
The Walnut Kernel:A Password-Capability Based Operating SystemThesis submitted for examinationfor the Degree ofDoctor of Philosophy,Department of Computer ScienceMonash UniversityJanuary 1996
Maurice David CastroB.Sc.(Hons), Monash University

iAbstractThis thesis describes both a capability based kernel - the Walnut Kernel - andhardware designed to support that kernel. The kernel provides an environment inwhich programs written and operated by mutually antagonistic users can co-existsecurely. A Password-Capability mechanism is used to provide access control toobjects. The hardware is designed to support cost e�cient expansion of the numberof processors within a multiprocessor.The Walnut Kernel was designed to be portable to a wide range of microproces-sors and memory architectures. The kernel avoids using processor speci�c featureswhere there are more widely available mechanisms. Paged memory managementwas adopted as the basic access control mechanism because of the large numberof processors which support it. This resulted in a page sized protection granular-ity. The architecture of the kernel was designed to scale from uniprocessors to largemultiprocessors. To accommodate this design requirement, device drivers on unipro-cessor systems use a shared memory page to communicate with the kernel. This isequivalent to special purpose processors sharing memory with a master processor ona multiprocessor. The e�ciency of multiprocessor implementations was increasedby decreasing interprocessor communication. Page tables and other system data areperiodically expired and new tables constructed. This practice of timing out dataensures that local data is kept up-to-date, and only a minimal amount of local stateis retained. Furthermore this practice eliminates the need to inform other processorsof changes in local information.Two implementations of the Walnut Kernel are currently in service. One versionoperates in an emulated environment under a host operating system. The otherversion operates on i486 based IBM PCs. The performance of the latter versioncompares well with contemporary operating systems.The kernel di�ers from earlier password-capability based systems in that it intro-duces operators for the selective removal of rights from a capability, and mechanismswhich restrict the use of a capability to a speci�c process. Message-passing and sub-process mechanisms have been introduced to enhance the handling of asynchronousevents. The changes were motivated by the requirements of programmers using the

iisystem.Application programs have been written to demonstrate the features of the ker-nel. Included among these user level programs are managers for oppy diskettedrives, and, for the screen and keyboard. The programs and the programmingtechniques used are described.The proposed hardware has eliminated centralised switching devices in favor ofdistributing the processor interconnection hardware across the nodes of the mul-tiprocessor. Each processor node has its own clock which removes the physicalconstraints associated with a centralised clock.The kernel and the proposed hardware are both part of the Secure RISC Archi-tecture project of the Department of Computer Science, Monash University.

iii
AcknowledgmentsI would like to thank Professor Chris Wallace for supervising the work describedin this thesis. His assistance, suggestions and guidance throughout the project isgratefully acknowledged.Many of the sta� and postgraduate students of the Department of ComputerScience have contributed to work related to the Walnut Kernel and the proposedhardware. In particular, I would like to acknowledge: Mr Glen Pringle for program-ming work conducted on both the Walnut Kernel and user level programs; Mr CarloKopp for his work on user level libraries; Dr Ronald Pose for work relating to theproposed hardware and a constant stream of suggestions for kernel features; and MrGerhard Fries and Mr David Duke for their technical assistance in areas relating tohardware.The �nancial assistance provided by an Australian Postgraduate Research Awardhas been appreciated.The `Secure RISC Architecture' project was supported by a grant from the Aus-tralian Research Council (A49030623).

iv
DeclarationThis thesis contains no material which has been accepted for the award of anyother degree or diploma in any university or other institution.To the best of my knowledge, this thesis contains no material previously pub-lished or written by another person, except where due reference is made in the textof the thesis.Where the work in this thesis is based upon joint research, this thesis disclosesthe relative contributions of the respective authors.Maurice D CastroDepartment of Computer Science,Monash University,Clayton, Victoria, 3168.Australia.January 31, 1997

Contents1 Introduction 11.1 Overview . 11.2 Capabilities . 41.3 Persistent Systems . 61.4 Threads . 72 A Password-Capability System 92.1 The Kernel . 92.2 The Hardware . 153 Survey 193.1 Conventional Operating Systems . 203.2 Current Operating Systems . 223.2.1 Amoeba . 243.2.2 Mach . 293.2.3 Plan 9 . 323.2.4 QNX . 363.2.5 Angel . 393.2.6 Chorus . 413.3 Capability Based Operating Systems 443.3.1 Monads . 453.3.2 KeyKOS . 483.3.3 Grasshopper . 523.3.4 Opal . 57v

vi CONTENTS3.3.5 Mungi . 593.4 Observations and Trends . 634 The Walnut Kernel 695 The User Perspective 715.1 Volumes, Objects and Capabilities . 715.2 Process Address Space . 785.3 Processes and Subprocesses . 805.4 Messages and Mailboxes . 815.5 Money . 835.6 Kernel Calls . 845.7 Exceptions . 855.8 Controlling Process Scheduling . 865.9 Subprocess Zero . 886 Design of the Walnut Kernel 916.1 Design Principles . 916.1.1 Avoid features available only on small classes of processors . . 926.1.2 Avoid stalls in the kernel while waiting on external events . . 936.1.3 Minimize retained kernel state variables 936.1.4 Ensure the kernel is scalable 946.1.5 Allow for a variety of shared memory architectures 946.2 Passive Elements . 956.2.1 Disk Structures . 956.2.2 Memory Structures . 1006.2.3 Processes . 1046.2.4 Kernel Data Structures . 1106.3 Active Elements . 1126.3.1 Object Memory Management 1126.3.2 Capability Management . 1176.3.3 Process Memory Management 1186.3.4 Message Management . 119

CONTENTS vii6.3.5 Process Scheduler . 1206.4 Persistent Elements . 1226.5 Small Windows & Private Page Tables 1266.6 System Architecture . 1286.6.1 System-Call Interface . 1316.6.2 Subprocess Zero . 1336.6.3 Device Drivers . 1346.6.4 Kernel Scheduler . 1356.6.5 Discussion . 1366.7 Design Issues . 1376.7.1 Pages versus Segments . 1376.7.2 Multiple Processors . 1386.7.3 Messages . 1416.7.4 Processes and Subprocesses 1426.7.5 Execute-Only Code . 1436.7.6 Hardware . 1456.8 System Initialization . 1466.9 Money . 1476.10 Process Scheduler . 1487 Implementation 1517.1 The Standalone Implementation . 1517.2 i486 Implementation . 1537.3 Loading Programs into the Walnut Kernel 1558 Performance 1598.1 Test Environment . 1598.1.1 Software . 1598.1.2 Hardware . 1608.2 Timing . 1608.3 Walnut Kernel . 1628.3.1 Program 1 . 163

viii CONTENTS8.3.2 Results . 1658.3.3 Program 2 . 1668.3.4 Results . 1668.3.5 Program 3 . 1678.3.6 Results . 1688.4 UNIX . 1688.4.1 Program 1 . 1688.4.2 Results . 1708.4.3 Program 2 . 1718.4.4 Results . 1718.5 Observations . 1728.5.1 Walnut Kernel Behavior . 1728.5.2 Messages & IPC . 1728.5.3 Address Space Management & File Management 1738.5.4 Object Management & File Management 1748.5.5 Process Management . 1768.6 Conclusion . 1769 User Level Programs 1799.1 Structures . 1809.1.1 Program Structures . 1809.1.2 Data Structures . 1819.2 Legacy Code . 1839.3 Shared Libraries . 1849.4 Initproc . 1869.5 Glui . 1889.6 Shell . 1919.7 Wyrm . 19310 Security 19510.1 Objects . 19510.2 Restrict . 198

CONTENTS ix10.3 Serial Numbers . 19910.4 Non-Random Passwords . 20010.5 SRMULTILOAD Right . 20110.6 Protected Freeze and Thaw . 20211 Proposed Hardware 20511.1 Design Goals . 20511.2 Architecture . 20611.3 Node Design . 20811.3.1 Functional Description . 20811.3.2 Operational Description . 21111.3.3 Design Features . 21311.3.4 Arbitration . 21412 Continuing & Future Work 21712.1 Software . 21712.1.1 Kernel . 21712.1.2 User Code . 21812.2 Hardware . 22113 Conclusion 223A User Level Programmer's Guide 231A.1 Overview . 232A.2 Objects . 233A.3 Capabilities . 234A.3.1 View . 234A.3.2 User Rights . 234A.3.3 System Rights . 234A.3.4 Deriving Capabilities . 235A.4 Process Structure . 236A.4.1 Process Address Space . 236A.4.2 Parameter Page . 238

x CONTENTSA.4.3 The Wall . 243A.5 Process Structure Conventions . 244A.5.1 The Process Object . 244A.5.2 The Process . 244A.6 Process Creation . 246A.6.1 Making Processes . 246A.6.2 Initial Process State . 246A.7 Subprocess Zero . 249A.7.1 Freeze . 249A.7.2 Thaw . 250A.7.3 Wakeup . 250A.7.4 Cooee . 250A.7.5 Protected Freeze . 251A.7.6 Protected Thaw . 251A.8 Subprocesses . 252A.8.1 Anatomy of a Subprocess . 252A.8.2 Operations on Subprocesses 252A.8.3 Scheduling . 252A.9 Messages and Mailboxes . 254A.9.1 Sending Messages . 254A.9.2 Receiving Messages . 254A.9.3 Mailboxes . 254A.10 Exceptions . 256A.10.1 Types of Exception . 256A.10.2 Trap Handling Subprocesses 256A.10.3 The Trap Message . 257A.11 System calls . 258A.11.1 Procedure . 258A.11.2 Available System Calls . 259B Formal Description of Restrict 283

CONTENTS xiC Hardware Description 2891 Introduction . 2902 Design Goals . 2913 Design Decisions . 2914 Satisfying the Design Criteria . 2914.1 Design Criteria . 2914.2 Consequences . 2925 Multiprocessor Node . 2935.1 Functional Description . 2935.2 Operational Description . 2935.3 Design Features . 2956 The Arbiter . 2967 Conclusion . 296D Glossary 299

xii CONTENTS

List of Figures2.1 A Capability in the Password-Capability System 102.2 Block Diagram of the Password-Capability System's Hardware 162.3 Logical Address to IAS Translation 172.4 IAS Address to Physical Address Translation 173.1 Components of an Amoeba Capability 263.2 Logical Representation of an Amoeba Directory 273.3 Basic Amoeba Directory Hierarchy 283.4 A Mach Task . 313.5 The Initial Name Space of a Process 343.6 QNX Multi-part Messages . 373.7 The Chorus Nucleus . 423.8 A Chorus Capability . 443.9 Mapping Monads Segments to Pages 463.10 Addressing Memory Under Monads 473.11 Mapping containers under Grasshopper 533.12 Invocation under Grasshopper . 553.13 Capability Trees Under Mungi . 625.1 An object . 725.2 Structure of a Walnut Kernel Capability 745.3 Derivation . 765.4 Process Address Space . 795.5 Map of the Process Object . 805.6 A Tree of Capabilities . 84xiii

xiv LIST OF FIGURES5.7 Structure of Parameter Block . 856.1 Object Header Blocks / Pages . 966.2 The Header Data Structure . 986.3 The Captabent Data Structure . 996.4 The VolTabEnt Data Structure . 1016.5 The Fizent Fizentt Data Structure 1036.6 The Prochd Data Structure . 1056.7 The Tlcent Data Structure . 1076.8 The Subprocent Data Structure . 1076.9 The Messent Data Structure . 1086.10 Layout of the Process Object . 1096.11 The Scratch Data Structure . 1116.12 The usage of data structures by kernel functions 1136.13 Disk Layout . 1236.14 Windows and Objects . 1276.15 Components of the Walnut Kernel . 1296.16 Organization of the Walnut Kernel 1306.17 Proposed Scheduling Scheme . 1488.1 Timer and Interrupt Hardware in the IBM-PC/AT 1618.2 Comparison of External Send to Write Operations 1738.3 Comparison of Transfer Time Between Two Processes 1748.4 Comparison of File Operation Times to Object Operation Times . . . 1758.5 Comparison of File Creation Time to Object Creation Time 1768.6 Comparison of File Deletion Time to Object Destruction Time 1778.7 Comparison of Fork to Make Process Time 1779.1 Pseudocode for a Message Loop . 1809.2 A Circular Bu�er . 1829.3 Implementation of Local Storage for Shared Library Code 1859.4 Find Capability Index for Executing Code 1879.5 Keyboard and Screen IO . 189

LIST OF FIGURES xv10.1 Comparison of Walnut Kernel and Password-Capability System Objects19610.2 Components of the Walnut Kernel Serial Number 20011.1 Bus Structures . 20711.2 Topology of Processor Interconnections 20911.3 Block Diagram of Multiprocessor Node 21011.4 Partitioning of Addresses . 21211.5 Contents of Look-Up Tables . 212A.1 A Password Capability . 234A.2 Process Address Space: This diagram describes the major featuresof the address space seen by a process operating on a system with4 kilobyte pages. The message area and the parameter block arecollectively known as the parameter page. 237A.3 Parameter Block Declaration . 239A.4 System Rights Constants . 241A.5 De�ned Kernel Call Constants 242A.6 Process Object: This diagram describes the major features of theprocess object . 245A.7 Subprocess Zero Functions and Arguments 249A.8 Process Status . 250A.9 Structure of the Failure Message . 257B.1 A Subtree of a Capability Tree . 284B.2 A Subtree of a Capability Tree - Enhanced Notation 286B.3 A Tree with the Heap Property for CO0;21;10 2871 Block Diagram of Multiprocessor Node 2942 Partitioning of Addresses . 2953 Contents of Look-Up Tables . 295

xvi LIST OF FIGURES

List of Tables3.1 Summary Table for Reviewed Operating Systems 645.1 System Rights . 75A.1 Error Identi�er Values . 257

xvii

Chapter 1IntroductionThis thesis describes a capability based operating system developed in the Depart-ment of Computer Science at Monash University. The operating system is commonlyknown as the Walnut Kernel.In addition to being an independent project to develop a portable capabilitybased operating system, the Walnut Kernel forms the software basis of a majorproject within the Department to develop a scalable multiprocessor system. TheSecure RISC Architecture project builds on work done towards the developmentof the Monash Multiprocessor (also known as the Password-Capability System)[APW86, And87, Pos91, APW85, AW85] which resulted in a shared memory mul-tiprocessor system with a novel capability based operating system. The SecureRISC Architecture and the Walnut Kernel were inspired by the concepts behindthe Monash Multiprocessor; however, due to limitations imposed on the original de-sign, the two new projects started with the successful concepts imparted from theirpredecessors.1.1 OverviewThe Password-Capability System - an ancestor of the current project - is discussedin chapter 2. The kernel and the purpose built hardware used by that system tosupport the use of capabilities are discussed.The survey (chapter 3) is divided into three types of operating system: conven-1

2 CHAPTER 1. INTRODUCTIONtional, current, and capability based. Conventional operating systems are typi�edby UNIX1, employ monolithic kernels and are �le based. The current operatingsystem section describes six recent operating systems. Although these systems mayuse capabilities for some parts of their operation, they do not use capabilities astheir only access control mechanism. The operating systems discussed in this sec-tion include representatives of distributed operation systems and micro-kernel basedoperating systems. The capability based operating system section discusses �vecapability based operating systems. The majority of these are based on segregatedarchitectures; however, two password-capability based systems are discussed.The Walnut Kernel is introduced in chapter 4.Chapter 5 describes the Walnut Kernel from both the application programmerand the user perspectives. The topics covered include: a description of the roles ofvolumes, objects and capabilities, the layout of a process's address space, interpro-cess communication, and controlling process scheduling. A detailed list of kernelcalls and their parameters is contained in Appendix A.The design of the kernel is discussed in chapter 6. This chapter identi�es thedesign principles that motivated design decisions, describes the partitioning of thekernel into functional components, and identi�es key design decisions and their im-pacts. The architecture of the system is discussed in detail covering both functionaldecomposition and data structures. The subprocess mechanism, an innovation notpresent in the Password-Capability System, is described in that chapter and themotivation for its inclusion identi�ed.The Walnut Kernel currently exists in two forms. One version of the kernelis hosted by a conventional operating system, while the second interacts directlywith hardware. Chapter 7 discusses the two versions and mechanisms for loadingprograms into a system without a host operating system.A series of measurements was taken on equivalent hardware platforms for theWalnut Kernel and a BSD 4.3 based UNIX. These measurements are used to comparethe speed of operations common to both operating systems. Chapter 8 provides aguide to the performance of the Walnut Kernel compared to a mature operating1UNIX is a trademark of X/Open

