
C

S

R

E SERC-0011August, 1995Issue 1
The Walnut Kernel:Program Implementation Under TheWalnut KernelMaurice Castro1Glen Pringle2Chris Wallace3

1Software Engineering Research Center, CITRI, 723 Swanston St, Melbourne 30532Department of Computer Science, Monash University , Clayton 31683Department of Computer Science, Monash University , Clayton 3168

SERC-0011Issue 1August, 1995

Copies of this document may be obtained by contacting:DirectorSERC723 Swanston StCarlton, Victoria, 3053Prepared by the Software Engineering Research Center.Copyright c1995 SERC.All Rights Reserved.
ii

AbstractThe research community has had a long term interest in the use of capabilities inoperating systems. Many advantages have been claimed by designers of systemsbased on the capability paradigm. At present only a few capability-based systemsare in use in non-research environments. Relatively little work has been publisheddescribing the implementation of applications in a capability based environment.This paper describes the Walnut Kernel - a capability-based operating systemdeveloped in the Department of Computer Science, Monash University - and anumber of application programs implemented under it. The development of theseapplications resulted in changes to the design of the kernel. These inuences andlessons learned from the design and implementation of these applications are dis-cussed.This technical report has been released by both the Software Engineering Re-search Center, Collaborative InformationTechnology Research Institute, 723 SwanstonSt, Melbourne, Australia 3053 as technical report SERC-0011 and the Departmentof Computer Science, Monash University, Clayton, Australia 3168 as technical re-port 95/230.

SERC-0011Issue 1August, 19951 OverviewThe Walnut Kernel is a capability based operating system under development inthe Department of Computer Science at Monash University. This paper describes anumber of applications that have been written to operate under the Walnut Kernel.These applications have allowed programmers to explore the possibilities o�ered bya capability-based operating system and provided feedback to the operating systemdesigners. This feedback in turn has resulted in changes to the design of the kernel.Four programs are described:� Initproc - the initialization process� Glui - a screen multiplexor� Shell - a user shell� Wyrm - an arcade style gameInitproc is responsible for deriving capabilities used by processes which manageaccess to devices. Shell and Glui form a user level interface which allow access tothe functions of the kernel and objects within the system. The game Wyrm is anexample of a highly interactive application which demands fast response times fromthe system and is IO bound.Section 2 briey describes the kernel and capability based systems. Programstructures and data structures used in the applications are described in section 3.Sections 5 to 8 discuss the application programs.2 Walnut KernelThe Walnut Kernel is based on the concept of password capabilities which were orig-inally developed for use in the operating system for the Password-Capability System[1]. This section briey introduces capabilities and the environment provided bythe Walnut Kernel to application programmers.2.1 CapabilitiesCapabilities are essentially a naming scheme used to provide a uniform mechanismfor controlling access to and the protection of resources [8]. The naming schemecan be extended beyond identifying objects by viewing a capability as a form ofaddress [9]. This allows all system resources to be modelled as memory objects.Capabilities perform two roles: naming - a capability is used to uniquely identifyan object or part of an object, and access control - associated with a capability area set of rights that the possessor of the capability is allowed to exercise over theobject associated with the name. Possession of a capability is synonymous withaccess to the rights associated with the capability. In combination with persistentmemory objects this provides a simple and uniform programming model.The capability model promotes the sharing of memory objects. Possession ofa capability enables the holder to use the functionality conveyed by the capabil-ity. This allows multiple processes to access the section of an object covered by acapability.The persistent nature of capability-based systems provides the further advan-tages of a reduced code size and simplicity. Typically 30% of a program is devotedto accessing data in secondary storage. Capability-based systems eliminate theneed to explicitly access secondary storage resulting in savings in size. Complexity1

