. The region is contiguous and defined
by an offset from the base of the object and an extent.

The master capability for an object is returned to the process which creates
the object. The master capability possesses all the rights which may be exercised
over the object. All other capabilities applying to the object are derived from
the master capability. Derivation (see figure 1) is the fundamental operation of a
password-capability based system. Tt is performed by taking a capability’s rights
and performing a logical-and of those rights with a rights-mask to produce a set
of rights not more powerful than the parent capability. Tn addition, the view pre-
sented by the parent capability and an offset and extent are combined to produce
a capability which covers an equal or smaller section of the object.

4Tllicit access to an object was only possible if the object could be named, and a capability for
that name forged. The compromise of an object under a capability-based system does not result
in the compromise of other objects. To compromise other objects it is necessary to repeat the
process required to breach the security of the first object.

SERC-0011

Issue 1
August, 1995

32 bits 32 bits 32 bits 32 bits
[Volume [Serial [Password 1] Password 2]

Figure 2: Structure of a Walnut Kernel Capability

The capabilities of an object are notionally arranged in a tree structure. To
maintain this structure the deletion of a parent capability results in the destruction
of its children, and hence all its descendents.

The password-capability model allows any process that knows the name of a
capability to load the capability and make use of the rights and view associated
with the capability.

Processes are distinguished from other objects by the existence of process-state
information contained in the process object. The state information describes the
contents of the address space seen by the process, the process’s mailboxes and the
stored processor state. Access to this information is typically moderated by the ker-
nel. This prevents user code from circumventing hardware protection mechanisms
(for example the user/supervisor bit). Process objects are the only active elements
within the system apart from the kernel itself.

2.4 Walnut Kernel Implementation

The Walnut Kernel is based on the password-capability model. However, the model
has been modified in a number of key areas as a result of our experiences in using the
password capability model and restrictions imposed by avoiding features requiring
hardware support not available on a wide range of processors. This section briefly
describes the flavor of the Walnut Kernel, a complete description can be found in

Under the Walnut Kernel a capability i1s 128-bit value that consists of 4 fields
(see figure 2):

Volume field identifies the device on which an object resides.
Serial Number field identifies the object within its volume.
Password 1 & 2 fields identify the capability.

The volume and serial portion of the capability uniquely identify an object. The
passwords are used to identify the set of rights and the view associated with the
capability.

Typically the passwords of a capability are allocated randomly to ensure a sparse
distribution and statistical security. The Walnut Kernel introduced the ability to
specify the passwords of a derived capability. This serves two purposes:

e It allows capabilities to be hard coded into programs and operate correctly.
This service is an alternative to advertising a capability.

e It allows the regeneration of capabilities after deletion. This feature is used
by the imitialization process to regenerate capabilities for the system object
after a reboot.

The majority of commercially available processor designs only provide support
for demand paged virtual memory, and they have no provision for supporting seg-
mentation. The Walnut Kernel uses the paging hardware to control access to ob-
jects. This results in a page size protection granularity.

SERC-0011

Issue 1
August, 1995

Views of objects can be mapped into the address space of a running process.
The contents of the loaded views may be manipulated directly through the use of
any operations, provided by the processor, which affect memory.

Memory is easily shared by Walnut Kernel processes as it only requires processes
to load capabilities with overlapping views for part of an object to be shared. A
further interprocess communication mechanism is provided: messages. Messages are
short strings that are sent by a process to another process. On arrival, a message
is stored in a mailbox and the process is woken up 1f it was sleeping. Messages can
be used to provide synchronization between multiple processes.

Mapped into each process is a user readable page known as the Wall. This
page 1s used to distribute system wide information. Typically this page contains
capabilities used to communicate with manager processes and the system time. The
system time is updated when the kernel transfers control to a user process.

A process contains a number of threads of control known as subprocesses. All
processes support at least one user subprocess. Messages are addressed to a spe-
cific subprocess of a process. Associated with each subprocess is a priority which
determines which subprocess to execute when more than one is runnable.

Processes can control the execution state of other processes by the use of freeze
and thaw functions. When a process 1s frozen 1t 18 made unrunnable until it is
thawed. The process will continue to accept messages while its mailboxes are not

full.