1.1. OVERVIEW 3system. It is expected that the relative performance of the Walnut Kernel willimprove after optimisations are investigated and implemented. The control - a BSD4.3 based UNIX - was optimized by its implementors.The techniques employed in writing programs for the environment provided bythe kernel are examined in chapter 9. The implementation of shared libraries andaccess to legacy code from UNIX systems are also discussed. Four examples of userlevel programs are presented to complete the picture of the environment.A number of features that a�ect the security of the system has been introducedinto the design of the Walnut Kernel. Examples of departures from the Password-Capability System introduced into the Walnut Kernel include the ability to derivecapabilities with known passwords and the restrict system call2. Chapter 10 de-scribes the features which have the potential to a�ect the security of the system,and provides an analysis of the e�ect of those changes.The Secure RISC Architecture project involves elements of hardware and soft-ware. Chapter 11 describes the hardware mechanisms devised by Dr Ronald Poseand the author. This work forms the basis of a design for a scalable multiprocessorwith a distributed switch. Use of deep FIFO bu�ers to enhance throughput andto allow each board in the system to have its own clock generator enhances theredundancy and reliability of the design.Chapter 12 describes work being performed by others based on the conceptsoutlined in this document. It covers continuing work in the area of software run-ning under the Walnut Kernel, enhancements to the kernel and the development ofhardware based on the concepts outlined in 11.In the conclusion, chapter 13, the Walnut Kernel and the hardware proposed tosupport it are discussed in the context of the Password-Capability System (chapter2) and the existing systems described in chapter 3. Arguments are summarised andconclusions are drawn in relation to the success of the work as a whole.Appendix A is a copy of The Walnut Kernel: User Level Programmer's Guideby Maurice Castro [Cas95]. This document provides a detailed description of theenvironment provided by the kernel to programmers.2This system call allows rights to be removed from a capability after the capability has beencreated

4 CHAPTER 1. INTRODUCTIONA formal description of the restrict operation is given in appendix B. Theformal description supplements the informal description in chapter 10.Appendix C is a copy of The Monash Secure RISC Multiprocessor: MultipleProcessors Without a Global Clock by Maurice Castro and Ronald Pose [CP94].The paper outlines the concepts proposed for the hardware to be used in the SecureRISC Architecture project.A glossary of terms used in this work is found in appendix D.The remainder of this chapter introduces briey the concept of capabilities andthe implementations available, the concept of a persistent system, and clari�es thede�nition of `threads'.1.2 CapabilitiesCapabilities provide a uniform mechanism for controlling access to, and the protec-tion of, resources [DVH66]. The extension of the capability mechanism to allow theviewing of a capability as a form of address [Fab74] allows all system resources tobe modeled as memory objects.There are several major types of capability based systems. These systems areidenti�ed by the mechanisms they employ to prevent forgery of a capability. Thearchitectures are:� Tagged Architecture - employs tag bits on memory locations to identify a ca-pability as a special object within a collection of data. The hardware preventsunprivileged code from altering the capability.� Segregated Architecture - separates capabilities from ordinary data. Capabil-ities are placed in a page or segment that cannot be modi�ed by unprivilegedcode. These groups of capabilities are often known as capability lists or C-lists.� Encrypted Capability Architecture - calculates a form of checksum for theobject identi�er and rights conveyed by the capability known as a signature[GL79]. The capability and the signature are encrypted with a secret keyknown only to the kernel. This is given to the user process as an encrypted

1.2. CAPABILITIES 5capability. When an encrypted capability is presented, it is decrypted by thekernel, and the signature is recalculated. The capability is valid if the recal-culated signature matches the signature sent in the encrypted capability. Thetest allows the system to detect attempts to forge capabilities.� Password-Capability Architecture - employs a sparse address space. The pass-word component of the capability makes the number of valid capabilities smallrelative to the total number of possible capabilities. By ensuring that the ca-pabilities are randomly spread throughout the address space a large number ofattempts at guessing a capability is required to ensure that a valid capabilityis found. The password-capability mechanism is statistically secure.The Walnut Kernel implements a password-capability architecture. The archi-tecture has several major advantages over the alternatives.The major disadvantage of the tagged architecture is that it requires specialisedhardware with additional memory bits present which cannot be used for the storageof general data which makes the architecture undesirable for both economic andportability reasons. The presence of additional specialised memory adds to the costof the system. The need for specialised hardware restricts the choice of system.Segregated architectures can be implemented on conventional hardware but re-quire every operation on a capability to be mediated by the kernel. Typically,programs are required to use handles to capabilities to refer to capabilities, andto call the kernel with the handle as a parameter for all operations relating to acapability. All operations on capabilities are therefore subject to the overhead of aswitch between user and kernel address space.The security of an encrypted key system is vested in the security of the encryptionalgorithm and the key used by the system. Discovery of both of these items wouldallow the user to generate capabilities avoiding the controls imposed by the kerneland thereby compromising the system's security.Password-Capabilities allow the use of conventional hardware without incurringthe overheads present in segregated architectures, and with the exibility of storingcapabilities as ordinary data. The scheme is immune from the total compromise ofsecurity to which encrypted key systems are subject as there is no algorithm used to

6 CHAPTER 1. INTRODUCTIONdetermine the passwords of capability. Complete compromise of the system wouldrequire each object's master capability to be guessed.
1.3 Persistent SystemsConventional computer systems normally have two distinct views of data; shortterm data or long term data. Short term data is typically stored in RAM or virtualmemory and exists only for the period of time that a program is active. Long termdata is often stored in the �le-system of a conventional machine. Data stored ina �le-system is independent from the program which created it and exists until itis explicitly destroyed. A persistent system eliminates the distinction between longterm data and short term data. All data persists until it is explicitly destroyed.Furthermore, the data is manipulated with the tools used to manipulate short termdata on conventional systems. These tools tend to be more exible than the limitedrange of �le operations usually available.Persistent systems are designed to support persistent programming which o�ersa number of advantages over conventional programming [ABC+83, CAC84]. Per-sistent programming allows the elimination of the large component of conventionalprograms which is solely concerned with transforming data from �le-system repre-sentation into the volatile representation that is manipulated by the program andback again. Elimination of this code saves both time and space; furthermore, it elim-inates the need to perform the transformation which may distract the programmerfrom the primary task of the program.Persistent systems are more attractive than conventional systems in that theyprovide a uniform environment for all data. The uniformity of the model simpli�esthe programming environment thereby easing understanding.

1.4. THREADS 71.4 ThreadsThe thread of control or thread3 is a path of execution through an address space. Themajority of traditional operating systems permit only a single thread of control inthe address space of a process. However, having multiple threads sharing an addressspace in some cases can be advantageous [Tan92]. If the threads of a process sharethe virtual address space of the process, a thread of a process has no protection fromthe actions of the other threads of the process.Threads are typically used in applications with IO-bound components. Thewriter of the application can place the IO-bound operations in a separate threadwhich uses blocking IO operations. The IO-bound threads progress until they block,then other threads of the process make use of the remainder of the time-slice. Thusthe process can make more e�cient use of the allocated time. Without threads, asingle blocked action would halt the progress of the application necessitating thesurrendering of the remainder of the time-slice.On uniprocessor systems, threads are scheduled in a time sharing manner withina process's time-slice. Each thread of a process is allocated time on the processor.Ideally, on a multiprocessor system, the threads of a process would execute concur-rently; however, a number of systems claim to support threads, but support onlythe time-slice semantics supported on uniprocessors.Threads may be implemented at either the user [BS90] or the kernel levels.User level packages typically make use of kernel upcalls or a yield call built intothe package to allow switches between threads. On systems which support upcalls,an upcall is made when the kernel detects an event which would cause a process toblock. The upcall invokes a management routine which either selects another threadof the process to run or surrenders the remainder of the time-slice. The yield call isused to switch between co-operating threads by indicating that the current threadis ready to allow another thread to proceed. Kernel level thread packages make useof primitives that are implemented in the kernel.3Also referred to as a lightweight process [Mic90], however, this term promotes confusion. Theterm lightweight process was originally used to distinguish UNIX style processes fromMultics styleprocesses

8 CHAPTER 1. INTRODUCTIONThe Walnut Kernel does not provide support for the concurrent execution ofmultiple threads of execution within a process on multiprocessors. A mechanismwith time-sliced semantics is provided to let user processes handle asynchronousevents.The absence of concurrently executing threads is not regarded as a disadvantage.Walnut Kernel processes can share address spaces in a more exible and controlledmanner than concurrently executing threads, and hence they provide similar func-tionality to concurrently executing threads, but with the advantage of greater controlof access to memory.The design of the Walnut Kernel recognised that the need for threads is driven bytwo factors: the high cost of creating a process and the di�culty of sharing addressspace between processes. The �rst motivation for the use of threads is dealt with intwo ways by the design of the Walnut Kernel. The design of the kernel endeavorsto keep the cost of generating a new process to a minimum, and also, as processesare persistent it is practical to maintain processes as servers which perform taskson demand avoiding the cost of generating a new process each time a function isrequired. The second motivation for threads is addressed by observing that thebasic model of the system (capabilities allowing access to objects) is based on theinterprocess sharing of code and data through memory objects. The shared memorymodel contrasts with �le based systems which share information through �les andpipes necessitating the use of �le protocols. File protocols perform well for sharingdata between processes when data structures which map well onto streams are used.However, more complex data structures (such as trees and graphs) are generally lesswell handled.

Chapter 2A Password-Capability SystemThis chapter describes the `Password-Capability System' developed in the Depart-ment of Computer Science, Monash University, circa 1985 [APW86, And87, Pos91,APW85, AW85], which represents the historical background of the current project.The `Monash Multiprocessor Project' had both hardware and software compo-nents. The hardware developed for the project consisted of a collection of processorand memory boards on a shared high speed bus. The processor boards provided aset of capability registers to implement the address transformations required. To thebest of our knowledge this system [APW85] introduced the concepts of password-capabilities and money based garbage collection. Subsequently a number of systemsadopted the password-capability mechanism (see chapter 3).2.1 The KernelUser processes operated in a uniform virtual memory. The address space was di-vided into volumes each of which contained a number of objects. Volumes werepermanently associated with pieces of hardware. The majority of volumes were as-sociated with storage media, such as disk packs. Some volumes were associated witha particular multiprocessor. Typically, the latter type of volume was used to accessphysical devices attached to that multiprocessor. When an object was created itwas permanently associated with a single volume and allocated a serial number onthat volume. Serial numbers were required to identify uniquely a given object on a9

10 CHAPTER 2. A PASSWORD-CAPABILITY SYSTEMVolume Serial Password 1 Password 2Figure 2.1: A Capability in the Password-Capability Systemvolume for all time and were never reused. Serial numbers were allocated consecu-tively on a volume. The volume and serial numbers of objects were de�ned as 32-bitquantities.All objects in the system were composed of contiguous sections of the virtualmemory. Processes gained access to the contents of an object by `mapping in' partof the memory object into the address space of the process. After mapping bytes Xto Y of an object into addresses A to B of a process's address space, reference toaddress A+� will reference byte X+� of the object, or a word of bytes starting withthis byte. `Mapping in' is not copying; If a process writes to address A + �, byteX + � is altered, and the byte will seen to be altered by any other process which hasthe byte mapped in.The Monash Multiprocessor Project introduced a mechanism for providing non-segregated capabilities employing probable security. This mechanism di�ered fromthe alternatives of tagged architectures and segregated architectures which bothdistinguished capabilities from other forms of data. Capabilities were 128-bits inlength and had 4 components (see �gure 2.1). The volume and serial number formedthe name of the object. Password 1 and Password 2 uniquely identi�ed a capabilityfor the named object. Passwords were allocated purely randomly; there was noencoding of access rights in the password. The security of the mechanism wasderived from the small number of valid passwords in comparison to the total numberof passwords. The password-capability acted as an identi�er for a set of access rightsto an object. Many capabilities could convey the same access rights to an object butwith di�ering passwords. A table of valid capabilities and their associated rights wasstored on the volume containing the object to which the capabilities referred. Thistable was known as the `catalog' and was accessible only to the kernel. Capabilitieswere revoked by deleting the entry for the set of rights associated with the capability.The password-capability scheme had a number of advantages over the alterna-tives of tagged architectures and segregated architectures. It was not subject to the

2.1. THE KERNEL 11major disadvantages of tagged architectures. The �rst disadvantage was economic astagged architectures must supply physical memory for tag bits, which contribute tothe cost of the memory but are unavailable as general purpose memory. The secondproblem was that the processor must support tags. Special instructions must be usedto access capabilities safely within a tagged architecture requiring hardware support,and hence limiting the choice of processor. In addition, as password-capabilities werestored as ordinary data, the mechanism was not subject to the limitations of seg-regated systems. Segregated systems required the kernel to provide mechanismsto move, copy and communicate capabilities, preventing capabilities being treatedas ordinary data which made it di�cult to pass capabilities to processes or usersoutside the computer system.When an object was created the kernel returned a single capability to the creator.This capability was known as the master capability. It described the completeobject and held all possible access rights to the object. Other capabilities, withrestricted rights, could be derived from the master capability or from its children.The capabilities for an object were logically organised in a tree structure. Themaster capability was the root with derived capabilities being the other nodes ofthe tree. Each internal node of the tree is the root of a subtree which has rightsequal to or weaker than the root of the subtree. Deletion of any capability resultsin the deletion of its descendants. Deletion of the master capability results in thedestruction of the object as no further access to the object is possible.Any process that held a capability was capable of using it to access the objectreferred to by the capability reducing the need to create many capabilities withequivalent rights.The Password-Capability system did not support the concepts of ownership ordependency between objects. Once an object was brought into existence any processknowing a capability could make use of it. Capabilities were copied, passed betweenprocesses and stored by processes as ordinary data1. In addition, capabilities couldbe held outside the system, by a peripheral or a user, and still refer to a valid objectmaking it impossible to determine if there were any entities which knew a valid1The system allowed capabilities to be stored using any representation. Thus an encryptedcapability was as valid as a plain text capability

12 CHAPTER 2. A PASSWORD-CAPABILITY SYSTEMcapability for an object. These properties prevented the use of existing mechanismsfor garbage collection which depended on ownership, reference counts, or referencetracing. Two mechanisms were used to implement garbage collection. An objectwas destroyed when no valid capabilities for that object could exist, that is, whenthe master capability for the object was deleted. The second mechanism relied on asimple charging scheme. Each object had associated with it a store of money fromwhich it periodically paid rent. Bankrupt objects were deemed to be garbage, andwere destroyed.The moneymechanismwas generalized to form an economy within the Password-Capability System. Both ordinary objects and processes had quantities of moneyassociated with them. Money was managed directly by the kernel and was distinctfrom normal data items. Money could be transferred between objects and was con-sumed when services were provided by the kernel. Each capability had a monetaryvalue associated with it. The money associated with the master capability repre-sented the total store of money held by the object. Derived capabilities were asso-ciated with a value that represented the amount of money that could be withdrawnthrough that capability. A withdrawal or deposit caused the values held by each ofthe ancestors of the capability to be updated by the amount of the withdrawal ordeposit. A withdrawal would occur only if all the values held by the capability andits ancestors would be non-negative after the operation was performed. The moneymechanism allowed processes to charge for services to cover the costs of performingwork and allowed for the possibility of charging for the use of a program unlike theconventional scheme of paying a license fee for access to a program which may ormay not be used.Processes had no internal parallelism and hence could run, at most, on oneprocessor at a time. However, processes could be moved between processors. Thisallowed the Password-Capability System to schedule processes on the �rst suitableprocessor that became available.Lockwords were used in the Password-Capability System to prevent non-trustedcode from distributing information shared by that code. The con�nement mech-anism identi�ed two classes of capabilities: alter capabilities which could be used