SERC-0011Issue 1August, 1995is reduced by using a single access mechanism for both temporary and persistentstorage [3].A number of capability based operating systems have been developed. Theseinclude: Monads, KeyKOS, and Opal.The development of Monads [11] was motivated by a desire to enforce the use ofmodular programming practices. It employed capabilities as a naming and accesscontrol mechanism. Specialized hardware was built to support the use of capa-bilities and enforce the information hiding principles implemented in the Monadsprogramming model.KeyKOS [4] is signi�cant because it demonstrates the potential value of capability-based operating systems in commercial applications. Systems using KeyKOS wereused as the basis of British Telecom's Tymnet service. This service required ac-curate accounting, the ability to support mutually antagonistic users and 24-houruninterrupted operation. Capabilities provided strong access control4. The persis-tent nature of memory objects and regular checkpointing, meant that systems couldbe restarted rapidly and start functioning from the point of failure.Opal [6] is a single address space operating system employing password-capabilitiesas an access control mechanism. It provides a 64-bit address space which is sparselypopulated by memory objects. Objects are identi�ed by capabilities which are col-lected into protection domains. Processes operating in a protection domain canname an object by its address and exercise the access rights for the object providedby the capability stored in the protection domain.2.2 Types of ImplementationsCurrently there are three major mechanisms for implementing capabilities withinan operating system:Tagged Architectures employ a hardware supported tag bit which distinguishesthe memory containing capabilities from other user program memory. Onlya limited set of operations are permitted on capabilities, and the hardware isused to prevent forgery.Capability Lists are collections of capabilities managed by the operating system.The operating system moderates all access to the contents of capability lists,hence preventing forgery. This mechanism does not require specialized hard-ware support.Password-Capabilities are statistically secure. The capability consists of anidenti�er for an object and a randomly selected value. Only a small numberof the total range of values are valid capabilities. This ensures that forgerswould have to spend a prohibitively large amount of time searching the namespace for a valid capability.Capability-lists have been the most popular form of implementation as they donot require specialized hardware support. Monads and KeyKOS both employedcapability-lists. Password-capabilities are a more recent development and have beenemployed in: the Password-Capability System, Opal, and Mungi[10].2

SERC-0011Issue 1August, 1995
0 0RegionView ViewView =&

Mask =&Rights
CapPresented CapabilityDerivedParametersLimit 0O�setRights RightsFigure 1: Derivation2.3 The Password-Capability ModelA password capability consists of two parts. The identi�er portion of a capabilityuniquely identi�es an object. The password component identi�es the set of rightsand the view associated with the capability.The rights associable with a capability are system dependent. Typically therights include: user accessible, read, write, execute, derive, and suicide. The �rstfour of the rights are related to access to memory, the other rights are used tocontrol how the capability is used. Capabilities without derive right cannot be usedto make new capabilities. A capability without suicide right cannot be deleteddirectly, it can only be deleted through the use of a capability able to destroy theparent capability.A view is an attribute of a capability. It is the region of an object that can beaddressed by a process having the capability. The region is contiguous and de�nedby an o�set from the base of the object and an extent.The master capability for an object is returned to the process which createsthe object. The master capability possesses all the rights which may be exercisedover the object. All other capabilities applying to the object are derived fromthe master capability. Derivation (see �gure 1) is the fundamental operation of apassword-capability based system. It is performed by taking a capability's rightsand performing a logical-and of those rights with a rights-mask to produce a setof rights not more powerful than the parent capability. In addition, the view pre-sented by the parent capability and an o�set and extent are combined to producea capability which covers an equal or smaller section of the object.4Illicit access to an object was only possible if the object could be named, and a capability forthat name forged. The compromise of an object under a capability-based system does not resultin the compromise of other objects. To compromise other objects it is necessary to repeat theprocess required to breach the security of the �rst object. 3