A version of freeze and thaw which uses magic numbers was introduced in the
Walnut Kernel; 1t 18 known as protected freeze and thaw. These operations require
that a magic number be presented to the kernel each time a freeze or thaw operation
is performed. The process is only runnable when all the freeze operations are undone
by thaw operations, with magic numbers matching the magic numbers of the freeze
operations.

Access to hardware devices i1s provided through shared memory. The system
object is a special object that covers the memory in which the kernel code and
data are stored, the buffers used to transfer information to and from devices, and
the memory locations where any memory mapped devices exist. An initialization
process derives capabilities from the master capability for the system object. The
derived capabilities are distributed to manager processes for devices.

Block oriented random access devices, typically, do not have an interface acces-
sible by the user. These devices are treated as volumes. Allowing low level access
to the devices would compromise the security of data stored on the media. Tn the
case of floppy disks, low level access is prohibited when a volume is mounted and
otherwise allowed. This allows tools which read MS-DOS formatted disks to be im-
plemented in user code. This provides a level of security equivalent to the protection
provided by the media. In the case of removable media, security is equivalent to
the possession of the physical media’.

A major change was made to the capability model with the introduction of
the SRMULTILOAD right. Capabilities without this right can only be used by
processes with a serial number which equals the password 2 of the capability. This
allows processes to transfer access rights for an object to a specific process, and
prevent any other process from acquiring those rights. One application of this
mechanism is to use it in combination with a protected freeze and thaw operation
to grant controlled access to physical devices (see section 6).

5Fncryption can be employed to make the data less easily accessible when the removable media
is not mounted

SERC-0011
Issue 1
August, 1995

2.5 Devices in the Current Implementation

Circular buffers are used to transfer information to and from serial ports, parallel
ports and the keyboard. There are two interfaces to the screen. A VT100 emulator
which uses a circular buffer to transfer information and the memory mapped screen
memory. The VT100 emulator manipulates the position of the cursor on the screen
when the memory mapped screen is used.

All the circular buffers used to interface with devices employ the same format
and conventions. This simplifies design and improves reliability by encouraging
software reuse.

3 Structures

This section describes a number of common structures found in programs operating
under the Walnut Kernel. Tt addresses both organization of programs and data
structures.

3.1 Program Structures

Walnut Kernel programs are similar to programs which are implemented under
GUls in that both types of programs respond to external events. GUIs provide two
constructs for handling events:

Message Loops are a loop which contains a call to a function that accepts an
event from a queue of events, and then calls a function to handle the event.

Callback Functions are registered with the user interface and are invoked with
a set of parameters when an event occurs. Callback functions are used to
handle asynchronous events.

The Walnut Kernel supports constructs which perform similar tasks, but are im-
plemented differently.

while true
begin
wait(-1)
receive(msg)
server function(msg)
end

Figure 3: Pseudocode for a Message Loop

The Walnut Kernel typically handles messages by using a message loop (see
figure 3). This simple construct places the process (or subprocess) into a sleep state
until a message arrives, receives a message, handles the message, and returns the
process to a sleeping state. As a process cannot sleep when there are messages
waiting for it, the message loop can handle multiple messages without the need to
test for the presence of a message before going to sleep.

Asynchronous events which would be handled with a call back function under
a GUT are implemented through the use of subprocesses. A subprocess is a thread
of control within a process to which a message can be specifically addressed. When
a message arrives for a subprocess, the subprocess is made executable. Typically a

SERC-0011

Issue 1
August, 1995

message loop 1s used to receive and handle the message before putting the subprocess
back to sleep.

3.2 Data Structures

Persistence, sharing and relocation shape the types of data structures in common
use under the Walnut Kernel.

File oriented operations are typically performed on a stream of data, converting
the contents of an input stream to an output stream. Persistent data structures
do not require conversion to and from a secondary storage format, eliminating the
stream orientation imposed by the file mechanism. Tn addition, programmers are
able to perform random access operations on input and output data structures
without the overheads that would be present on a stream oriented system. The
absence of these constraints provides an new degree of freedom in the design of
data structures.

A hash table is an example of a data structure that benefits from a persistent
implementation. On a persistent system the hash table is stored in a directly usable
form. This can be contrasted with a file oriented system which has the choice of
extracting the data from the table and storing it in a linear form, or storing the
table as a block of memory dumped to disk. The former requires either a complex
transform on the data to recover it in the correct order for storage, or an additional
data structure that keeps track of the order in which data should be stored. The
latter approach requires the table to be read at the beginning of the program and
written at the end of the program, introducing a significant 10O overhead.