2.1. THE KERNEL 13to convey information to third parties and non-alter capabilities which were strictlyread-only. The top bit of the password �eld was set to indicate that a capability wasan alter capability. The remaining 63-bits of the password were chosen randomly.Each process had a 63-bit lockword associated with it. The lockword could not beread. Locking the process caused the lockword (L0) to be set to the exclusive-or ofthe original lockword (L) and the argument of the operation which sets the lockword(V): L0 = L� VPasswords were not encrypted in processes with a zero lockword. To execute anuntrusted package, another process (P2) was created with a non-zero lockword (L2).This lockword is generated from the creating process's (P1) lockword (L1) and anarbitrary value (VL) selected by the creating process.L2 = L1 � VLThe passwords of alter capabilities (Cpass) in the new process (P2) are encryptedusing the process's lockword before being used by the kernel.C 0pass = Cpass � L2Non-alter capabilities are not a�ected by the value of the lockword. Provided processP1 was not locked (ie. had a zero lockword) this mechanism allowed process P1 topass capabilities to process P2 by encrypting the capabilities passed using VL. Themechanism, however, prevented P2 from passing on those capabilities as the valueof L2 was unknown to P2. Any capability created by a process was encrypted usingthe process's lockword. Process P2 could create objects for its own use or for the useof any process which knew L2. Program code and data was made available withoutthe risk of data leakage by using non-alter capabilities to map in read-only code anddata. Groups of locked cooperating processes could be created by using the samelockword for each of the processes when they were created.The Password-Capability System allowed capabilities to confer the followingrights:Money Rights - Three separate rights were supported to allow access to infor-mation on money. The drawing right determined the maximum amount of

14 CHAPTER 2. A PASSWORD-CAPABILITY SYSTEMmoney that could be withdrawn through the capability. This value was re-duced by withdrawals and increased by deposits. Possession of a balance rightwas necessary to determine the amount of money that could be withdrawnvia a capability. The result returned was the minimum of the drawing rightof the capability and its ancestors' drawing rights. A deposit right allowedmoney to be added to the drawing right. A separate right was required toprovide control over a potential covert channel which functioned by varyingthe drawing right.Window Rights - These rights allowed the visible region of the capability to bespeci�ed. A window consisted of a set of consecutive words within an objectstarting on a word boundary (o�set) and extending an integral number ofwords (size). Derived capabilities were required to have windows which wereranges of the capability from which they were derived. Associated with eachwindow were the access rights: read, write, and execute.Process Rights - Processes had four additional rights in addition to the rightsheld by other objects. A message right allowed the holder to send a 16-wordmessage of arbitrary content to a process. If the process was waiting on amessage, the process was awakened. The suspend right allowed the holderto suspend and resume the process. The internal state of the process couldbe determined by holders of a capability with a status right. Holders of acapability with a condition right could initialize a suspended process. Thisallowed the partial modi�cation of the state of a process.Suicide Right - Possession of a suicide right allowed a capability to be used todestroy itself. This allowed the distribution of the same capability to antag-onistic processes but prevented one party depriving the others of the use ofthe capability. Suicide right was unique in that capabilities with suicide rightcould be derived from capabilities without suicide right.

2.2. THE HARDWARE 152.2 The HardwareThe kernel of the Password-Capability System relied heavily on many of the featuresof the hardware designed to support the system. Most notable of these features is thepresence of segment registers which map capabilities onto a paged virtual memory.The presence of specialised hardware resulted in signi�cant simpli�cations in thedesign of the operating system.The prototype hardware was based on the NS32032 processors operating at10MHz. The NS32081 was used to provide oating point support. Memory man-agement was provided through the custom hardware described in this section. Thebus connecting the processor boards operated at 40MHz.Figure 2.2 illustrates the overall structure of the hardware. The system employeda number of processor boards which communicated with a number of shared memoryboards over a single high speed bus. Each processor board supported a set ofcapability registers (also known as window registers) which were used to transformthe addresses generated by the processor into addresses in the Intermediate AddressSpace (IAS). The IAS addresses were then used to access data via the bus. Eachmemory board performed a check to determine if the address required was presentin the pages stored on the board and allowed access if the page was present.The hardware on each processor board provided logical address to IAS addresstranslation (see �gure 2.3). The logical address of the processor was composed of 3parts: a window register identi�er, an o�set into the window and a byte o�set intoa word. The top 5 bits of the logical address were used to identify the appropriatewindow register from the 32 supported. The o�set and access mode were checkedagainst the window size and window rights respectively. If the access was legal, thesum of the IAS Base Address and the o�set into the window was calculated andused as the IAS Address of the access.The hardware supported checking of read, write and execute access rights andlimit checking to word granularity.On receiving an IAS address, a memory board checked its hash table to determineif the page required was stored on it (see �gure 2.4). The check was performed byusing the middle 12 bits of the IAS address as an index into the hash table. If the

16 CHAPTER 2. A PASSWORD-CAPABILITY SYSTEM
ProcessorRegisters

PhysicalMemory MemoryModuleTranslationUnitAddressRecognition&

CPU
AdderWindow O�set DataBase IASAddr BusPhysical Addr

Window

Figure 2.2: Block Diagram of the Password-Capability System's Hardware

2.2. THE HARDWARE 17
Adder

Window O�set Byte
O�setIAS Page Number22 bits 10 bitsIAS Address ?

- ?? ..
5 bits 17 bits 2 bits32 Bits Logical Address

Window RegistersRights Window SizeIAS Base Address
Figure 2.3: Logical Address to IAS Translation

Hash TableIASAddress Bits Valid PhysicalPageNumberCompare Physical Address8 bits 10 bits? ?- ??
IAS Page Number O�set IAS Address10 bits 12 bits 10 bits10 bits 1 bit 8 bitsHigh Order

Figure 2.4: IAS Address to Physical Address Translation

18 CHAPTER 2. A PASSWORD-CAPABILITY SYSTEM10 bits stored in the hash table matched with the 10 high order bits from the IASaddress and the page was marked valid then the page was stored on the memoryboard. If a match occurred, then the required physical address was generated byconcatenating the physical page number and the o�set into the IAS page. Thephysical address was used to gain access to the appropriate item in memory.Multiple memory modules which recognized the addresses of IAS pages storedwithin them allowed the near arbitrary2 allocation of pages to memory modules.This property allowed the distribution of pages across memory modules to equalizethe load across the modules.As the physical memory of the machine was limited, objects could not be retainedin the IAS inde�nitely. The large size of the IAS allowed a simple managementstrategy to be employed: Objects were retained in the IAS until the space becameexhausted. At that point all objects were ushed from the IAS, window registerswere marked invalid and caches were ushed. Subsequent accesses bring objectsback into the IAS.The Password-Capability System's operating system was strongly supported bythe system hardware which provided direct support for capabilities through purposebuilt capability registers and a number of intelligent peripherals. The peripheralsincluded shared memory with VAX 11/750 and purpose built IO controllers.
2The use of a hash table instead of a content addressable memory required that two pages whichhashed to the same value cannot be stored on the same memory module

Chapter 3SurveyThis chapter surveys a number of operating systems to provide a historical con-text for the work on the Walnut Kernel discussed in later chapters. The chaptercomprises several sections. The �rst section (section 3.1) provides an overview of aconventional system. UNIX is selected for its ubiquity among current commercialsystems. The second section (section 3.2) examines several current operating sys-tems which display either a distributed or micro-kernel architecture. Micro-kernelarchitectures are signi�cant in that they bring software engineering practices tothe kernel level while distributed architectures aim to provide scalable mechanismsfor implementing operating systems on systems with more than one processor. Anotable absence from this section is Microsoft's Windows NT1 operating system.Although the system is likely to be of great commercial importance, the informa-tion available [Cus93] indicates that from the perspective of innovation within thekernel, the operating system is similar to the other micro-kernel based architecturessurveyed. The third section (section 3.3) covers a number of capability based op-erating systems. The operating systems covered in earlier sections may make useof capabilities in a limited role, however, those in this section use capabilities forall access and naming functions. The �nal section (section 3.4) draws conclusionsabout trends in the development of operating systems.The survey uses Tanenbaum's [Tan87] four major components of an operatingsystem (process management, input/output, memory management and �le system)1Windows NT is a trademark of Microsoft Corporation19

20 CHAPTER 3. SURVEYto provide a basis for comparing the systems presented.3.1 Conventional Operating SystemsThe UNIX family of operating systems is based on the work of Ritchie and Thomp-son [RT74]. This brief overview covers the gross features of UNIX and some oftheir implications. UNIX has been widely used in both commercial and researchenvironments. The interest of the research community has prompted many detailedstudies of the characteristics of the operating system. This survey identi�es somekey features of the operating system that are either typical of conventional operat-ing systems or have had signi�cant inuence on the development of other operatingsystems. The features discussed are: the style of processes provided, protection andthe implementation of the kernel.In direct contrast to Multics and VMS where, due to the signi�cant costs in-volved in creation and destruction, processes are reused, the UNIX system employsinexpensive processes[JJ91c]. Low cost processes2 allow the application of more thanone process to the task of solving a problem. A problem can therefore be decom-posed into a number of smaller tasks, with the possibility of using utilities for someof those tasks. The use of small utilities confers the software engineering advantagesof encouraging both the reuse of code and providing encapsulation of code. Mech-anisms which allow the easy reuse of code make it desirable to invest time in thedemonstration of correctness and optimisation. The high cost of Multics processesencourages the use of an in-processmodel of protection[Kee79, Tan92, Sal74]. Underthe in-processmodel, encapsulation occurred at the subroutine or module level. Thelow cost of UNIX processes and the absence of hardware support for more than twoprivilege levels favors the out-of-process protection mechanism adopted by UNIX.Protection on UNIX systems is a combination of two mechanisms. The primarymechanism provides two classes of user: ordinary users who have access to a lim-ited selection of kernel operations, and super users, who have access to all functionsprovided by the kernel. The functions of the �le system comprise the second mech-2The term `lightweight process' has not been employed to avoid confusion as the term has beenmore recently acquired by SUN and other vendors to describe their thread implementations

3.1. CONVENTIONAL OPERATING SYSTEMS 21anism. The UNIX �le system associates with each �le an owner, a group, and a setof permission bits. The permission bits determine the level of access to the �le thatthe owner, the group and all other users are allowed to have. In addition to this,executable �les have the ability to inherit the powers of the owner (setuid) or group(setgid) of the �le for the duration of the execution of the program. The presenceof an omnipotent user - the super user - and the ability to inherit the powers ofthe owner of a process, allow privileged functions to be made available to users in acontrolled way.There are two major families of the UNIX kernels in current use: those derivedfrom the commercial System V[GC94] and those derived from the research operatingsystem created by the CSRG at Berkeley[LMKQ90, JJ91a]. Although there aremajor di�erences between the systems - for example BSD places the kernel addressspace at the top of the process address space[JJ91b] in contrast to System V whichplaces it at the bottom of the address space - the systems are su�ciently similar atthe conceptual level that no further distinction will be made between these versionsof the operating system in this chapter3.The UNIX kernel is monolithic in that it is constructed as a single programexisting in a single address space. The kernel contains code to support virtualmemory, user requested system functions, devices and the �le system. A number ofconsequences ow from this method of organising the kernel, the most signi�cant ofthese is the absence of protection of the kernel from the actions of device drivers,and the requirement that the system needs to be rebuilt and restarted to incorporatea new device driver or an alteration to an existing device driver.The kernel manages access to the hardware through the device abstraction. Adevice appears as a special �le within the �le system. File operations and I/Ocontrol operations (ioctls) are applied to the special �le and translated by the kernelinto operations on the device.The UNIX system introduced a number of signi�cant features to mainstreamoperating systems while retaining the common monolithic implementation of thekernel. Development has continued. The most signi�cant change has occurred with3The various `kernelized' and `emulated' versions supported over micro-kernels are excludedfrom this discussion

22 CHAPTER 3. SURVEYthe introduction of `threads' by a number of vendors.UNIX displays the conventional operating system characteristics of transitoryprocesses which use the �le system to provide persistent storage. The use of special-�les as interfaces to input/output devices provides greater uniformity4 within thesystem than in other conventional systems which have separate mechanisms fordealing with devices. Finally, in a feature typical of the majority of conventionalsystems, most versions of UNIX currently provide only limited support for memoryto be shared between processes.3.2 Current Operating SystemsThis section describes a number of recently developed operating systems which ex-hibit the features of either distributed operating systems or a micro-kernel architec-ture.The advent of powerful low cost microprocessors has altered the economics ofthe provision of computer resources. In general, it is now more cost e�cient to usea large number of processors than to use a single large processor to provide a givenamount of computational power. The shift in the cost of provision of service hasbeen the major motive for the development of distributed operating systems.Distributed operating systems allow many users to work on a collection of pro-cessors linked by a high speed network. Tanenbaum [Tan92] identi�es the followingadvantages and disadvantages of distributed systems:Advantages:� Economics - Microprocessors o�er a better price/performance ratio than main-frames� Speed - Distributed systems are not subject to the fabrication and construc-tion requirements of single processor systems. Distributed systems can beconstructed with more total computing power than a mainframe constructedwith similar technology.4The Input Output Control (ioctl) mechanism which allows operations which are not de�nedfor �les to be performed on devices partly negates this advantage

3.2. CURRENT OPERATING SYSTEMS 23� Inherent distribution - Some applications involve spatially separated devices.This class of problems has a natural or inherent decomposition onto a dis-tributed architecture.� Reliability - The loss of a single CPU or group of CPUs reduces the totalperformance of the system but should not prevent the system from operating.In a centralized system the loss of a single component, typically, results in thefailure of the complete system.� Incremental growth - As distributed systems are composed of computationalunits on a high speed network, computing power can be added in these units ormultiples of them allowing the power of the system to be scaled up gradually.Disadvantages:� Software - The design and implementation of distributed programs is signif-icantly di�erent from sequential programs. As a result, little software existsfor distributed systems� Networking - Distributed systems rely on networks between processors to allowfor the transfer of information, and the co-ordination of operations betweenprocessors operating on a problem. These networks can saturate or su�er fromother problems.� Security - It is necessary for a distributed system to promote easy sharingand access to data among the processors of the system to allow the processorsto work co-operatively on that data. Easy access to data applies to secretinformation as well.Traditional monolithic kernels provide a large number of system functions whichare used directly by user programs. This contrasts with the micro-kernel approachof providing a small number of essential services from within the kernel, and employ-ing user-level servers to provide the bulk of the services expected by user processes.Micro-kernels make for greater exibility in the services provided, and in the im-plementation of those services, than do monolithic kernels. Tanenbaum [Tan92]