SERC-0011Issue 1August, 1995 32 bitsVolume 32 bitsSerial 32 bitsPassword 1 32 bitsPassword 2Figure 2: Structure of a Walnut Kernel CapabilityThe capabilities of an object are notionally arranged in a tree structure. Tomaintain this structure the deletion of a parent capability results in the destructionof its children, and hence all its descendents.The password-capability model allows any process that knows the name of acapability to load the capability and make use of the rights and view associatedwith the capability.Processes are distinguished from other objects by the existence of process-stateinformation contained in the process object. The state information describes thecontents of the address space seen by the process, the process's mailboxes and thestored processor state. Access to this information is typically moderated by the ker-nel. This prevents user code from circumventing hardware protection mechanisms(for example the user/supervisor bit). Process objects are the only active elementswithin the system apart from the kernel itself.2.4 Walnut Kernel ImplementationThe Walnut Kernel is based on the password-capability model. However, the modelhas been modi�ed in a number of key areas as a result of our experiences in using thepassword capability model and restrictions imposed by avoiding features requiringhardware support not available on a wide range of processors. This section brieydescribes the avor of the Walnut Kernel, a complete description can be found in[5].Under the Walnut Kernel a capability is 128-bit value that consists of 4 �elds(see �gure 2):Volume �eld identi�es the device on which an object resides.Serial Number �eld identi�es the object within its volume.Password 1 & 2 �elds identify the capability.The volume and serial portion of the capability uniquely identify an object. Thepasswords are used to identify the set of rights and the view associated with thecapability.Typically the passwords of a capability are allocated randomly to ensure a sparsedistribution and statistical security. The Walnut Kernel introduced the ability tospecify the passwords of a derived capability. This serves two purposes:� It allows capabilities to be hard coded into programs and operate correctly.This service is an alternative to advertising a capability.� It allows the regeneration of capabilities after deletion. This feature is usedby the initialization process to regenerate capabilities for the system objectafter a reboot.The majority of commercially available processor designs only provide supportfor demand paged virtual memory, and they have no provision for supporting seg-mentation. The Walnut Kernel uses the paging hardware to control access to ob-jects. This results in a page size protection granularity.4

SERC-0011Issue 1August, 1995Views of objects can be mapped into the address space of a running process.The contents of the loaded views may be manipulated directly through the use ofany operations, provided by the processor, which a�ect memory.Memory is easily shared by Walnut Kernel processes as it only requires processesto load capabilities with overlapping views for part of an object to be shared. Afurther interprocess communicationmechanism is provided: messages. Messages areshort strings that are sent by a process to another process. On arrival, a messageis stored in a mailbox and the process is woken up if it was sleeping. Messages canbe used to provide synchronization between multiple processes.Mapped into each process is a user readable page known as the Wall. Thispage is used to distribute system wide information. Typically this page containscapabilities used to communicate with manager processes and the system time. Thesystem time is updated when the kernel transfers control to a user process.A process contains a number of threads of control known as subprocesses. Allprocesses support at least one user subprocess. Messages are addressed to a spe-ci�c subprocess of a process. Associated with each subprocess is a priority whichdetermines which subprocess to execute when more than one is runnable.Processes can control the execution state of other processes by the use of freezeand thaw functions. When a process is frozen it is made unrunnable until it isthawed. The process will continue to accept messages while its mailboxes are notfull.A version of freeze and thaw which uses magic numbers was introduced in theWalnut Kernel; it is known as protected freeze and thaw. These operations requirethat a magic number be presented to the kernel each time a freeze or thaw operationis performed. The process is only runnable when all the freeze operations are undoneby thaw operations, with magic numbers matching the magic numbers of the freezeoperations.Access to hardware devices is provided through shared memory. The systemobject is a special object that covers the memory in which the kernel code anddata are stored, the bu�ers used to transfer information to and from devices, andthe memory locations where any memory mapped devices exist. An initializationprocess derives capabilities from the master capability for the system object. Thederived capabilities are distributed to manager processes for devices.Block oriented random access devices, typically, do not have an interface acces-sible by the user. These devices are treated as volumes. Allowing low level accessto the devices would compromise the security of data stored on the media. In thecase of oppy disks, low level access is prohibited when a volume is mounted andotherwise allowed. This allows tools which read MS-DOS formatted disks to be im-plemented in user code. This provides a level of security equivalent to the protectionprovided by the media. In the case of removable media, security is equivalent tothe possession of the physical media5.A major change was made to the capability model with the introduction ofthe SRMULTILOAD right. Capabilities without this right can only be used byprocesses with a serial number which equals the password 2 of the capability. Thisallows processes to transfer access rights for an object to a speci�c process, andprevent any other process from acquiring those rights. One application of thismechanism is to use it in combination with a protected freeze and thaw operationto grant controlled access to physical devices (see section 6).5Encryption can be employed to make the data less easily accessible when the removable mediais not mounted 5