The easy sharing of data requires programmers to be aware of synchroniza-
tion, access control, and locking issues. Currently systems programmers work in
an environment where sharing considerations are important. Application program-
mers need to become aware of the issues and techniques for managing shared data.
Provision must be made in shared data structures for collective access to the data
structure. This may include choosing data structures that allow simultaneous access
(circular buffers) or employ locking.

Programmers have a choice of loading an object at a fixed address or allowing
the loading of an object at an arbitrary address. Tf an object is always located at a
fixed address, pointers may be used within the object to refer to other parts of the
data structure. This arrangement has the advantage of speeding references within
an object. However, it causes a loss of flexibility and may restrict the sharing of
objects. This is because programs will only be conveniently able to load one object
at a time that occupies a set of points in the address space. Relocatable objects
use index values to refer to parts of the object. This requires an addition operation
before a dereference operation can be performed resulting in a potential loss of
performance.

Circular buffers (see figure 4) are used to transfer stream oriented information
between processes. Two implementations are used:

e A minimal implementation is used by character mode devices such as serial
ports and the keyboard to communicate with their manager processes.

e An optimized version is used for interprocess communication.

Both circular buffer implementations do not require locking, but ensure that
data is correctly transfered from the sender to the receiver. They operate by giving
the sender read/write access to the write-pointer, and read-only access to the read
pointer. The receiver has read /write access to the read-pointer, and read-only access
to the write pointer. This eliminates contention over updating the pointers. The
data structure operates safely even if information relating to the position of the

SERC-0011
Issue 1
August, 1995

A A A
-+ Read
Write -+ Write
<[]
Read Write Read
<[] [<[]
Empty Partly Full Full

Figure 4: A Circular Buffer

other pointer is old. The data structure has a minor inefficiency in that there is
always a single wasted slot when the data structure is full.

In the more efficient implementation, both the sender and receiver have a private
pointer known as the tripwire. The tripwire is set to point to either the value of
the other pointer or the top of the buffer. Before sending or receiving an element
from the circular buffer, the value of the pointer is compared against the tripwire to
determine if there 1s the risk of overfilling the buffer or crossing the end of the buffer.
This mechanism saves the cost of a comparison on most accesses to the buffer by
converting the separate tests for overfilling and wrapping, from top to bottom of the
buffer, into a single test. Tf the comparison indicates that either of the boundary
conditions has been reached, further tests are carried out to determine which of the
two conditions caused the problem, and the tripwire is set to a new position.

4 Legacy Code

A library has been constructed that emulates many of the functions found in the C
stdio library. This library has two roles:

e It allows the reuse of a large quantity of existing C code, reducing development
effort.

e It provides an environment that is familiar to a large range of programmers al-
lowing them to use existing skills while learning about the features the Walnut
Kernel environment offers them.

Under the emulation library files and streams are implemented using the same
circular buffer code. Files gain no advantage from being implemented using circular
buffers; however, there is no performance penalty either. By choosing to implement
the two mechanisms in the same way, code volume is reduced and code maintenance
is simplified.

5 Initproc

When a Walnut Kernel is booted, it generates an object known as the system ob-
ject. This object contains all the memory pages occupied by kernel code, kernel
data, and device driver interfaces and buffers. The initialization process derives ca-
pabilities from the system object used by the processes which manage devices. The

SERC-0011

Issue 1
August, 1995

restrict operation is then applied to the master capability. This operation removes
rights associated with a capability without affecting the rights of the children of the
capability. This eliminates a potential security hole associated with the existence
of a capability allowing unfettered access to the kernel and device interfaces. After
deriving the set of less powerful capabilities, Initproc notifies the scheduler that it
1s safe to schedule other processes, and sends messages to all manager processes
containing the capabilities they require to access the devices they manage. Tnit-
proc completes its operation by entering a message loop and waiting for a message
indicating that the system 1s to be reconfigured.

Initproc illustrates a number of features of programming under the Walnut Ker-
nel; however, the process is unique among Walnut Kernel processes in that it 1s
restarted from a fixed address each time the kernel is booted. Apart from always
starting Initproc from a fixed address, the kernel provides no special functions to
support this code. Thus all of Initproc’s code operates at the user level, requiring
no special kernel support or privileges. All other processes resume their operations
from the point at which they were stopped when the system was shutdown. Fur-
thermore, as the system object is stored in volatile storage, the system object does
not retain information about the capabilities applying to it over a reboot. The ini-
tialization process is responsible for remaking the capabilities used by the manager
processes before allowing other processes to be scheduled.