24 CHAPTER 3. SURVEYidenti�es the four minimal services5 implemented within a micro kernel as:1. An interprocess communication mechanism.2. Some memory management.3. A limited amount of low-level process management and scheduling.4. Low-level input/outputMicro-kernels also o�er advantages to the implementor of an operating system. Be-cause of the limited functionality required from a micro-kernel, the complexity ofthe micro-kernel is considerably less than that of a monolithic kernel. In addition,micro-kernels allow software engineering techniques to be applied to operating sys-tems. By dividing operating system services into a number of user-level servers,services can be encapsulated into logical units, reducing design and maintenancedi�culties.A number of operating systems introduced in this section make some use ofcapabilities. However, none of these operating systems is capability based as theydo not use capabilities as the sole mechanism for determining access to each objectand process under the control of the system.3.2.1 AmoebaAmoeba [Tan92, vRT92, MvRT+90] is a micro-kernel based distributed operatingsystem supporting multiple users in a transparent environment. It was initially de-signed by Andrew S. Tanenbaum, Frans Kaashoek, Sape J. Mullender and Robbertvan Renesse in 1981 at Vrije University in Amsterdam.This distributed operating system runs on a network of dissimilar workstationsand servers. The network is intended to contain a large number of CPUs with tens ofmegabytes of memory available to each CPU. Shared memory, if present, is exploited5Tanenbaum identi�es the provision of low-level input/output as a necessary service of a micro-kernel. As there are a number of micro-kernels which delegate IO operations to user level serversit is clear that this statement requires modi�cation. A more appropriate statement would be`Management of access to low-level IO'

3.2. CURRENT OPERATING SYSTEMS 25to improve message passing performance. The network has four classes of nodes:workstations, pool processors, specialised servers, and wide area gateways. There isone workstation allocated to each interactive user and it runs tasks which requirefast interactive response. These tasks include the window manager and text editors.Pool processors consist of one or more CPUs which are allocated, as required, to atask. At the completion of the task the processor is returned to the pool for othersto use. A number of specialised servers is present to perform functions which eitherneed to run on a separate processor or need to be in continuous operation to providegreater e�ciency. Typical specialised servers would include: directory, �le and blockservers, and data-base servers. Finally, wide area gateways link Amoeba sites intoa seamless system.Each machine in an Amoeba system runs a functionally identical micro-kernel.The Amoeba micro-kernel manages processes and threads, supports low-level mem-ory management, provides transparent communication between threads, and handlesI/O.Processes de�ne an address space which may be shared by a number of threadsof execution. Each thread has its own register set, stack and program counter. Tosimplify the provision of blocking I/O the threads are scheduled by the micro-kernel.The micro-kernel provides memorymanagement services which allocate and deal-locate blocks of memory, known as segments. No limitations are placed on how aprocess uses a segment, and segments may be mapped into and out of a process'saddress space, as necessary. When a segment is mapped out of a process's addressspace a capability for that segment is returned. This capability may be passed toother processes to allow them to load the segment into their address space. A seg-ment remains in the system memory even when it is not mapped into a process'saddress space.A client server model of distributed processing is implemented through the useof Remote Procedure Calls (RPCs). This mechanism is used to provide transparentcommunication between threads. The Amoeba RPC mechanism consists of 3 phases:� do operation - send a message to the server and block this thread of executionuntil a reply has been received. This call is issued by a client requesting a

26 CHAPTER 3. SURVEYservice. The destination thread is identi�ed by a 48 bit number known as aport.� get request - announce that the current thread is willing to receive a messagesent to a nominated port. This call is used by a server to advertise the serverprocedure attached to a speci�ed port.� send reply - send reply back. This call is used by the server to reply to theclient requesting the service. On receipt of this message the client thread isunblocked. Server Port| {z }48 bits Object Number| {z }24 bits Rights| {z }8 bits Check Field| {z }48 bitsServer Port - identi�es thread that manages objectObject Number - uniquely identi�es object managed by serverRights - identi�es operations permitted by holder of capabilityCheck Field - protects capability against forging or tamperingFigure 3.1: Components of an Amoeba CapabilityAlthough Amoeba uses capabilities (�gure 3.1) with cryptographic check �eldsto identify objects within the system, Tanenbaum et al do not identify Amoeba asa capability based operating system. The use of capabilities within the Amoebasystem is not uniform in that all the �elds of a capability are used and validated toload or access an object, but only the server port �eld of the capability is validatedfor RPC operations. The other �elds are passed to the server. The server mayinterpret the other �elds without restriction.A sparse port name space (a 48 bit port number is required to access a port)partly protects servers from unwanted access attempts. Only clients of a server areinformed of the server's port numbers, and hence only valid clients of a server shouldbe able to access the server. If the port number is leaked, additional mechanisms

3.2. CURRENT OPERATING SYSTEMS 27are required to ensure that a server is not abused. This protection may be providedwithin the server as it may reject messages which are not of the correct form.To protect against intruders emulating servers, Amoeba uses a one-way functionto encrypt port names. Clients of a service are given the port name P which isderived fromG, the secret port name known to the server using the one-way function.Servers use their secret port name to advertise their service, G is transformed byeither hardware or software (an F-box) into P , and the service is made availablefrom a host to the network. Clients request a service using the publicly known portname P , and are connected with the server. All port names advertised by servers aretransformed by an F-box, and as G is not publicly known, intruders cannot emulatea server.Other services provided on Amoeba systems are not supplied by the micro-kernel;instead they are made available by user level servers. The most critical of theseservices are the directory and �le system services.The basic �le system service provided with an Amoeba system is known as theBullet service. The Bullet server creates and manages immutable �les. As the �lescannot be altered after creation, the size of the �le is known at the time of access.This feature is exploited to allow �les to be stored contiguously on disk and in themain memory cache. As the �les are stored in contiguous blocks, only a singleread operation is required to recover the �le from disk, and a client can read a �le,completely, in a single RPC operation.ASCII string Group 1 Group 2 Group 3Mail Cap 1.alla Cap 1.rob Null CapcGames Cap 2.all Cap 2.rwd Cap 2.roExams Cap 3.all Null Cap Null Capacapability with all rightsbcapability with only read rightccapability conferring no rightsdcapability with read and write rightsFigure 3.2: Logical Representation of an Amoeba DirectoryThe directory server provides a mapping between ASCII strings and capabilities.

28 CHAPTER 3. SURVEYThe directory server organizes the mappings into collections known as directories(�gure 3.2). Directories can be shared with other users, and grant access to thecapabilities contained within the directory in a controlled way. The directory isstructured as a two dimensional table consisting of a collection of strings namingthe object, and a number of capabilities which grant access to the object. Thecapabilities will frequently allow di�erent levels of access to di�erent groups. As adirectory is an object within the Amoeba system, it is represented by a capabilitythat can be placed within a directory. Directories can be used to represent anarbitrary graph structure.
User 2 caphostspool �. -R 680x0386SPARC
Environbindevetchomepublicusr
User 1
Environbindevetchomepublicusr

-�
Figure 3.3: Basic Amoeba Directory HierarchyEach user is provided with a root directory (see �gure 3.3) which contains entriesfor the user's environment, binaries, I/O servers, administrative information, homedirectory, and the public directory. The public directory contains the root of thepublic shared tree. The most signi�cant entries in this area are: the cap directorywhich contains capabilities for public servers, the hosts directory which contains

3.2. CURRENT OPERATING SYSTEMS 29capabilities for host speci�c servers, and the pool directory contains capabilities forpool processors.In summary, the Amoeba system is a distributed operating system that providestransparent access to all the facilities, within the system, without the user beingmade aware of the location or nature of the resource. Specialised nodes can beexploited, without distorting the model, as they appear as servers within the system.Capabilities and sparse address spaces are used within the system to provide ameasure of security, however, they are not exploited to their fullest extent.3.2.2 MachThe Mach micro-kernel [BGJ+92, RJO+89, Loe92, Tan92] forms the basis of a num-ber of operating systems in current use including OSF/1, many research projects(including [VSK+90]), and has been suggested as the basis for a portable form ofOS/2. Mach's direct ancestors were designed to demonstrate that modular operatingsystems based on message passing were feasible. The earliest versions of Mach weremonolithic and designed to be compatible with UNIX in order to exploit softwarebecoming available for UNIX systems. At that stage Mach provided support formultiple processors, threads and interprocess communication, and although it sup-ported network operations, it was not envisaged as a distributed operating system.With the advent of Mach 3.0, the code derived from Berkeley UNIX was removed,and Mach was transformed into a micro-kernel supporting distributed operations.The features of the Mach 3.0 micro-kernel are examined below. For convenience,Mach is used to denote Mach 3.0 in the following text.Mach provides the minimal services required of a micro-kernel: task manage-ment, memorymanagement, interprocess communication and device support. In ad-dition, both multiprocessors and multicomputers are supported in the micro-kernel,and system call redirection is provided.Two abstractions are used for task management: tasks and threads. A taskcorresponds to a collection of resources, including the task's address space, andaccess to communication facilities to both the kernel and the server. Threads arepaths of execution within a task. More than one thread may be active within a task

30 CHAPTER 3. SURVEYat a given time, and on a multiprocessor, several threads may operate concurrently.Both the control of tasks and the scheduling of threads can be mediated by userlevel programs. User level programs can have complete control over the schedulingof processes.Memory management consists of mapping contiguous sections of Mach objectsinto the address space of Mach tasks. The micro-kernel manages the main memoryas a cache of sections of Mach objects. A signi�cant feature of Mach's memorymanagement is that a user level page fault handler may be speci�ed. User levelcode can control the fetching of pages from backing store. This feature has beenexploited in the implementation of persistent systems such as the Napier88 environ-ment [VSK+90].Interprocess communication is provided through the use of ports. A port is a datastructure accessible only to the micro-kernel which consists of a �xed length, orderedlist of messages. The port data structure is used to implement all communicationunder Mach. When a port is created, capabilities known as port names are created.Associated with these capabilities are port rights. Three types of port rights exist:receive right, send right and send-once right. Only one task may hold a receive rightfor a port although many tasks may hold a send right. Ports are only destroyedwhen the receive right is destroyed. A task gains access to a port by loading theport name into its port name space. The micro-kernel maintains a count of thenumber of tasks that have a port loaded. The port abstraction is used to controlevery element of the Mach system. Operations on tasks, threads, and objects, areall performed by sending messages to the appropriate port.Low level device I/O is modeled using the port mechanism. Messages can besent to ports to transfer data and control devices. Mach is capable of supportingboth synchronous and asynchronous devices as it separates read and write messagesfrom request and reply messages.To assist in the provision of the binary emulation of operating system environ-ments, Mach incorporates system call redirection. When one of the redirectablesystem calls or a redirectable exception occurs, user mode code, within the callingtask, can be invoked to handle the call. A library of routines emulating the system

3.2. CURRENT OPERATING SYSTEMS 31calls of the emulated operating system can be incorporated into a task. The systemcalls are activated seamlessly. The redirection need only be set up once as it ispreserved in child tasks after a fork operation.Mach supports multiple processors through the use of processor sets. The mem-bers of these sets form a pool of processors which can be used to schedule tasks andthreads assigned to the set. The use of processor sets provides a mechanism for thecontrol of the scheduling of threads within a multiprocessor or a multicomputer.
Other Task PropertiesThreadThreadThread ProcessPortBootstrapPortExceptionPortRegisteredPort

User KernelTaskAddress Space
Figure 3.4: A Mach TaskFigure 3.4 depicts a Mach task. In addition to its address space a Mach taskcontains default values for the processor group and scheduler parameters to be usedby threads operating in its address space, and a collection of statistics relevant to thehistory of the process. The process port is used to request services from the micro-kernel. The bootstrap port is read by the �rst process in the system to determinethe names of kernel ports. The exception port is read to determine the nature of anyerrors. A collection of registered ports provide access to standard system services.Each Mach thread has a port that can be used to control it. As ports areaccessible to all threads within a task, these ports allow a thread to control itselfand other threads within a task. Using this facility, it is possible to construct userprocess managed thread packages.

32 CHAPTER 3. SURVEYEmulation libraries are the key component that allows Mach to support operatingsystem environments. Emulation libraries translate program requests into Machoperations. E�ciency is improved by placing the emulation library into the sameaddress space as the program expecting the emulated services because this reducesthe cost of communication between the emulation routines and the program. As codewithin the emulation library shares the address space of the programs it supports,it is unable to protect data that it accesses from the program. Thus the emulationlibrary mechanism cannot be used to protect sensitive data from programs.The use of emulation libraries allows several `personalities' to exist on a Machsystem at one time, executing in parallel. In addition to using Mach functions tosupport operating system functions, it is possible for the emulation library to usethe facilities of other personalities. This feature is most commonly used to allowoperating environments to use �les hosted by other operating environments.The Mach micro-kernel has demonstrated that micro-kernels can support multi-ple operating system interfaces within a single system. Access to process schedulingand memory management from user level processes has made Mach a popular toolfor the implementation of experimental operating environments. Mach is not ca-pability based, as within it, capabilities are used only in a limited way to protectaccess to ports.3.2.3 Plan 9Plan 9 [PPTT92] is a distributed multi-user operating system which bears a strongresemblance to UNIX at the user interface level. Plan 9 draws on concepts found inUNIX, generalized for the new environment, rather than attempting to implementpreviously untried concepts. The operating system is aimed at a similar environmentto the Amoeba system (see section 3.2.1), in that it is composed of workstations(known as terminals), pool processors (known as CPU servers) and �le servers.Resource sharing, and reducing administration were priorities in the design of thesystem.By using a limited number of powerful abstractions it is possible to produce asmall kernel that performs the functions of larger kernels. The micro-kernel philos-

3.2. CURRENT OPERATING SYSTEMS 33ophy of minimising functionality of the kernel, and placing maximal functionalityinto user processes di�ers from Plan 9's philosophy of minimalism and uniformity.Unlike micro-kernels, Plan 9 incorporates elements of the �le system into the kernel.The �le system serves as the major abstraction of the operating system.Resource sharing is promoted by using identical kernels on each terminal andCPU server. This allows users to choose whether to run programs on their terminalor on a CPU server. The distribution of tasks varies with the bandwidth of the linkbetween the terminal and CPU servers. On slow links users tend to place programsso as to reduce the communications cost. On faster links users tend to run programslocally, unless the program is a data or compute intensive job.All the resources of a Plan 9 system, other than program memory, are repre-sented as �les within the �le system. The strict tree structure imposed on the �lesystem (links are not supported) and the presence of all program accessible resourcesmakes the �le system into a uniform name space. Physical devices, abstractions6and software concepts7 are all representable by �le systems. File systems can beimplemented within the kernel as a driver, as a user level process or as a remoteserver. Access to �le systems outside the kernel is performed through the kernel'smount driver. The mount driver converts operations into request messages whichare relayed to either the user program or the remote server which implements the�le system functions.The uniform name space, and the ability to implement �le systems in either thekernel or user code, provides a uniform mechanism to access either kernel or userfunctions. This, combined with the use of a uniform data structure for access to �lesand devices, known as a channel, and a uniform set of primitives results in a highlyextensible operating system with a simple interface paradigm. The 9 I/O primitivesare:Attach - Connect a channel to the root of a �le system and notify the �le system6Complex abstractions are represented as directories containing �les representing di�erent as-pects of the abstraction. In the case of a process the �les present include ones for memory, controland the text �le7An example of a software concept implemented as a �le system would be Plan 9's representationof environment variables as �les in the kernel resident �le system

34 CHAPTER 3. SURVEYof which user is being attached.Clone - Duplicate a channel creating a new channel that points to the same �le or�le system, as the original.Walk - Perform a directory lookup on a �le, and set the directory pointer to thenext �le or directory.Stat - Get the �le attributes of the current �le.Wstat - Alter the �le attributes of the current �le.Open - Check permissions before opening �le to allow I/O to be performed on thechannel.Read - Read from open �le.Write - Write to open �le.Close - Close open �le.As more than one �le may be used to represent a device, it is possible to separatethe control operation from the data transfer. By dividing device information thisway, Plan 9, avoids the need for a call similar in nature to the ioctl found in UNIX.
/dev/Binariesfor localprocessorfor localprocessorDevices/ /bin/Figure 3.5: The Initial Name Space of a ProcessPlan 9 creates a process group when a user logs into the system. This minimalprocess group (�gure 3.5) contains a root directory, some binaries and some localdevices. The system calls mount and bind are used to manipulate the name space.