SERC-0011Issue 1August, 19952.5 Devices in the Current ImplementationCircular bu�ers are used to transfer information to and from serial ports, parallelports and the keyboard. There are two interfaces to the screen. A VT100 emulatorwhich uses a circular bu�er to transfer information and the memory mapped screenmemory. The VT100 emulator manipulates the position of the cursor on the screenwhen the memory mapped screen is used.All the circular bu�ers used to interface with devices employ the same formatand conventions. This simpli�es design and improves reliability by encouragingsoftware reuse.3 StructuresThis section describes a number of common structures found in programs operatingunder the Walnut Kernel. It addresses both organization of programs and datastructures.3.1 Program StructuresWalnut Kernel programs are similar to programs which are implemented underGUIs in that both types of programs respond to external events. GUIs provide twoconstructs for handling events:Message Loops are a loop which contains a call to a function that accepts anevent from a queue of events, and then calls a function to handle the event.Callback Functions are registered with the user interface and are invoked witha set of parameters when an event occurs. Callback functions are used tohandle asynchronous events.The Walnut Kernel supports constructs which perform similar tasks, but are im-plemented di�erently.while truebeginwait(-1)receive(msg)server function(msg)end Figure 3: Pseudocode for a Message LoopThe Walnut Kernel typically handles messages by using a message loop (see�gure 3). This simple construct places the process (or subprocess) into a sleep stateuntil a message arrives, receives a message, handles the message, and returns theprocess to a sleeping state. As a process cannot sleep when there are messageswaiting for it, the message loop can handle multiple messages without the need totest for the presence of a message before going to sleep.Asynchronous events which would be handled with a call back function undera GUI are implemented through the use of subprocesses. A subprocess is a threadof control within a process to which a message can be speci�cally addressed. Whena message arrives for a subprocess, the subprocess is made executable. Typically a6

SERC-0011Issue 1August, 1995message loop is used to receive and handle the message before putting the subprocessback to sleep.3.2 Data StructuresPersistence, sharing and relocation shape the types of data structures in commonuse under the Walnut Kernel.File oriented operations are typically performed on a stream of data, convertingthe contents of an input stream to an output stream. Persistent data structuresdo not require conversion to and from a secondary storage format, eliminating thestream orientation imposed by the �le mechanism. In addition, programmers areable to perform random access operations on input and output data structureswithout the overheads that would be present on a stream oriented system. Theabsence of these constraints provides an new degree of freedom in the design ofdata structures.A hash table is an example of a data structure that bene�ts from a persistentimplementation. On a persistent system the hash table is stored in a directly usableform. This can be contrasted with a �le oriented system which has the choice ofextracting the data from the table and storing it in a linear form, or storing thetable as a block of memory dumped to disk. The former requires either a complextransform on the data to recover it in the correct order for storage, or an additionaldata structure that keeps track of the order in which data should be stored. Thelatter approach requires the table to be read at the beginning of the program andwritten at the end of the program, introducing a signi�cant IO overhead.The easy sharing of data requires programmers to be aware of synchroniza-tion, access control, and locking issues. Currently systems programmers work inan environment where sharing considerations are important. Application program-mers need to become aware of the issues and techniques for managing shared data.Provision must be made in shared data structures for collective access to the datastructure. This may include choosing data structures that allow simultaneous access(circular bu�ers) or employ locking.Programmers have a choice of loading an object at a �xed address or allowingthe loading of an object at an arbitrary address. If an object is always located at a�xed address, pointers may be used within the object to refer to other parts of thedata structure. This arrangement has the advantage of speeding references withinan object. However, it causes a loss of exibility and may restrict the sharing ofobjects. This is because programs will only be conveniently able to load one objectat a time that occupies a set of points in the address space. Relocatable objectsuse index values to refer to parts of the object. This requires an addition operationbefore a dereference operation can be performed resulting in a potential loss ofperformance.Circular bu�ers (see �gure 4) are used to transfer stream oriented informationbetween processes. Two implementations are used:� A minimal implementation is used by character mode devices such as serialports and the keyboard to communicate with their manager processes.� An optimized version is used for interprocess communication.Both circular bu�er implementations do not require locking, but ensure thatdata is correctly transfered from the sender to the receiver. They operate by givingthe sender read/write access to the write-pointer, and read-only access to the readpointer. The receiver has read/write access to the read-pointer, and read-only accessto the write pointer. This eliminates contention over updating the pointers. Thedata structure operates safely even if information relating to the position of the7