The kernel scheduler monitors a word in the Wall. When the word becomes non-
zero, the kernel scheduler allows the scheduling of any runnable process. Initproc
derives a capability for the Wall from the system object. This capability is sent to
the Wall manager and used by Initproc to notify the scheduler.

In addition to the easy sharing of data demonstrated by the above application,
persistence is also exploited in Initproc. The derivative capabilities generated from
the system object are stored in an array. When Initproc is restarted following a
shutdown, it examines this array and generates derivative capabilities with the same
name and rights as those found in the array before restarting the scheduler. This
simplifies the design of the manager processes as the capabilities given to managers
by Initproc appear to persist over the reboot. Holders of derivatives of capabilities
distributed by Initproc will find that those capabilities no longer work.

6 Glu

Glui is the manager process for the screen and the keyboard. Tt provides several
stream mode interfaces to the keyboard and screen. A series of keystrokes are used
to switch between sessions. In addition, Glui supports a mechanism for giving direct
access to the screen memory for a number of processes. Like Initproc, Glui functions
using system calls available to all processes.

When the Walnut Kernel is booted, Initproc sends a message with a capability
for the resources managed by each manager process. On receipt of the messages
containing capabilities for the keyboard, the screen, the VT100 emulator built into
the kernel, and the Wall, Glui creates 10 virtual screens and derives a capability
which allows messages to be sent to Glui. This capability is then placed on the
Wall.

The screen and keyboard TO architecture of the Walnut Kernel is illustrated in
figure 5. To provide terminal multiplexing facilities, Glui intercepts all keyboard in-
put scanning for control sequences. If no control sequences are found, the keyboard
input 1s placed in the input buffer for the application currently being displayed on
the screen. The output buffer of the current application is polled periodically. Tf
new information 1s found in the buffer, it 18 passed to the VT100 emulator code
built into Glui. This emulator writes its output directly to the memory mapped

SERC-0011
Issue 1
August, 1995

Hardware Device Drivers Glui Apps

Screen Tmages:

- - ->

—

N

VT100 Oritput
Buffer

Screen Buffer Inbuilt VT100

Screen (mem mapped)

FEmulator FEmulator

=

=

=

1o

: : =

; Tnbuilt VT100 -
! Keyboard Keyhoard Buffer :: nbuilt VTT00 Tnput Tripat

: i1 Emulator e

Scanner Bufter

Figure 5: Keyboard and Screen TO

screen buffer. To move the cursor and sound the bell, Glui passes control codes to
the VT100 emulator built into the device drivers.

To change the display to another application, Glui stops accepting input from
the current client program. The current contents of the screen are copied to a
buffer associated with the current application. This buffer is located within Glui
and is not made accessible to other programs. The buffer corresponding to the new
application is copied to the screen, and the output buffer of the new application is
read to update the screen. Keyboard output is directed to the input buffer of the
new application.

Glui supports two types of output services:

e a VT100 emulator
e the hardware screen buffer

When a process requires 1O through the VT100 emulator and keyboard, it sends
a message to Glui using the capability on the Wall. Tf there is a virtual screen
available, GGlui sends a message back which contains the capability for a keyboard
buffer and a screen buffer. These buffers use the circular buffer protocol discussed
in section 3.2. The process requesting the screen may send data containing VT100
screen control sequences via the output stream. Input i1s received via the input
stream.

When direct access to the hardware screen buffer i1s requested, the process must
supply for itself a capability that allows the process to be frozen. If this capability
is not, provided, or does not allow Glui to send the freeze message, the request will
be rejected. Tf a suitable valid capability is supplied, a capability without SRMUT.-
TILOAD right and with a password 2 equivalent to the requesting process’s serial
number is returned to the requesting process. When loaded by the the request-
ing process, this capability allows direct access to the screen buffer; however, this
capability cannot be loaded by any other process.

10

SERC-0011
Issue 1
August, 1995

Protected freeze and thaw are used on the processes granted direct access to
the memory mapped screen buffer. This prevents other processes from thawing a
process with a usable capability for writing to the screen. Glui 18 able to ensure
that only one process writes to the screen at a time, preventing corruption of the
screen’s contents.

were introduced to enable Glui to allow controlled direct access to the hardware
screen buffer. Other solutions were considered, including locking processes [2] and
schemes for the rapid revocation of capabilities.