3.2. CURRENT OPERATING SYSTEMS 35The mount call adds new external �le systems, and the bind call alters the arrange-ment of the name space. Directories in the Plan 9 system have the special propertyof being mounted behind another directory to yield the union of the two sets of �les.Each directory in the union is searched, in turn, to �nd a �le with a matching name.The �rst �le found is returned. This feature replaces the UNIX search path conceptin Plan 9.The system is virtualized through control of the name space. The ability toalter any element of the name space, for a process, allows processes and objects tobe moved from server to server within the system. Remote and local resources areeasily interchanged by altering a process's name space. The virtual machine o�eredby Plan 9 is exploited when CPU servers are used as accelerators for processes. Adaemon on the CPU server answers a request for a process to operate on the serverby setting up a process group on the server. This allows resources, local to the CPUserver, to be used by the process to be accelerated, without the process needing tobe aware that it is running on a CPU server. Apart from an increase in speed, theprocess's environment appears identical to the process, regardless of whether it isoperating on a CPU server or a terminal.Local disk �le systems have been avoided in the design of this operating system.The designers argue that local �le systems require signi�cant knowledge to admin-ister on the part of the workstation user, which is frequently absent. In addition,as relatively few workstations export their �le systems, the use of centralized �leservers promotes �le sharing and makes users independent of a speci�c terminal.The need for local systems is removed by using a combination of caching and highspeed links, where necessary. By using high speed links between CPU servers and�le servers, and large memory based caches on the �le servers, a �le access rate ofa similar order of magnitude to the memory access rate has been achieved. Cachecoherence is maintained through the use of a 64 bit �le identi�er. Half of this valueis used to identify the �le on a �le server. The other half is a version number whichis incremented each time the �le is modi�ed. The �le identi�er is returned each timea �le is opened. If the version number component does not match, any currentlycached pages are replaced, otherwise the cached pages are used. Where high speed

36 CHAPTER 3. SURVEYlinks are available, only pages of executable �les are cached. On low speed links, alocal disk is used as a large write through cache memory, for both executable anddata pages. As this local disk acts only as a persistent cache of information heldon the �le server, it requires only limited maintenance. When the code or the userdetects a problem with the disk, the disk is reformatted.By using the �le system paradigm to generate a uniform name space in whichprocesses operate, Plan 9, provides a distributed system which uses a single concep-tual model, allowing access to the full functionality of the system.3.2.4 QNXThe QNX micro-kernel [Hil92, Var94] originated in 1982. It is currently in use ina large number of real time and distributed applications. The small code size ofthe kernel, and the ability to build systems without a �le system, makes QNX wellsuited to embedded applications.The micro-kernel supports 14 system calls. These form the interface to thefunctions of the QNX kernel: interprocess communication, process scheduling andinterrupt dispatching. The kernel may optionally contain a network manager whichsupports low-level network communication. All system services are accessed throughmessages passed by the micro-kernel.Message passing is implemented using a set of three blocking functions. TheSend() call sends a message to a target process and blocks the current process untilthe target process executes a Receive() and a Reply() call for that message. If thereare no pending messages, executing a Receive() call causes a process to block until amessage is sent to it. The message is transmitted by copying between processes. Noqueuing is employed by these primitives. Message queues are supported through theuse of IPC servers which are implemented using the three low level communicationprimitives. Processes can specify that messages be delivered in priority order ratherthan time order, and that the process executes at the priority of the highest-priorityblocked process waiting for service. The use of these facilities prevents lower priorityservers preempting a higher priority process by invoking the services of a processwith even higher priority.

3.2. CURRENT OPERATING SYSTEMS 37MessageY o �Part 1 Part 2 Part n12nMX TableFigure 3.6: QNX Multi-part MessagesMulti-part messaging is supported by the low level communication primitives.An MX table (see �gure 3.6) indicates where components of a message should befetched from in the sending process's address space, or delivered to in the receivingprocess's address space. Direct support of multi-part messages reduces overheadsencountered in other systems where messages must consist of contiguous memorylocations. Systems which do not support multi-part messages typically use memorycopies to gather elements in the transmitter, and scatter the elements in the receiver.QNX supports the following scheduling policies8:� Preemptive� Prioritized context switching with round robin� First in �rst out� Adaptive schedulingSu�ciently privileged user processes can connect an interrupt handler to aninterrupt vector within the kernel. The handler, which runs within the process'saddress space, is called when an interrupt occurs. It has access to all the facilitiesof the user process. On completing its response to an interrupt, the handler has8These policies are implemented in accordance to the draft standard: POSIX 1003.4 (real-time)

38 CHAPTER 3. SURVEYthe choice of either returning to the kernel or waking the process which provides itsaddress space. The ability to selectively start a process allows signi�cant events tobe noted immediately, and bu�ering to be used to improve e�ciency. The micro-kernel conceals the presence of nested and shared interrupts, and any hardwaredependent details from the user level interrupt handler. This feature provides auniform interface thus simplifying the task of the programmer.When present, the network manager is directly connected into the kernel pro-viding e�cient access to low level communications between QNX kernels. Transfersbetween local processes and remote processes are accomplished by issuing a message.The micro-kernel identi�es the message and uses its private interface to the networkmanager to queue the message for transmission. After the dispatched message isreceived by the appropriate node, the network manager on that node passes themessage to the local micro-kernel.Multi-processor support is highly transparent as all services are available in re-sponse to messages, and message passing is handled by a network manager that isclosely bound to the kernel. This simpli�es the construction of distributed systems.The only mandatory resource manager is the process manager - Proc. It supportsprocess creation, accounting, environment inheritance, memory management and�rst level pathname management. Because a �le system is optional within a QNXsystem, and as there are no other compulsory resource managers, proc initiallyowns the entire name space. Proc may delegate part of the name space to othermanagers. Name space delegation is conventionally implemented by having procmaintain a pre�x tree of delegated pathnames, and ensuring that library routinesusing pathnames send a message to proc, which directs the routine to the managercorresponding to the entry with the longest matching pre�x. File systems andnetwork elements can easily be incorporated into this structure by delegating partof the name space to their managers. These managers are responsible for parsingthe non-matching part of a pathname, and providing functions corresponding torequests directed to them by library routines.The QNX system exhibits the exibility typical of micro-kernel based operatingsystems. This exibility is enhanced further by the use of a manager for network

3.2. CURRENT OPERATING SYSTEMS 39interfaces and shifting name space management into a user level process. The useof message passing, as the basis of all system operations, provides inbuilt networktransparency. This has resulted in a small operating system suited for use in dis-tributed applications.3.2.5 AngelThe Angel micro-kernel [MSWK93, MWO+93] employs a single 64-bit address spacewhich is shared completely by the kernel and all processes executing on the system.The Angel kernel was inuenced by perceived weaknesses and limitations in Meshix[OSW+92] - a conventional micro-kernel. The use of message passing within Meshixwas identi�ed as a major performance limitation. Lightweight RPC mechanismswere considered; however, the implementation of these mechanisms would reducethe strength of interprocess protection hence reducing the security of the system.Angel replaces RPC mechanisms with a shared address space model and implementssecure LRPC mechanisms using shared memory.The micro-kernel supports two major services: persistent virtual memory andvirtual processor management.The designers of Angel exploit the address space provided by a 64-bit processorto unify the functions of memory and the �le system to produce a persistent storeaccessed through addresses. Memory objects are �xed in the address space. Thedesigners term this a Single Address Space Architecture (SASA) as each process�nds objects at the same place, within their address space. Improved data sharingis a major advantage of this style of address usage. Data always resides at the sameaddress, allowing data structures to use addresses directly, and hence avoiding theneed to encode data to remove pointers. The single uni�ed interface reduces thecomplexity of programs. Only addresses are required to identify and use objects.The common interface is valuable on Distributed Shared Memory (DSM) machinesas it eliminates the need for additional mechanisms to use resources located acrossthe network. Shared memory allows LRPC mechanisms to be implemented throughthe use of shared objects which allows fast communication between co-operatingprocesses at the security level provided to control access to memory.

40 CHAPTER 3. SURVEYThe kernel supports the concept of virtual processors. A virtual processor behavessimilarly to a UNIX process, except that whenever it performs an action that wouldblock, it is `upcalled'. The virtual processor can decide whether it can continue withsome other task rather than surrender its time-slice to another virtual processor.The kernel employs a control structure known as a virtual processor to representthe virtual processor. This data structure incorporates the state of a process and alist of upcalls.An upcall is made by the kernel when an event which would block a virtual pro-cessor occurs. An upcall is implemented as a small data structure which conveys thetype of the event causing the upcall and two further pieces of information speci�cto the upcall type. The upcall is delivered to the virtual processor if there is su�-cient space in the upcall list, otherwise the upcall is ignored. The virtual processorstructure speci�es how an upcall is dealt with. The options for handling receivedupcalls are to discard the upcall, queue the upcall for later attention, or invoke ahandler associated with the upcall type.Threads are supported by user level code. The kernel has no explicit support forthreads. The upcall mechanism is used to notify the user level thread package ofevents, including time based alarms, blocking events, and a change in state of locks.Angel does not support the concept of user identi�ers. Instead, it determines theright of a process to access an object based on what a process already has access to.Access to objects within the Angel address space is controlled through the use ofAccess Control Descriptors (ACD). They describe the other objects which must beaccessible to a process before this object may be used. A biscuit - a unique identi�erfor an ACD - is presented to the object manager to gain access to an object. Theobject manager con�rms that the process has access to any objects listed in theACD for the object the process wishes to load. If the requirements are met, theobject manager allows access to the object.Objects are composed of one or more pages of memory. Objects must be distinct,that is objects must not overlap, and an object may not enclose another object.Objects are created with a �xed length. It is necessary to copy the contents of anobject to a larger object to e�ectively enlarge its size. Angel currently allocates

3.2. CURRENT OPERATING SYSTEMS 41backing store to an object when a page is �rst modi�ed. This allows sparse objectsto be implemented with a minimum of backing store. However, it risks having awrite to memory fail for a lack of backing store.The Angel micro-kernel is a persistent system using a large at address space tohold all objects. The �xed location of objects in the address space eliminates theneed to make data structures independent of memory location, improving accessspeed and potentially simplifying the structures. The access mechanism of deter-mining the right of a process to access an object, based on the ability to access otherobjects, allows the protection domain of a process - the set of objects it can access- to vary automatically.3.2.6 ChorusThe Chorus9 distributed operating system [RAA+91, ARG89, Gie90] developed byChorus syst�emes uses a message passing based micro-kernel to support native pro-grams and a UNIX based subsystem. Real time application support is incorporatedinto the nucleus.Each site - a collection of one or more closely coupled processors within aChorussystem - has a nucleus. TheChorus nucleus (�gure 3.7) consists of four major parts:� The `Supervisor' is machine dependent and is responsible for dealing withevents generated by the hardware. The Supervisor incorporates the dispatchof interrupts, traps and exceptions.� The `Real-time Executive' allocates processors, provides �ne-grained synchro-nization and preemptive priority-based scheduling.� The `Virtual Memory Manager' controls virtual memory hardware and localmemory resources.� The `IPC Manager' provides asynchronous message exchange and RPC func-tions.9Chorus is a trademark of Chorus syst�emes

42 CHAPTER 3. SURVEY
Portable

IPC Manager VM ManagerSupervisorReal-time Executive HardwareMachine DependentFigure 3.7: The Chorus NucleusThe four components of the nucleus are independent. The managers are distributed,with the users of the services being unaware of the separation of the components.Access to the functions provided by the managers, and between managers, is by thestandard Chorus IPC mechanism.The nucleus uses a number of abstractions to represent objects it manages, andoperations on those objects. Global naming is achieved through the UI - uniqueidenti�er - abstraction. The unit of resource allocation is the actor. The addressspace of an actor consists of a number of regions. The thread is the unit of sequentialexecution. Communication is conducted through messages directed to a port or portgroup.A subsystem is composed of a number of servers operating cooperatively to pro-vide a coherent operating system interface. Three abstractions are managed by boththe nucleus and the subsystem servers. The segment is used to encapsulate data, acapability provides access control, and a protection identi�er is used for authentica-tion.UIs are used to identify actors, ports, and port groups. These identities are

3.2. CURRENT OPERATING SYSTEMS 43unique in both space and time, global, and independent of location. The Chorusnucleus provides a service that allows the location of an entity with a UI.A Chorus actor encapsulates an address space divided into regions, a set ofports, and a set of threads. The regions are coupled with either local or remotesegments. Threads are tied to a single actor, and share the resources of that actorwith the other threads of the actor.Actors are tied to a site, as are their threads. Only physical memory local to asite is used by an actor. The actors on a site have distinct user address spaces, andthey share a single system address space. The shared address space is local to thesite. Three types of actors exist:User Actors are not trusted nor privilegedSystem Actors are trusted but not privileged. They may perform sensitive nu-cleus operations, but cannot execute privileged instructions.Supervisor Actors are both trusted and privileged. They may execute privilegedinstructions as well as sensitive nucleus operations.A port may be attached to only one actor at a time. However, ports can migratefrom actor to actor allowing easy recon�guration of services. Any thread within anactor may use a port held by that actor. Any thread that knows the name of a portmay send a message to that port. Port groups are used to provide multi-cast andfunctional addressing. Ports may be added to, and removed from, port groups atany time. A number of addressing modes are provided to support port groups. It ispossible to broadcast to all the ports in a group, to send to any one port in a group,to send to any one port on a given site, and to send to any one port on the samesite as the sender.A message consists of a contiguous string of bytes copied from the sender's ad-dress space to the receiver's address space. The copy is optimised. If possible, a pagedescriptor is moved between the sender and the receiver; failing that a copy-on-writetechnique is employed.Chorus supports both asynchronous IPC and synchronous RPC mechanisms.

44 CHAPTER 3. SURVEYUI of server (128 bits)Key to resource within server (64 bits)Figure 3.8: A Chorus CapabilityA capability (see �gure 3.8) comprises the UI of the server which manages theobject, and a key which uniquely identi�es the object. Capabilities are used as globalnames for objects which are not directly implemented by the Chorus nucleus.Each message is stamped with the protection identi�er of the source actor-portcombination. This allows the receiver of the message to verify the identity of thesender.Deferred copy techniques and local caching are employed by the Chorus micro-kernel to improve performance. These techniques have a signi�cant impact on op-erations which copy large amounts of data between actors, and on IPC and IOoperations which move small amounts of data between segments.The model of distributed computing employed by Chorus ties processes toclusters of tightly coupled processors and employs a position independent addressingmechanism to allow the delivery sites of messages to migrate. This mechanismavoids the di�culties of shifting processes while it provides a way of distributing thework load and allowing services to migrate. The performance of message passing isimproved through the use of caching and deferred copying.3.3 Capability Based Operating SystemsA capability based operating system uses capabilities to control access to objectsand services. The capability is used as the primary mechanism for referring to anobject. Possession of a capability implies the right to access an object or service.Five capability based operating systems are covered here: Monads, KeyKOS10Grasshopper, Opal and Mungi. In each of these systems, capabilities are the fun-10KeyKOS is a trademark of Key Logic, Inc.