SERC-0011Issue 1August, 1995 Write6 � ReadEmpty � Read� Write6..........................Partly Full � Write� Read6FullFigure 4: A Circular Bu�erother pointer is old. The data structure has a minor ine�ciency in that there isalways a single wasted slot when the data structure is full.In the more e�cient implementation, both the sender and receiver have a privatepointer known as the tripwire. The tripwire is set to point to either the value ofthe other pointer or the top of the bu�er. Before sending or receiving an elementfrom the circular bu�er, the value of the pointer is compared against the tripwire todetermine if there is the risk of over�lling the bu�er or crossing the end of the bu�er.This mechanism saves the cost of a comparison on most accesses to the bu�er byconverting the separate tests for over�lling and wrapping, from top to bottom of thebu�er, into a single test. If the comparison indicates that either of the boundaryconditions has been reached, further tests are carried out to determine which of thetwo conditions caused the problem, and the tripwire is set to a new position.4 Legacy CodeA library has been constructed that emulates many of the functions found in the Cstdio library. This library has two roles:� It allows the reuse of a large quantity of existing C code, reducing developmente�ort.� It provides an environment that is familiar to a large range of programmers al-lowing them to use existing skills while learning about the features the WalnutKernel environment o�ers them.Under the emulation library �les and streams are implemented using the samecircular bu�er code. Files gain no advantage from being implemented using circularbu�ers; however, there is no performance penalty either. By choosing to implementthe two mechanisms in the same way, code volume is reduced and code maintenanceis simpli�ed.5 InitprocWhen a Walnut Kernel is booted, it generates an object known as the system ob-ject. This object contains all the memory pages occupied by kernel code, kerneldata, and device driver interfaces and bu�ers. The initialization process derives ca-pabilities from the system object used by the processes which manage devices. The8

SERC-0011Issue 1August, 1995restrict operation is then applied to the master capability. This operation removesrights associated with a capability without a�ecting the rights of the children of thecapability. This eliminates a potential security hole associated with the existenceof a capability allowing unfettered access to the kernel and device interfaces. Afterderiving the set of less powerful capabilities, Initproc noti�es the scheduler that itis safe to schedule other processes, and sends messages to all manager processescontaining the capabilities they require to access the devices they manage. Init-proc completes its operation by entering a message loop and waiting for a messageindicating that the system is to be recon�gured.Initproc illustrates a number of features of programming under the Walnut Ker-nel; however, the process is unique among Walnut Kernel processes in that it isrestarted from a �xed address each time the kernel is booted. Apart from alwaysstarting Initproc from a �xed address, the kernel provides no special functions tosupport this code. Thus all of Initproc's code operates at the user level, requiringno special kernel support or privileges. All other processes resume their operationsfrom the point at which they were stopped when the system was shutdown. Fur-thermore, as the system object is stored in volatile storage, the system object doesnot retain information about the capabilities applying to it over a reboot. The ini-tialization process is responsible for remaking the capabilities used by the managerprocesses before allowing other processes to be scheduled.The kernel scheduler monitors a word in the Wall. When the word becomes non-zero, the kernel scheduler allows the scheduling of any runnable process. Initprocderives a capability for the Wall from the system object. This capability is sent tothe Wall manager and used by Initproc to notify the scheduler.In addition to the easy sharing of data demonstrated by the above application,persistence is also exploited in Initproc. The derivative capabilities generated fromthe system object are stored in an array. When Initproc is restarted following ashutdown, it examines this array and generates derivative capabilities with the samename and rights as those found in the array before restarting the scheduler. Thissimpli�es the design of the manager processes as the capabilities given to managersby Initproc appear to persist over the reboot. Holders of derivatives of capabilitiesdistributed by Initproc will �nd that those capabilities no longer work.6 GluiGlui is the manager process for the screen and the keyboard. It provides severalstream mode interfaces to the keyboard and screen. A series of keystrokes are usedto switch between sessions. In addition, Glui supports a mechanism for giving directaccess to the screen memory for a number of processes. Like Initproc, Glui functionsusing system calls available to all processes.When the Walnut Kernel is booted, Initproc sends a message with a capabilityfor the resources managed by each manager process. On receipt of the messagescontaining capabilities for the keyboard, the screen, the VT100 emulator built intothe kernel, and the Wall, Glui creates 10 virtual screens and derives a capabilitywhich allows messages to be sent to Glui. This capability is then placed on theWall.The screen and keyboard IO architecture of the Walnut Kernel is illustrated in�gure 5. To provide terminal multiplexing facilities, Glui intercepts all keyboard in-put scanning for control sequences. If no control sequences are found, the keyboardinput is placed in the input bu�er for the application currently being displayed onthe screen. The output bu�er of the current application is polled periodically. Ifnew information is found in the bu�er, it is passed to the VT100 emulator codebuilt into Glui. This emulator writes its output directly to the memory mapped9