Under the Walnut Kernel, a process is locked when it is created with a 63-
bit lockword. This lockword is XORed with each ‘alter’ capability® before the
capability 1s used by the kernel. The process can only use capabilities which have
been XORed with the lockword, and then be passed to the process. This prevents a
locked process from communicating with other processes without the assistance of a
party who knows the lockword value. This mechanism was considered, but locking
severely curtailed the ability of the client program to communicate.

Although a number of rapid revocation schemes were considered, the gener-
alization of these schemes to a multiprocessor environment either resulted in a
mechanism insufficiently responsive, or required an unacceptably high overhead to
support a relatively infrequent operation.

7 Shell

Shell is a command interpreter. Tt provides mechanism for managing objects, orga-
nizing ‘files’ generated through the stdio emulation code and launching programs.
Shell has detailed information relating to the structure of a process which follows
the conventions adopted for the Walnut Kernel.

When Shell is first started it sends a message to Glui requesting a terminal
emulator output buffer and a keyboard input buffer. On receipt of these capabilities,
it presents the user with a prompt and awaits further instructions. Users can run
processes in two modes:

e Yielding the screen to the new process. The input buffer and output buffer
used by Shell are given to the new process for its use until the new process
terminates.

e Creating a new screen for the new process. The shell requests a new set of
buffers from Glui which are given to the new process.

The two modes differ in several respects. When the new process 1s to inherit the
screen from Shell, the buffers are made available to the new process and the shell
goes into a loop which polls the new process’s status. Shell ignores the contents
of the buffers and does not take any command input until it detects that the new
process has ceased to function. Shell then resumes using the buffers and accepting
commands. When the screen is not inherited from Shell, a set of buffers is requested
from Glui and made available to the new process. Shell continues to interpret
the input from the keyboard and remains active on the screen that it is currently
connected to.

Two mechanisms were introduced into the Walnut Kernel to allow processes to
determine the state of another process:

Cooee Messages are sent to a process and results in a Cooee reply message
being sent to a capability specified in the cooee message. The Cooee reply

6 A non-alter capability does not posses write rights and cannot be used to transfer information
to another process. Alter capabilities can be used to transfer information.

11

SERC-0011
Issue 1
August, 1995

message 18 automatically generated by the kernel and contains a field indicat-
ing whether the process is running, frozen, sleeping or dead.

Peek System Call returns a value which indicates whether the process is running,
frozen, sleeping or dead.

The Cooee message was introduced first; however, polling processes to determine
their state proved to be useful and popular, so the more efficient peek mechanism
was provided. The peek mechanism has the advantage of a significantly lower
overhead as it requires only a single system call and the message passing mechanism
1s avoided.

A process object conforming to the Walnut Kernel conventions contains:

Startup Code Area (optional) This area may contain a small amount of code
used in starting a process.

File Descriptor Table (mandatory) This area contains the file descriptors for use
by the process. Note: The first 3 elements of the File Descriptor Table are
mandatory to allow for standard output, standard input and standard error.
The entries in this table are used by the Unix emulation library.

Private Data Pointer Table (mandatory) This area contains pointers to private
data. The table is indexed by the capability index of the executing code and
is used to locate data used by the executing code.

Default Heap (optional) The default location for the creation of the heap.
Default Stack (optional) The default location for the creation of the stack.

To start a process, the shell takes a code object and a data object for the
program to run in the new process. The data object is duplicated. A new process 1s
made by invoking the kernel. The capabilities for the code object and the duplicate
data object are passed to the kernel as autoload capabilities”, the stack pointer
and program counter are set and the wakeup time for the new process is set to
forever. After the new process is created, Shell, modifies the pages of the object
loaded into the shell’s address space. Shell writes into the file descriptor table the
capabilities for the new process’s standard input, output and error, and any other
file descriptors that are required. The command line arguments and a capability for
the object containing the process’s environment strings are written into the heap
space. A message 1s sent to the process to wake the process up.

The method used to create processes allows multiple copies of a program to be
run simultaneously. The scheme is economical of both disk space and memory space
as 1t shares a single image of the code. The data is duplicated to prevent multiple
copies of a program interfering with each other.