3.3. CAPABILITY BASED OPERATING SYSTEMS 45damental access control mechanism. However, these systems display widely varyingproperties, and exploit capabilities in di�ering ways to provide the facilities of theoperating system.3.3.1 MonadsThe Monads project [RA85a, Geh82, Kee82] ran from 1976 to 1985 at MonashUniversity. This project attempted to provide an architecture suitable for the de-velopment of large and complex software systems. Special purpose hardware wasdesigned and built to support the Monads operating system.The designers of the Monads systems applied the principle of information hidingto the decomposition of complex systems into modules. The modules communicateonly through the de�ned module interface, and the internal data structures of amodule are inaccessible to other modules. The module interface consists of a set ofexported functions which may be called from other modules.Under Monads, capabilities are viewed as protected pointers - a pointer whichcannot be modi�ed by the process - to objects which exist in a large uniform addressspace. Two classes of objects are supported: modules and segments. The segmentis the base unit of storage, and cannot be shared between modules. A module is acollection of segments which store all the module's information. Module capabilitiesare used to refer to other modules. Segment capabilities are used to address withina module.Every memory access within the Monads architecture makes either explicit orimplicit use of a capability. Thus all memory accesses are checked at the instructionlevel to ensure that appropriate rights are held to perform the operation.A uniform paged virtual memory is used to hold all the data contained in aMonads system. The virtual memory is accessed through the use of large addresseswhich identify single bytes11. Segments are de�ned by a start address and a limit.They need not be page aligned. (see �gure 3.9)Each segment is intended to contain a single logical entity12. Segments have ex-11Monads-PC supported 60 bit addresses [RA85b]12An array and a procedure are examples of logical entities

46 CHAPTER 3. SURVEYPage BoundarySegment ListAddress space Base Limit - �
Virtual Memory Segment

Figure 3.9: Mapping Monads Segments to Pagesclusive use of the virtual address space they occupy. They are created in a previouslyunused portion of the address space, and when they are destroyed, that portion ofthe address space becomes unusable.Each process is associated with a number of base registers which point to listsof capabilities know as segment lists (see �gure 3.10). Segments in these lists areavailable for use by the process. A process cannot directly modify either a baseregister or a segment list. Memory can only be accessed by specifying a base register,segment number and o�set. A limited number of capability registers are providedto increase e�ciency. This allows memory addresses to be speci�ed by a capabilityregister and an o�set.The inter-module call mechanism performs several tasks. The call instruction:� loads the base registers with values appropriate for the called module� creates a local data segment list and associated segments on the stack� loads a base register with the segment list of passed parameters� transfers control to the called moduleThis limits a module to its own data and any data passed to it. The return call

3.3. CAPABILITY BASED OPERATING SYSTEMS 47
Base SegmentSegment ListSegment List<base, segment number, o�set>Figure 3.10: Addressing Memory Under Monadsremoves local segments and restores the previous module's environment before re-turning control to the calling module.Four types of program data are identi�ed in the Monads system: code-relateddata, local data, permanent data, and retained data. Code related data is createdat compile time, and typically consists of constants embedded in the code. Localdata is used for temporary storage within a procedure. It is created on entry toa procedure, and destroyed on exit from a procedure. Permanent data13 is dataassociated with a module. Several di�erent versions of this data may exist, eachbeing associated with a di�erent instance of the module type. The permanent datapersists until the module is destroyed. Retained data is associated with a particularinvocation of an instance of a module. The retained data persists between calls toa module, and is destroyed when a program terminates.Each module is required to have two standard procedures: CREATE and OPEN.These procedures are used to support permanent data and retained data. The13Permanent data would be stored in �les in a conventional operating system.

48 CHAPTER 3. SURVEYCREATE call is used to generate a new instance of a module. Creating a moduleis performed by making a data segment list and associated data segments. Thisallocates space for a permanent data entity which can be shared by a number ofprocesses. The OPEN call is made on the �rst invocation of a module by a program.The call consists of two components: the �rst creates the retained data segment listand segments, and the second component, removes the retained data segments. Thesecond component of the open call is made when the program terminates.Monads employs an in-process architecture. The operating system does notrun as a separate process to user processes; instead operating system functions areused by calling privileged procedures. Monads supports only user level processes; alloperating system functions are accomplished through calls on privileged procedures.There are no auxiliary operating-system processes.Privileged procedures are protected by the same means as normal procedures.The data of a procedure is inaccessible while the procedure is not running. Whilea procedure is executing, its data is available to the code of the procedure, but thedata must cease to be available when the procedure is no longer executing. Thedata of a procedure includes information held on the stack. The Monads hardwaresupports this mode of operation. This level of protection is su�cient to protectoperating system functions.The Monads project produced a number of systems, all using specially con-structed or modi�ed hardware to implement an environment well suited to support-ing small modules, with strict isolation between the modules, except through theparameters of a set of exported functions. Capabilities provide both unique namesand a mechanism to implement access restrictions. A C-list based architecture isused to protect capabilities from user process manipulation.3.3.2 KeyKOSDevelopment of the KeyKOS system [BFF+92, Har85] began in 1975 and has beenin use in production systems since 1983. KeyKOS is a capability based operating

3.3. CAPABILITY BASED OPERATING SYSTEMS 49system, with check-pointing built into the kernel. The micro-kernel14 was developedto support a secure environment, with data sharing, high reliability, and accuratepricing. An abstract machine interface is presented to each application program.The abstract machine interface may be exploited to implement either a KeyKOSservice or an operating system emulation. EDX, RPS, VM/370, a subset of MVSand UNIX have been implemented.The original application of KeyKOS was to support British Telecom's Tymnetservice. Isolating mutually antagonistic users, supporting highly accurate account-ing, and providing 24-hour uninterrupted service were the three major priority re-quirements placed on the operating system.The architecture of the micro-kernel is based on 3 concepts: a stateless kernel, asingle-level store, and capabilities.All the micro-kernel's state is derived from information held in persistent state.The information cached in the micro-kernel may be in a di�erent format to thepersistent information to increase e�ciency. The private information of the micro-kernel may be discarded at any time, as it can be reconstructed as necessary frominformation held in the persistent data elements, known as nodes and pages. Theelimination of critical state in the kernel eliminates the need to checkpoint the kernel,and avoids the need for dynamic allocation of kernel storage.All the data of a KeyKOS system is stored in a persistent virtual memory system.Only the micro-kernel is aware of which pages are present in main memory. Thepaging system is tied to the administration of checkpoints, and periodic system-wide checkpoints are used to guarantee the persistence of data. Both processes anddata are persistent. Service interruptions appear, to application processes, only asunexplained jumps in the real time clock.Capabilities15 are central to KeyKOS's operation in that they are used to controlaccess to objects and the sending of messages. No other mechanisms are present tocomplicate the implementation. Objects in the system are exclusively referred to bytheir capabilities, and possession of a capability implies the right to use the capability14The designers of KeyKOS identify their kernel as a `nano-kernel architecture', but o�er noexplanation as to how it di�ers from a conventional micro-kernel architecture15The authors of KeyKOS uses the term `key' instead of capability for brevity

50 CHAPTER 3. SURVEYand to pass the capability to a third party. The right to create a capability isprivileged; however, the right to duplicate a capability is available to all applications.To prevent forgery, capabilities are segregated so that only the micro-kernel hasaccess to the capability.Encapsulation of objects is enforced by the kernel through the use of messagepassing and capabilities. Mutually suspicious users are protected from each otherby the capability mechanism. For a user to gain access to a service or object, it isnecessary for a holder of a service or object to disclose the required capability.Multiple capabilities may refer to a single process. An 8-bit �eld in a capabilityis used to identify the class of capability used to send a message to the process.When a process hands out a capability, it can set this �eld to a known value. This�eld allows the process to partition clients of the process into either service classes,or privilege levels.Six fundamental objects are supported by the KeyKOS kernel:Devices: Device drivers are typically split into two components. Low level hard-ware drivers are implemented in privileged code and perform the tasks ofmessage encapsulation and hardware register manipulation. The high leveldriver is typically implemented as a KeyKOS process16.Pages: The simplest object in a KeyKOS system is a page. The size of a page ismachine dependent17. At initialization the number of pages that a system canmanage is �xed.A page responds to read and write messages. If a page is mapped into aprocesses address space, then loads and stores on locations within a page areequivalent to the operation of read and write messages. If a page is not presentin memory when a message is sent to it, then it is brought into memory beforeperforming the operation on the page.Each page is known by at least one page key, and the page has at least onepersistent location on disk known as its home location.16Except where performance would be inadequate17In all current implementations of KeyKOS pages are 4 kilobytes in size

3.3. CAPABILITY BASED OPERATING SYSTEMS 51Nodes: KeyKOS segregates capabilities from direct scrutiny by user processes. Itstores capabilities in nodes18. A node key is a capability that gives access to anode. It is used to add and remove capabilities from a node.Segments: Address spaces are de�ned through the use of segments which representsa collection of pages or other segments. Segments are sparse and are notrequired to be contiguous. They are implemented as a tree of nodes, withpages as the leaves of the tree.Meters: A meter key entitles the holder to the amount of CPU time held in themeter corresponding to the capability. There is no guarantee that the CPUtime will be allocated in a contiguous unit.Domains: A domain consists of 16 general key slots, a number of special key slotsand all the non-privileged state of the hardware available to a KeyKOS process.When a slot in a domain is loaded with a capability, the process executingwithin the domain is deemed to hold the key. The special slots for a domaininclude: an address slot which holds the capability for the segment acting asthe address space for the domain, and a slot for a meter key which providesexecution time for process executing within the domain.Under KeyKOS a message consists of a parameter word, a string of up to 4096bytes, and four capabilities. Only capabilities held by the sender can be sent. Thereare 3 mechanisms available for sending messages: call, fork and return. The forkmechanism sends a message to the recipient, and does not wait for a reply. Thecall mechanism generates a resume key for the sender, and dispatches the messageto the recipient. The sender is suspended, and refuses messages, until it receives amessage sent using the resume key. The return mechanism sends a message, leavingthe sender able to receive messages.Messages are not bu�ered. If the recipient of a message is unable to handle amessage immediately, then the sender of the message is deferred until the receiveris ready.18In all current implementations of KeyKOS nodes have sixteen slots

52 CHAPTER 3. SURVEYOn receipt of a message, the receiver of the message may choose which parts(parameter word, string, or keys) of the message it accepts, discarding the remainderof the message.Periodically a KeyKOS system checkpoints. At this stage, all processes and I/Oactivities are stopped, any dirty pages are transferred to the current checkpointarea on disk, the alternate checkpoint area is made current and the processes arepermitted to resume. Pages are then migrated from the �rst checkpoint area backto their home locations. By ensuring that a second checkpoint does not occur untilthe �rst checkpoint is handled, the system remains in a non-corrupt state.Exceptions are managed through the use of keepers which are associated withdomains, segments and meters. A message is sent to the appropriate domain keeper ifan exception occurs. The keepermay either terminate the program, supply an answerand allow execution to continue, or restart the instruction. Segment keepers areinvoked if an invalid operation or a protection violation is performed on a segment.A meter keeper is invoked when the associated meter runs out. This can be used toimplement complex thread and process scheduling mechanisms.The use of capabilities for access protection and check-pointing for ensuringsystem consistency allows KeyKOS to provide an environment where applicationsare secure from both external failures and internal attacks.3.3.3 GrasshopperThe Grasshopper operating system [DdBF+94b, DdBF+94a, LDdB+94, DLR95] isan experimental operating system that seeks to provide a scalable and e�cientpersistent environment using conventional workstation hardware. The operatingsystem is being developed by researchers in the computer science departments atthe University of Sydney and the University of Adelaide.Unlike Monads (see section 3.3.1), Grasshopper, is designed to run on conven-tional hardware, using the existing page translation hardware to support access con-trol and memory mapping. A direct consequence is that access control and memorystructuring occurs in multiples of pages.The designers of Grasshopper identify two principles which de�ne `orthogonal

3.3. CAPABILITY BASED OPERATING SYSTEMS 53persistence'. The requirements are that objects exist for the same period as theobject is required and that objects are manipulated in the same manner regardlessof their longevity. To provide an environment which supports orthogonal persistencethree fundamental abstractions are employed by the operating system: Containersare the abstract representation of storage, loci represent actions within the system,and capabilities are used to represent a right of access to an object.
C4C1 C2C3Figure 3.11: Mapping containers under GrasshopperContainers provide all access to storage within the system. They are persistentand may be of arbitrary size. The contents of containers are derived from 2 sources:sections of other containers and information supplied by a manager. Containersmay map in segments of other containers (see �gure 3.11) to construct a directedacyclic graph of dependencies on other containers. The elimination of cycles ensuresthat there exists a container that is responsible for the provision of data. When areference is made to a location within a container (resulting in a page fault), thekernel determines which container is responsible for the delivery of the informationand calls the appropriate manager to make the information available.Managers provide data when it is not resident in memory. They are normal userlevel programs which reside and execute within their own containers. Managersprovide pages of data which are stored in a container, respond to access faults andhandle data removed from memory by the kernel. It is the responsibility of themanager to maintain the coherence and integrity of the data of the containers thatthey manage.`Manipulative managers' store data in a di�erent form on permanent store to

54 CHAPTER 3. SURVEYthe form that is present to a locus in a container. Three examples of manipulativemanagers are:Swizzling managers may be used to support a container that is larger than theaddress space of the host hardware. When address fault occurs in a containermanaged by a swizzling manager, a page of data is provided which containsa set of addresses. When one of these addresses is dereferenced, the swizzlingmanager maps in the correct data.Encrypting managers encrypt the data placed on the permanent store.Compressing managers compress the data placed on the permanent store result-ing in storage savings.The presence of manipulative managers clearly distinguishes the container conceptfrom the concept of an address space.Loci are the active elements which manipulate the contents of containers. In prin-ciple, a locus always executes within a single container, known as its host container.The virtual addresses generated by the locus are used to access the contents of thehost container. By using the mapping mechanism, the locus can make use of thecontents of other containers. Any number of loci are permitted to execute within acontainer, allowing the operating system to support multi-threaded programs. Lociare maintained as persistent entities by the Grasshopper kernel.A locus can change its host container by invoking another container (see �gure3.12). The locus enters the container at a location known as the invocation pointwhich is speci�ed as an attribute of the container. The single entry point forces thelocus to execute code that is under the control of the invoked container. This allowsthe invoked container to ensure its own security. A parameter block is availablewhich allows a small amount of information to be carried between the containers bythe locus. Invocation is a low cost operation as the minimal parameter block is theonly context transferred to the invoked container. Larger quantities of informationmay be conveyed through the use of an intermediate container.Invocation is analogous to procedure calls in that loci may make invoke othercontainers, and issue a return which takes the locus back to the invoking container.

3.3. CAPABILITY BASED OPERATING SYSTEMS 55
C2

...-
...-

...-
...-�

LocusInvocation Point
C1C2 InvokeC1C2
C1

Figure 3.12: Invocation under Grasshopper

56 CHAPTER 3. SURVEYThe kernel maintains a call chain of invocations. As some loci may not require toreturn to the container from which they were invoked, a mechanism exists to informthe kernel that no return chain need be kept.Locus private mappings allow loci to share their host containers while retainingprivate data which is visible only to a single locus. These mappings take precedenceover host container mappings. Locus private mappings simplify the implementationof multi-threaded programs, and provide a mechanism for a locus to keep informationsecret from other threads executing in the same container. This feature is typicallyused to implement stacks, without the need to ensure that stacks are separatedthroughout the address space perceived by the loci in a container.Grasshopper employs capabilities to provide unique naming and access control.Capabilities are stored in list structures segregated from containers and loci. Seg-regating the capabilities simpli�es the task of garbage collection. A reference countis maintained on each object and when all capabilities relating to the object aredeleted, the object is removed. Segregation of the capabilities allows the kernel tokeep an accurate count of valid capabilities for an object.Conventional hardware is used to support Grasshopper's protection system. Theuse of capabilities to refer to coarse grained objects, speci�cally containers and loci,allows conventional hardware to provide adequate security without an excessiveoverhead.A locus has access to a number of sets of capabilities.1. The set of capabilities contained in the locus' private list of capabilities.2. The set of capabilities contained in the list of capabilities associated with thehost container.A locus can move capabilities into and out of the lists, or perform an operationusing a capability through functions provided by the operating system. Speci�ccapabilities are identi�ed by nominating a capability list and a key.Managers are capable of, and responsible for, the maintenance of a consistentrecoverable state of their containers.Grasshopper provides an environment where processes and objects are persis-tent. The abstractions provided by the Grasshopper system decouple the address

3.3. CAPABILITY BASED OPERATING SYSTEMS 57space from the active agents within the system, and provides a mechanism for trans-parently transforming the contents of an address space based on the actions of anagent.3.3.4 OpalOpal [CLFL94] is a capability-based single address space operating system (SASOS).It is under development in the Department of Computer Science and Engineering,University of Washington, Seattle. Like Angel (see section 3.2.5), this operating sys-tem exploits the appearance of 64-bit address space architectures to provide a singleaddress space in which objects are uniquely identi�ed by their addresses. Password-Capabilities are used to protect access to objects. Opal is currently implemented asa prototype based on the Mach 3.0 micro-kernel.The Opal system is based upon the principle that addresses have a unique in-terpretation for all applications. That interpretation is independent of the user ofthe address; hence a thread may name any data item. Protection - the control ofaccess to an object - is managed through protection domains which permit a threadto have access to a speci�c set of pages at a given instant.Single address space operating systems have the advantage of ease of sharingdata-structures containing pointers between threads (processes). For private addressspace operating systems to share structures containing pointers it is necessary toconvert the data to an intermediate representation which is shared, or to coercethe processes using the shared data-structure to load the data at a �xed knownlocation in their address space. Poor compromises - typical of conventional systems- between protection, performance and integration, are avoided by SASOS. Thesebene�ts follow from the twin factors: eliminating the need to transform data beingshared between threads; and employing protection based on protection domainswhich give speci�c permission to a thread to access shared data.Under Opal, a segment is de�ned as a continuous extent of virtual pages. Thevirtual address of the segment is �xed at the time of allocation and remains un-changed during its existence. Segments are the base unit of storage and protection.Non-transitory data is held in segments marked persistent.