SERC-0011Issue 1August, 1995
InputScannerVT100Emulator

Hardware Device Drivers
KeyboardScreen Keyboard Bu�erScreen Bu�er(mem mapped) Inbuilt VT100EmulatorInbuilt VT100Emulator

Glui
InputBu�er

Screen ImagesOutputBu�er
Apps

Figure 5: Keyboard and Screen IOscreen bu�er. To move the cursor and sound the bell, Glui passes control codes tothe VT100 emulator built into the device drivers.To change the display to another application, Glui stops accepting input fromthe current client program. The current contents of the screen are copied to abu�er associated with the current application. This bu�er is located within Gluiand is not made accessible to other programs. The bu�er corresponding to the newapplication is copied to the screen, and the output bu�er of the new application isread to update the screen. Keyboard output is directed to the input bu�er of thenew application.Glui supports two types of output services:� a VT100 emulator� the hardware screen bu�erWhen a process requires IO through the VT100 emulator and keyboard, it sendsa message to Glui using the capability on the Wall. If there is a virtual screenavailable, Glui sends a message back which contains the capability for a keyboardbu�er and a screen bu�er. These bu�ers use the circular bu�er protocol discussedin section 3.2. The process requesting the screen may send data containing VT100screen control sequences via the output stream. Input is received via the inputstream.When direct access to the hardware screen bu�er is requested, the process mustsupply for itself a capability that allows the process to be frozen. If this capabilityis not provided, or does not allow Glui to send the freeze message, the request willbe rejected. If a suitable valid capability is supplied, a capability without SRMUL-TILOAD right and with a password 2 equivalent to the requesting process's serialnumber is returned to the requesting process. When loaded by the the request-ing process, this capability allows direct access to the screen bu�er; however, thiscapability cannot be loaded by any other process.10