8 Wyrm

Wyrm® is an arcade style game inspired by the games nibbles[7] and worm[12].
Apart from its frivolous value, Wyrm has been used to test the responsiveness of
the interface and a number of TO mechanisms.

The current version of Wyrm makes use of the Unix emulation stream TO code
to communicate via standard TO with Glui which draws the parts of the game on the

7 Autoload capabilities are automatically loaded into the address space of a process when the
process is created.

8 A wyrm is a mythical creature of great power. The game was sarcastically named wyrm
because of its lack of speed. After tracing a number of implementation problems in the stream TO
code Wyrm now proudly lives up to its name.

12

SERC-0011
Issue 1
August, 1995

screen. This version is highly responsive and shows that the two layers of software
provided by the existing TO structure are sufficiently quick for highly interactive
applications.

Farly in the development of the Unix emulation libraries a misplaced fflush had
caused us to believe that the system performance was inadequate. At that time, a
version of Wyrm which made direct use of the screen was written in an attempt to
determine where the bottleneck lay. This resulted in changes in the design of the
kernel and Glui to correctly support the sharing of memory mapped buffers.

9 Conclusion

This paper has outlined four applications implemented under the Walnut Kernel.
These nitial applications have influenced the design of the kernel resulting in the
introduction of several mechanisms:

o Protected freeze and thaw

SEMULTILOAD system right

e Cooee messages and the Peek system call

Capabilities with user specified passwords

The publicly-readable Wall

The password-capability model has been shown to provide adequate performance
for a variety of tasks. Although the SRMULTILOAD right fundamentally changes
one of the bases of the capability model by introducing a capability useful only to
a particular process, this change has left the remainder of the model unaffected.

Techniques familiar to programmers familiar with GUIs have been shown to be
applicable to the Walnut Kernel. This similarity implies that an available pool
of skilled programmers can be easily cross trained to work under capability based
operating systems.

The TO and operating system have been demonstrated to be sufficiently respon-
sive to be used for highly interactive tasks.

Acknowledgments

The authors would like to acknowledge the following contributions:
e Mr Carlo Kopp - author of the UNTX compatibility libraries.

The ‘Secure RISC Architecture’ project is supported by a grant from the Aus-
tralian Research Council (A49030623). Maurice Castro is a recipient of an Aus-
tralian Postgraduate Research Award.

References

[1] M. Anderson, R D. Pose, and C S. Wallace. A Password-Capability system.
The Computer Journal, 29(1):1 8, 1 1986.

[2] M. Anderson and C S. Wallace. Security management in a password-capability
system. Technical Report 56, Department of Computer Science, Monash Uni-
versity, 8 1985.

13

SERC-0011
Issue 1
August, 1995

[3]

[4]

M.P. Atkinson, R. Morrison, and G.D. Pratten. Designing a persistent informa-
tion space architecture. In 10th TFIP World Congress, Dublin, pages 115 120,
1986.

Alan C. Bromberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Nor-
man Hardy, Charles R. Landau, and Jonath on S. Schapiro. The KeyKOS
nanokernel architecture. In Proceedings of the USENIX Workshop on Micro-
Kernels and Other Kernel Architectures, pages 95 112. USENIX Association,
4 1992.

Maurice Castro. The walnut kernel: User level programmer’s guide. Technical
Report, 95/222, Department of Computer Science, Monash University, 5 1995.

Jefferey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.
Sharing and protection in a single address space operating system. Technical
Report Technical Report 93-04-02, Department of Computer Science and FEngi-
neering, University of Washington, Seattle, USA | April 1993 (Revised January
1994).

Microsoft, Corporation. Qbasic nibbles, 1990. Source code in BASTC.

Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-
grammed computations. Communications of the ACM, 9(3):143 155, 3 1966.

R S. Fabry. Capability-based addressing. Communications of the ACM,
17(7):403 412, 7 1974.

Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry Vochteloo.
Mungi: A distributed single address-space operating system. In G. Gupta,
editor, Proceedings of the Seventeenth Australian Computer Science Confer-
ence, pages 271 280, 1 1994.

Leslie J. Keedy. The Monads view of software modules. Tn A .J H. Sale and
(. Hawthorne, editors, Proceedings of the Ninth Australian Computer Science

Conference, 8 1982.

Michael Toy. Worm, 1991. Part of the Berkeley Unix Distribution, Source code
in C.

14