58 CHAPTER 3. SURVEYA protection domain consists of a set of access rights to segments at a giveninstant in time. A thread executes in a single protection domain and has the accessrights conferred by that domain. Threads may execute simultaneously in a givenprotection domain, and hence have access to the same collection of segments.Password-capabilities are used to control access to resources such as protectiondomains and segments. Opal capabilities are 256-bits in size and confer permissionto operate on an object in speci�c ways.Given a capability, a thread can attach that segment to its protection domainmaking the segment represented by the capability available to all the threads of theprotection domain. A segment can be made inaccessible by detaching it.Calls are made across domains through portals. A portal consists of a �xed entrypoint into a domain identi�ed by a unique 64-bit portalID. Any thread knowing aportalID can transfer control into the domain associated with the portal.Opal implements password-capabilities as an extension of the inter-domain com-munication mechanism. A capability consists of a 64-bit portalID, a 64 bit objectaddress and a 128-bit random check �eld. The portalID is used to make a call onthe server which manages the segment or domain represented by the capability. Thecheck �eld performs the functions of identifying the set of rights conferred by thecapability, preventing forgery, and permitting revocation. The server either grantsor denies access to the resource represented by the capability.In a password-capability system it is not possible to distinguish an instanceof a capability from ordinary data. Thus these systems cannot determine whenthere are no references to an object, and hence determine a time when it is safe todestroy the object and reclaim resources devoted to it. Opal uses a reference countassociated with each object to determine when it is safe to destroy an object. Thereference count is incremented each time a segment is attached, and decrementedwhen a segment is detached. The reference count keeps track of the number ofprotection domains which can make direct use of a segment19 rather than the numberof capabilities existent for a segment. In addition, a segment can be made persistentcausing it to remain after the last detach.19An alternative interpretation is that the reference count \... indicates the number of entitiesthat have registered an interest in a resource..."[CLFL94]

3.3. CAPABILITY BASED OPERATING SYSTEMS 59The basic reclamation mechanism is subject to errors. It is possible to arrangeboth the premature release of resources and the permanent commitment of resources.Opal implements reference objects and resource groups to overcome these errors.Reference objects allow private reference counts to be created for each group ofentities who wish to access a shared object. These groups are typically composedof mutually trusting threads. The groups are suspicious of other groups which haveaccess to the shared object. Only when all the reference counts are exhausted willthe object be deleted. The reference counts ensure that the object persists untilall suspicious groups have relinquished an interest in the object. Resource groupsare used to release resources and reference counts held by an entity when the entityceases to exist. The capability for a resource group is passed as a hidden argumentin any call that creates a resource or increments a reference count. When a resourcegroup is destroyed, the references are released. A thread may alter its resourcegroup, at any time. This mechanism ensures that all resources can be reclaimedeven if the normal reclamation mechanism fails.The Opal system provides a single address space in which threads are able toe�ciently share structures containing pointers. Access control is performed usingpassword-capabilities supplemented with resource groups - to assist in garbage col-lection - and reference objects - to assist in sharing between mutually distrustfulthreads.3.3.5 MungiMungi [HERV94] is a SASOS under development in the School of Computer Scienceand Engineering at the University of New South Wales. The goals of their systemare similar to Opal (see section 3.3.4) in that both support direct sharing of objectscontaining pointers through the use of a 64-bit address persistent address space.Mungi is designed to support a medium sized network of homogeneous machines.It provides a single virtual address space transparently distributed over the nodes.Password-capabilities are used for naming and access control of objects. Objectshave a paged sized granularity. No special hardware is required by the system tosupport the operating system as the existing page translation hardware provided by

60 CHAPTER 3. SURVEYthe processor is used.Under Mungi, objects are de�ned as contiguous sequences of pages. Objects arethe base unit of allocation and protection. The operating system locates objects viathe Object Table (OT). The OT's entries list an object's address, size, accountinginformation, and passwords with corresponding access rights. The OT is distributedand is organised as a B+-tree. The OT is constructed from a number of ordinaryobjects. These objects are distributed across nodes by partitioning the addressspace according to node and placing the local nodes OT bucket in the address rangeassociated with the local node. By partially replicating the nodes of the tree withread-only copies, the number of accesses required between nodes can be reduced.Pages may exist in one of six states on a given node: resident, on-disk, remote,zero-on-use, unallocated, and unknown. The node holding the master copy of anallocated page is de�ned as the owner of the page. Additional read-only copies of thepage may exist. Pages can migrate and hence their owner may change. A locationhint is stored for non-local pages. If no location hint is available, then the kernelmay infer one based on the location hints for surrounding pages. When referring toa non-local page, the node contained in the location hint is contacted. If the page isnot at that location, either the node uses its location hint to forward the message,or a broadcast message is sent to locate the node.Attempting to perform a read operation on a page, which is not present onthe node, results in a read-only copy of the page being transferred to the node.Attempting to perform a write operation on a page, which is not present on thenode or present as a read only page, results in the page's contents and ownershipbeing transferred to the requesting node.The global address space is partitioned. A partition is mounted on a node whichis made responsible for the creation and deletion of objects which appear within thatpartition. This mechanism is employed to simplify the management of memory byensuring that knowledge of unallocated pages is only required on the creating node.The creating node has no information about the location of pages from the segmentsit manages apart from that gained through the reference mechanism available to allnodes.

3.3. CAPABILITY BASED OPERATING SYSTEMS 61To improve e�ciency, Mungi supports 3 classes of data objects:� Transient and unshared� Transient and shared� PersistentEach data class is allocated in a separate partition of the address space. By ensuringthat transient objects are allocated in a section of the OT that is local to the nodeand will remain so, the speed of creation and destruction of objects is enhanced.Capabilities under Mungi consist of a 64-bit address and a 64-bit password.Associated with each capability is an object and a set of rights permitted over theobject, drawn from the collection: read, write, execute and destroy. Capabilitiescan be derived and revoked.Every kernel in the system has access to an object which contains the capabilitytree (Ctree - see �gure 3.13). A Ctree is constructed from protection nodes (Pnode).A Pnode may contain a pointer to a list of capabilities (Clist) and/or a pointer toa protection fault handler. Each user is assigned a pointer to a Pnode which is usedto de�ne the process's regular protection domain (RPD). This pointer points to aleaf Pnode. All capabilities found in Clists on the direct path between the leaf nodeand the root are accessible to the user. Protection fault handlers can be suppliedby the user to supply an alternative search strategy. These handlers either return acapability or a failure indication. If a capability is returned then the kernel makesuse of that capability otherwise the search towards the root of the tree is continued.Protection is managed through the use of Active Protection Domains (APD).Each APD consists of a list of Clists and protection fault handlers. It is constructedwhen a user logs in from their RPD. User processes can modify APDs by adding orremoving Clists or handlers. Processes can be created which operate in a limitedprotection domain by locking the APD in which the process operates. This allowsuntrusted code to be used in a controlled environment.Mungi also provides a facility to allow code to temporarily change protectiondomains. This feature is analogous to the UNIX setuid facility. Protection DomainExtension (PDX) occurs when procedure in a PDX object is called. The kernel

62 CHAPTER 3. SURVEY

ClistPnodeProtection fault handler
R	 R� 9 - -R9

Figure 3.13: Capability Trees Under Mungi

3.4. OBSERVATIONS AND TRENDS 63veri�es that the address of the procedure matches a valid entry point and proceedsto push a Clist pointer associated with the PDX object onto the APD. This givesthe PDX procedure access to a set of capabilities unavailable to the procedures inthe original APD. On return from the PDX procedure the Clist pointer is poppedo� the APD.Mungi provides a sophisticated capability based protection system on a SASOS.By combining the features of restricting an APD before invoking a procedure andusing PDX procedures, it is possible to construct environments with protectiondomains tailored to minimise access between mutually non-trusting processes.3.4 Observations and TrendsOperating system design is inuenced by a large number of often conicting factors.Most prominent among these factors are the choice of abstractions made by thesystem designer, the functionality of the target hardware, and user expectations.Examination of these factors provides insight into trends in the design of operatingsystems.The following trends are identi�ed:� The trend towards supporting large numbers of platforms and the impact ofthis design decision on both hardware and software design� The emergence of small kernels and micro-kernels as the preferred design pathover monolithic kernels� The use of capabilities to support other paradigms� An increase in support for distributed computing environments� An increase in research into persistent systems contrasted with the low rate ofacceptance of persistent environments in commercial computing� The provision of memory objects as directly manipulable and shareable objectsbetween processes.

64 CHAPTER 3. SURVEYOperating Addrs Kernel Paradigm3 Platform4System size1 Type2UNIX 16 M F 680x0, 80386, Alpha, Rx000,Sparc, VAX, etcyAmoeba 32 u cDOT 68020, 80386, MicroVax II, SparcMach 32 u cDOT 80386, IBM 370, IBM RT-PC,NeXT, Sun 3, VAX, etcyPlan 9 32 S FD SGI Power Series, 68040Nextstation, MIPS Magnum,Sun SLC, AT&T Safari PCQNX 32 u FD 80486Angel 64 u SDPOt SunOSz, Tadpole M88KChorus 32 u cDOt 680x0, COMPAQ 386/486,R3000, Sparc, Inmos T425/T805Monads 60 M CPO Custom HardwareKeyKOS 32 u CPO 680x0, 88x00, IBM 370Grasshopper 32 ? CPOT Sun 3, AlphaOpal 64 ? CSOT R3000�, Alpha�Mungi 64 ? CSDPOT ?1 Minimum address size required in native implementations2 Kernel Type: u - micro-kernel, S - small kernel, M - monolithic3 Paradigm: S - single address space, C - capability based, c - uses capabilities,F - access control via �le system, D - distributed, P - persistent, O - Object basedT - supports threads with concurrent execution on multiprocessor,t - supports threads with single thread per process active4 Partially supported processor families have the least capable suitable member listedy Many other systemsz Hardware is emulated on SunOS based server� Hosted by a Mach server? Information not availableTable 3.1: Summary Table for Reviewed Operating Systems

3.4. OBSERVATIONS AND TRENDS 65� The emergence of operating systems supporting the thread paradigm.The majority of the operating systems reviewed in this chapter are supportedon a large number of platforms (see table 3.1). Support of a wide range of plat-forms requires the operating system to conceal the di�erences between platforms bypresenting the application developers with a virtual machine independent of the im-plementation platform. The trend of providing uniform environments over dissimilarhardware is not recent, although it has signi�cant implications for both hardwareplatforms and operating system software. The prime consequence is a tendency foroperating system designers to use only features found on the least capable of thetarget processors. As the system needs to run acceptably on all target processorsthere is an additional requirement on the designer to make the system run well in theabsence of any processor speci�c features which might improve performance. Thishas led to a self reinforcing trend in both hardware and software design where thesoftware designer expects only a minimal set of features provided by the hardwareand the hardware designer provides only a minimal set of features. Hardware whichsupports segments evidences this trend. Only 3 of the commercial processor typeslisted support segments: 80386, IBM 370, and IBM RT-PC20. The remainder of thearchitectures support only paging. A number of the operating systems in this surveymay bene�t from the �ne grain access control provided by segments, however, thelack of wide spread architectural support has led designers to use coarser grainedpaging based schemes to provide access control and to typically ignore segmentationhardware even when present.New operating systems tend to be Micro-kernels or small kernels. There areseveral reasons for this trend:Veri�cation - users are now requiring veri�cation of software in mission criticalapplications. Monolithic kernels are not well suited to veri�cation as theytend to be large and complex. In addition operating system components tendto have multiple points of interface. This increases the complexity of theanalysis required to prove the system. Small kernels o�er a limited numberof services and tend to be less complex. This reduces the amount of critical20Forerunner of the Power-PC architecture

66 CHAPTER 3. SURVEYcode which needs to be veri�ed at the core of the system, simplifying thetask of proving that the basic functions of the operating system are correct.By delegating functions found in monolithic kernels to user level servers (forexample: management of the �le-system) which have well de�ned interfaces,the task of verifying these functions is simpli�ed.Cost - By reducing the size of the kernel code the task of writing and maintainingthe code is reduced.Flexibility - As only essential services are provided by system level code it ispossible for services to be written which suit a given work environment withoutencountering any loss in performance compared to a standard system service.Multiple Personalities - Micro-kernels allow the use of multiple personalities ofoperating systems on a single system. As the operating environment perceivedby the user is provided by user level code it is possible to run several di�erentenvironments on a single system.The trend towards developing small kernels is likely to continue as it reduces de-velopment costs and increases exibility. The trend is not without a price as thereis a potential loss of e�ciency when servers communicate. Research is being con-ducted into reducing the cost of communication in micro-kernel systems, however,it is clear that if similar techniques are applied to monolithic kernels, any speedadvantage gained by micro-kernels would be negated. This has led to the devel-opment of a class of operating systems which employ a micro-kernel architecture.These operating systems are essentially monolithic kernels with a modular designdiscipline. In principle, this simpli�es the task of writing and veri�cation to thesame level as a micro-kernel. In practice, unless a strongly typed language withrigorously checked pointers is used, the absence of address space separation betweenmodules of the operating system allows unforeseen interactions to occur, negatingsome of the advantage over a standard monolithic kernel.Table 3.1 indicates that the capability paradigm has been taken up by a numberof current operating systems. The use of capabilities is likely to continue as they

3.4. OBSERVATIONS AND TRENDS 67provide a mechanism which solves a number of problems. Capabilities o�er thefollowing advantages:� storage allocation and protocols are simpli�ed as capabilities are of �xed size.� veri�cation of the sender of a capability is typically unnecessary which simpli-�es the implementation of system security.� unique naming scheme simpli�es the generation of names.Operating systems supporting distributed computing environments are gainingimportance. This points to a perceived need to provide facilities which allow pro-cesses to co-operate over multiple machines. The tendency towards multiple pro-cessors is cost driven, as it is typically less expensive to purchase a number of lesscapable machines rather than a single highly capable machine.Persistence is a current research topic. The KeyKOS operating system is the onlycommercial persistent system reviewed here. Other commercial persistent operatingsystems exist, such as IBM's AS/400 [ST89]. However, there is relatively littledocumentation relating to their hardware and operating systems publicly available.It is also possible to build persistent systems over a Mach micro-kernel. Persistentsystems are highly appropriate for high reliability applications, but, the uptake ofthese systems into other environments has been slow.Many of the operating systems in table 3.1 provide memory objects as a classof items which can be directly manipulated and shared by user programs. Thistrend is consistent with observations that applications on conventional �le basedsystems spend a signi�cant amount of their time in converting �le based structuresto memory based structures and vice-versa. Among the �le based operating systems,UNIX, has addressed this problem by providing a mechanism which allows �les tomapped into a process's memory21. This mechanism approximates the provision ofmemory objects to user programs.Many of the operating systems surveyed have implemented a mechanism whichallows more than one thread of execution (commonly known as threads) to exist21The mmap call was originally speci�ed for 4.2BSD although it was not implemented in theshipped version of that release[LMKQ90]

68 CHAPTER 3. SURVEYwithin the address space of a process. There are two major variants. The simplermechanism allows several threads to share the time-slices given to a process. Thismechanism does not allow more than one thread to execute at a time. It inter-leaves the execution of the threads within the time-slice. The mechanism can beimplemented at user level using upcalls to switch between threads when an eventoccurs (Angel uses this method) or it can be managed by the kernel (Chorus usesthis method as actors are tied to a processor and several threads may inhabit anactor). The more complex variant allows threads to execute in parallel by usingdi�erent processors to execute the parallel threads. It should be noted that SASOSlike Mungi and Opal do not require explicit support for threads as all processes havefull access to the address space.The thread paradigm is becoming more popular in both its implementations asit provides mechanisms that simplify the task of application programmers who wishto perform operations in parallel. The shared address space provided by threadsfrequently compensates for di�culty in sharing data between processes. Combiningthis with the lower cost of switching between threads of a single process than betweenprocesses, provides incentive for programmers to use threads to produce programswhich perform actions seemingly simultaneously. The negative aspects of the useof threads is that interactions between components of a single program cease tobe deterministic, and the absence of protection o�ered by using separate processesallows threads to readily interfere with each other.