SERC-0011Issue 1August, 1995Protected freeze and thaw are used on the processes granted direct access tothe memory mapped screen bu�er. This prevents other processes from thawing aprocess with a usable capability for writing to the screen. Glui is able to ensurethat only one process writes to the screen at a time, preventing corruption of thescreen's contents.Both the SRMULTILOAD right and the protected versions of freeze and thawwere introduced to enable Glui to allow controlled direct access to the hardwarescreen bu�er. Other solutions were considered, including locking processes [2] andschemes for the rapid revocation of capabilities.Under the Walnut Kernel, a process is locked when it is created with a 63-bit lockword. This lockword is XORed with each `alter' capability6 before thecapability is used by the kernel. The process can only use capabilities which havebeen XORed with the lockword, and then be passed to the process. This prevents alocked process from communicating with other processes without the assistance of aparty who knows the lockword value. This mechanism was considered, but lockingseverely curtailed the ability of the client program to communicate.Although a number of rapid revocation schemes were considered, the gener-alization of these schemes to a multiprocessor environment either resulted in amechanism insu�ciently responsive, or required an unacceptably high overhead tosupport a relatively infrequent operation.7 ShellShell is a command interpreter. It provides mechanism for managing objects, orga-nizing `�les' generated through the stdio emulation code and launching programs.Shell has detailed information relating to the structure of a process which followsthe conventions adopted for the Walnut Kernel.When Shell is �rst started it sends a message to Glui requesting a terminalemulator output bu�er and a keyboard input bu�er. On receipt of these capabilities,it presents the user with a prompt and awaits further instructions. Users can runprocesses in two modes:� Yielding the screen to the new process. The input bu�er and output bu�erused by Shell are given to the new process for its use until the new processterminates.� Creating a new screen for the new process. The shell requests a new set ofbu�ers from Glui which are given to the new process.The two modes di�er in several respects. When the new process is to inherit thescreen from Shell, the bu�ers are made available to the new process and the shellgoes into a loop which polls the new process's status. Shell ignores the contentsof the bu�ers and does not take any command input until it detects that the newprocess has ceased to function. Shell then resumes using the bu�ers and acceptingcommands. When the screen is not inherited from Shell, a set of bu�ers is requestedfrom Glui and made available to the new process. Shell continues to interpretthe input from the keyboard and remains active on the screen that it is currentlyconnected to.Two mechanisms were introduced into the Walnut Kernel to allow processes todetermine the state of another process:Cooee Messages are sent to a process and results in a Cooee reply messagebeing sent to a capability speci�ed in the cooee message. The Cooee reply6A non-alter capability does not posses write rights and cannot be used to transfer informationto another process. Alter capabilities can be used to transfer information. 11

SERC-0011Issue 1August, 1995message is automatically generated by the kernel and contains a �eld indicat-ing whether the process is running, frozen, sleeping or dead.Peek System Call returns a value which indicates whether the process is running,frozen, sleeping or dead.The Cooee message was introduced �rst; however, polling processes to determinetheir state proved to be useful and popular, so the more e�cient peek mechanismwas provided. The peek mechanism has the advantage of a signi�cantly loweroverhead as it requires only a single system call and the message passing mechanismis avoided.A process object conforming to the Walnut Kernel conventions contains:Startup Code Area (optional) This area may contain a small amount of codeused in starting a process.File Descriptor Table (mandatory) This area contains the �le descriptors for useby the process. Note: The �rst 3 elements of the File Descriptor Table aremandatory to allow for standard output, standard input and standard error.The entries in this table are used by the Unix emulation library.Private Data Pointer Table (mandatory) This area contains pointers to privatedata. The table is indexed by the capability index of the executing code andis used to locate data used by the executing code.Default Heap (optional) The default location for the creation of the heap.Default Stack (optional) The default location for the creation of the stack.To start a process, the shell takes a code object and a data object for theprogram to run in the new process. The data object is duplicated. A new process ismade by invoking the kernel. The capabilities for the code object and the duplicatedata object are passed to the kernel as autoload capabilities7, the stack pointerand program counter are set and the wakeup time for the new process is set toforever. After the new process is created, Shell, modi�es the pages of the objectloaded into the shell's address space. Shell writes into the �le descriptor table thecapabilities for the new process's standard input, output and error, and any other�le descriptors that are required. The command line arguments and a capability forthe object containing the process's environment strings are written into the heapspace. A message is sent to the process to wake the process up.The method used to create processes allows multiple copies of a program to berun simultaneously. The scheme is economical of both disk space and memory spaceas it shares a single image of the code. The data is duplicated to prevent multiplecopies of a program interfering with each other.8 WyrmWyrm8 is an arcade style game inspired by the games nibbles[7] and worm[12].Apart from its frivolous value, Wyrm has been used to test the responsiveness ofthe interface and a number of IO mechanisms.The current version of Wyrm makes use of the Unix emulation stream IO codeto communicate via standard IO with Glui which draws the parts of the game on the7Autoload capabilities are automatically loaded into the address space of a process when theprocess is created.8A wyrm is a mythical creature of great power. The game was sarcastically named wyrmbecause of its lack of speed. After tracing a number of implementation problems in the stream IOcode Wyrm now proudly lives up to its name.12

SERC-0011Issue 1August, 1995screen. This version is highly responsive and shows that the two layers of softwareprovided by the existing IO structure are su�ciently quick for highly interactiveapplications.Early in the development of the Unix emulation libraries a misplaced �ush hadcaused us to believe that the system performance was inadequate. At that time, aversion of Wyrm which made direct use of the screen was written in an attempt todetermine where the bottleneck lay. This resulted in changes in the design of thekernel and Glui to correctly support the sharing of memory mapped bu�ers.9 ConclusionThis paper has outlined four applications implemented under the Walnut Kernel.These initial applications have inuenced the design of the kernel resulting in theintroduction of several mechanisms:� Protected freeze and thaw� SRMULTILOAD system right� Cooee messages and the Peek system call� Capabilities with user speci�ed passwords� The publicly-readable WallThe password-capability model has been shown to provide adequate performancefor a variety of tasks. Although the SRMULTILOAD right fundamentally changesone of the bases of the capability model by introducing a capability useful only toa particular process, this change has left the remainder of the model una�ected.Techniques familiar to programmers familiar with GUIs have been shown to beapplicable to the Walnut Kernel. This similarity implies that an available poolof skilled programmers can be easily cross trained to work under capability basedoperating systems.The IO and operating system have been demonstrated to be su�ciently respon-sive to be used for highly interactive tasks.AcknowledgmentsThe authors would like to acknowledge the following contributions:� Mr Carlo Kopp - author of the UNIX compatibility libraries.The `Secure RISC Architecture' project is supported by a grant from the Aus-tralian Research Council (A49030623). Maurice Castro is a recipient of an Aus-tralian Postgraduate Research Award.References[1] M. Anderson, R D. Pose, and C S. Wallace. A Password-Capability system.The Computer Journal, 29(1):1{8, 1 1986.[2] M. Anderson and C S. Wallace. Security management in a password-capabilitysystem. Technical Report 56, Department of Computer Science, Monash Uni-versity, 8 1985. 13

SERC-0011Issue 1August, 1995[3] M.P. Atkinson, R. Morrison, and G.D. Pratten. Designing a persistent informa-tion space architecture. In 10th IFIP World Congress, Dublin, pages 115{120,1986.[4] Alan C. Bromberger, A. Peri Frantz, William S. Frantz, Ann C. Hardy, Nor-man Hardy, Charles R. Landau, and Jonath on S. Schapiro. The KeyKOSnanokernel architecture. In Proceedings of the USENIX Workshop on Micro-Kernels and Other Kernel Architectures, pages 95{112. USENIX Association,4 1992.[5] Maurice Castro. The walnut kernel: User level programmer's guide. TechnicalReport 95/222, Department of Computer Science, Monash University, 5 1995.[6] Je�erey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.Sharing and protection in a single address space operating system. TechnicalReport Technical Report 93-04-02, Department of Computer Science and Engi-neering, University of Washington, Seattle, USA, April 1993 (Revised January1994).[7] Microsoft Corporation. Qbasic nibbles, 1990. Source code in BASIC.[8] Jack B. Dennis and Earl C. Van Horn. Programming semantics for multipro-grammed computations. Communications of the ACM, 9(3):143{155, 3 1966.[9] R S. Fabry. Capability-based addressing. Communications of the ACM,17(7):403{412, 7 1974.[10] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Jerry Vochteloo.Mungi: A distributed single address-space operating system. In G. Gupta,editor, Proceedings of the Seventeenth Australian Computer Science Confer-ence, pages 271{280, 1 1994.[11] Leslie J. Keedy. The Monads view of software modules. In A J H. Sale andG. Hawthorne, editors, Proceedings of the Ninth Australian Computer ScienceConference, 8 1982.[12] Michael Toy. Worm, 1991. Part of the Berkeley Unix Distribution, Source codein C.
14