Chapter 4The Walnut KernelThe Walnut Kernel intends to achieve the bene�ts of the Password-Capability Sys-temwithout requiring the special hardware used by the Password-Capability System.That is, supports the use of password-capabilities to provide protection and sharingamong multiple users, object persistence, and the free mixing of capabilities withother user data, but using only the hardware likely to be available on most generalpurpose computers.The survey (chapter 3) identi�ed a number of trends in the features of operatingsystems. The Walnut Kernel exhibits several of these features. Few of the systemssurveyed required special hardware. It became clear that to gain wide acceptance,the kernel must be supported on a wide range of platforms and must rely only onthe lowest common denominator of adequate hardware.The Walnut Kernel follows the trend towards small kernels or micro-kernels. TheWalnut Kernel and the small kernel and micro-kernel systems surveyed were moti-vated by: reducing the size of the task of implementing the kernel of the operatingsystem, multiple personalities, and easing the task of veri�cation. Small kernels canbe successfully implemented by small groups with limited time and resources - theWalnut Kernel was produced by one such group. The task of implementing the per-sonalities of the operating system can be left to others outside the kernel developmentgroup as personalities are user level programs which make calls on kernel functions.The presence of multiple personalities running on a single machine is attractive asit allows users to start working in a familiar environment and migrate to the native69

70 CHAPTER 4. THE WALNUT KERNELenvironment as they require the features provided by the kernel. Veri�cation andthe requirement for strong security were common themes of the implementors of thesystems surveyed. As with the Password-Capability System, the security model ofthe Walnut Kernel is simple and can easily be shown to be probabilistically secure,providing the �rst step in verifying the security of the system.Protection and security are major features of both the Walnut Kernel and thePassword-Capability System. The password-capability mechanism allows the imple-mentation of tight security and access control without imposing a hierarchy of accessprivileges, and without the concept of the ownership of objects. Implementors ofpersonalities on top of the Walnut Kernel have the freedom to construct arbitraryprotection mechanisms, including schemes based on ownership and hierarchies. Fur-thermore, the exibility and security provided by the kernel are gained at very lowcost. The kernel requires capabilities to be periodically revalidated. Revalidationis accomplished by invalidating a capability and the pages of the object at regularintervals. The capability is validated again when a page fault occurs when accessinga page of the object. This adds only a small overhead to the cost of servicing pagefaults when compared with other systems.The Walnut Kernel is designed for use by most processors that support virtualmemory. A parallel project in the Department of Computer Science, Monash Uni-versity, was to develop hardware to support a general purpose multiprocessor whichcan be scaled from a single processor to a massively parallel multiprocessor. Chapter11 describes this hardware. The Walnut Kernel and other operating systems maybe supported by that hardware design.

Chapter 5The User PerspectiveThis chapter provides an overview of the features of the operating system visible toa user process. Appendix A provides detailed information for writing user processesincluding a detailed description of the contents of the wall (see section 5.2), a mapof the process address space, and the arguments of kernel calls. Chapter 6 providesthe rationale for the design features described in this chapter.The Walnut Kernel draws on experience gained in the Password-Capability Sys-tem, and hence has adopted many of the ideas found in that system after adaptingthem for use in the new environment.This chapter initially outlines the environment that is presented to a process.Subsequently, the operations available to a user process and interprocess communi-cation are discussed.This chapter does not contain references to input/output, �les or users as theseconcepts are not de�ned at the kernel interface level.5.1 Volumes, Objects and CapabilitiesVolumes represent the physical media on which the persistent storage of the WalnutKernel resides. The volume number is a unique identi�er permanently associatedwith each physical storage device used for persistent storage by the Walnut Kernel.In addition, a special volume is used to represent the memory occupied by the kerneland memory-mapped interfaces to hardware devices.71

72 CHAPTER 5. THE USER PERSPECTIVE
Limit

Unde�ned pages within objectPotential Unde�ned PagesDe�ned Pages within object
Origin of object
Top of highestreferenced page

Avail Pages$ O�setMaximum
Figure 5.1: An object

5.1. VOLUMES, OBJECTS AND CAPABILITIES 73Under the Walnut Kernel all the data available to user programs is stored in ob-jects. These objects are analogous to segments in a paged-segmented architecture.They (see �gure 5.1) consist of collections of pages de�ned by a maximum o�set, alimit (the maximum value to which the maximum o�set can be increased within theobject), an amount of money, and a number of pages guaranteed to be available toit. Objects have the following properties:� Objects are permanently associated with a volume. Objects cannot span morethan one volume, nor can they be moved between volumes.� Pages are allocated when the �rst reference is made to them. To prevent dataleakage, pages are blanked by writing zeros into all the locations before thepage is made available to the user.� If the number of guaranteed pages has been exceeded, and there are unreservedpages on the volume, then additional pages are allocated to the object. If thereare no unreserved pages available, then an exception will occur.� Attempts to access beyond the limit of the object will result in an exception.The limit of an object can be increased by the resize kernel call.� The main memory acts as a cache of objects.The Walnut Kernel uses Password-Capabilities (see �gure 5.2) to provide namingand access control to objects. The volume and serial parts of a valid capabilityidentify an object on a volume. Associated with each capability is a set of attributeswhich includes a set of rights and a view1. The password components are used toidentify the rights the holder of the capability is allowed to exercise over the object.1A view is an attribute of a capability. It de�nes the region of the object that can be addressedby the possessor of the capability. Views are contiguous regions and are de�ned by an o�set fromthe base of the object and an extent. An important distinction from the Password-CapabilitySystem is that the view entitles the user to address part of an object, it does not guarantee thatpages are contained in that region nor that the pages are readable to the user (This constraint isparticularly relevant to process objects).

74 CHAPTER 5. THE USER PERSPECTIVE32 bitsVolume 32 bitsSerial 32 bitsPassword 1 32 bitsPassword 2Figure 5.2: Structure of a Walnut Kernel CapabilityThe Walnut Kernel supports several sets of rights: system rights, user rights,drawing rights, and message rights. The system rights consist of a set of bits whichdetermine whether the holder is permitted by the system to perform an operation.The system rights are listed in table 5.1. The user rights consist of a set of 32bits which are managed by the kernel. The kernel attaches no meaning to the userrights bits. They are intended to be used by user processes to implement accessto services in a way that is analogous to the control system rights bits have overaccess to kernel services. The drawing right of a capability is the amount of moneythat can be withdrawn through the capability or its descendents (see section 5.5).Message rights are only relevant to processes as they determine which subprocessor subprocesses a capability can be used to send a message to. There are three levelsof restriction: the capability can be used to send a message to any subprocess ofthe process, the capability can be used to send a message to any subprocess of theprocess except for subprocess zero (subprocess zero is discussed in section 5.9), orthe capability can be used to send a message only to a speci�c subprocess.When an object is created it is allocated a master capability. If the mastercapability is deleted, the object is destroyed. When the master capability is createdit has system and user rights speci�ed by the creator and provides a view whichcovers the object. All other capabilities which refer to this object are derived fromthe master capability or its descendents. All capabilities referring to a given objecthave identical volume and serial �elds. The password �elds are selected randomlywith the constraint that for all capabilities for an object the Password 1 is unique.The Walnut Kernel supports two mechanisms for generating new capabilities:making new objects and deriving capabilities from existing capabilities. The processof deriving capabilities is fundamental to the function and security of the WalnutKernel. Derived capabilities (see �gure 5.3) are made by presenting the kernel

5.1. VOLUMES, OBJECTS AND CAPABILITIES 75SRDERIVE - Allow capabilities to be derived from this capability.SRSUICIDE - Allow this capability to destroy itself and its children.SRDEPOSIT - Allow the holder of this capability to deposit moneyinto it.SRWITHDRAW - Allow the holder of this capability to withdrawmoney from it.SRREAD - Allow the holder of this capability to read from the sectionof the object covered by this capability.SRWRITE - Allow the holder of this capability to write to the sectionof the object covered by this capability.SREXECUTE - Not used.SRUSER - Allow user processes to use this capability.SRPEEK - Allow the holder of this capability to perform a peek sys-tem call (see A.11.2) on the process represented by this capability.SRMULTILOAD - Allow this capability to be loaded by any process.If this right is absent then only processes with a serial numberequivalent to the capability's password 2 may load this capability.Table 5.1: System Rights

76 CHAPTER 5. THE USER PERSPECTIVE
View

Mask
CapPresented CapabilityDerivedParameters

=Rights RightsRegionView ViewLimitO�set0 0 0=
&
&

Rights Figure 5.3: Derivation

5.1. VOLUMES, OBJECTS AND CAPABILITIES 77with a capability, a rights mask, an o�set and a limit, and invoking the deriveoperation. The system rights of the derived capability are the logical-and of therights of the presented capability and the rights mask. The message rights may befurther restricted. The drawing right is arbitrary, and may exceed that of the parentcapability. The view presented by the derived capability is the region of the objectthat is covered by the intersection of the view of the presented capability and theregion covered by the o�set and limit.Derived capabilities, at the time of derivation, have equal or lesser rights thanthan their parent capability. Suicide right is an exception as this right may be addedto the children of capabilities which do not hold this right.The rights of a parent capability may be reduced through the use of the restrictkernel call after a child capability has been derived. The child capability is una�ectedby the restriction of the parent capabilities rights.Each object is assigned an object type2 when it is created. The creator maychoose any 32 bit value for an object type with the exception of a few systemreserved values and the most signi�cant bit of the type. The most signi�cant bit ofthe object type is set for process objects and clear for other objects.Process objects are distinguished from other objects in the system as part ofthe contents are interpreted by the operating system. The process object's majorproperties are:� it de�nes an address space in which processes operate, by a Table of LoadedCapabilities (TLC) which is contained in the process object� it contains the state of 1 or more subprocessesAlthough the master capability of a process allows all the contents of the processobject to be addressed, parts of the process object are read-only and other partspermit no attempts at access (see section 5.2).2An object type is a 32 bit value that can be accessed by holders of an object's capability

78 CHAPTER 5. THE USER PERSPECTIVE5.2 Process Address SpaceThe address space seen by a running process is de�ned by the contents of the Tableof Loaded Capabilities (TLC). This table consists of a list of capabilities and theirmappings into windows. The mapping describes the o�set from the start of theobject, the extent of the addressable region, and the access rights conveyed by thecapability. The address space of a Walnut Kernel process (�gure 5.4) consists of anumber of regions.The kernel area is located at the low end of the process's address space (0x0to 0x3fffff) and is neither readable nor writable by processes. The wall, a singlepage located at 0xc000, is an exception as it can be read by processes.The wall is a page mapped into all processes which contains public information.This information includes the capabilities of utilities, resources and the current time.Processes known as wall managers can update the contents of the wall.The small window area (0x400000 to 0xffffff) is located above the kernelarea. This area can be loaded with views of objects which start and end on arbitrarypage boundaries.The process object is loaded at 0x1000000 and extends through to 0x3ffffff.Figure 5.5 is a map of the process object. The process header is not accessibleto processes. The address map contains information that allows capability indicesto be translated to and from locations in the process address space. It is typicallyused to translate addresses to capability indices. The parameter page consists ofthe parameter block and the message area. It is used to transfer informationwhen kernel calls are made. The remainder of the process object can be used forthe storage of data or code.The large window area extends from location 0x4000000 to the top of thesystem memory. This area can be loaded with views of objects which start ono�sets exactly divisible by 0x4000000 and, either end on an o�set exactly divisibleby 0x4000000, or end on the end of the object.The Walnut Kernel allows up to 250 views of objects to be loaded into a process'saddress space.

5.2. PROCESS ADDRESS SPACE 79

Read / Write

LargeAreaWindowProcessObjectSmallWindowAreaKernelArea The Wall
Address MapParameter PageRemainderProcess Header

0x00xc0000x400000
0x4000000
0x����
0x1000000

Read OnlyNo Access Figure 5.4: Process Address Space

80 CHAPTER 5. THE USER PERSPECTIVERegion Start - End AccessProcess Header 0x1000000-0x100efff No AccessAddress Map 0x100f000-0x100ffff Read OnlyParameter Page 0x1010000-0x1010fff Read / WriteParameter Block 0x1010000-0x101004b Read / WriteMessage Area 0x101004c-0x1010fff Read / WriteRemainder 0x1011000-0x3ffffff Read / WriteFigure 5.5: Map of the Process Object5.3 Processes and SubprocessesA process de�nes an environment in which subprocesses operate. The environmentconsists of an address space (speci�ed in section 5.2) and a collection of resources.When a process is created the maximumnumber of subprocesses and the numberof mailboxes are set. The number of these process resources cannot be varied duringthe existence of the process. Two subprocesses are created when a process is created:subprocess zero (subprocess zero is discussed in section 5.9) and subprocess one.Subprocess one executes user code. It, or its descendents, can create other sub-processes, all of which execute code that has been mapped into the process addressspace. Subprocesses have no protection from the actions of other subprocesses withinthe same process.Every subprocess has a priority in the range of 0 to 254 and a wakeup time.Subprocess zero has a unique priority of 255, the highest possible. The wakeup timeis a clock time in seconds. A subprocess will not run until the system clock equalsor exceeds its wakeup time.The scheduling of subprocesses is similar to the scheduling of processes on asingle processor time sharing system. When a subprocess of a process is executing,no other subprocess of that process can be executing. The algorithm for determiningwhich subprocess of a process to execute in the current time-slice is as follows:1. If a subprocess is executing and there is a non-zero value in the reserve �eldof the parameter block, resume execution of that subprocess.

5.4. MESSAGES AND MAILBOXES 812. Execute the subprocess with the highest priority which is not waiting.3. For subprocesses of equal priority, select the �rst subprocess encountered inthe subprocess table.5.4 Messages and MailboxesEach process has a number of mailboxes allocated when it is created. Mailboxesmay be con�gured to reject all mail, or accept messages addressed to a speci�edsubprocess and/or messages starting with a speci�ed string. The application pro-grammer can guarantee the availability of suitable mailboxes for a given type ofmessage, provided the application is not already holding pending messages of thattype.When a process is created a mailbox is opened for subprocess zero. All theother mailboxes of the process are initially closed, until the process explicitly opensthem. This allows the process to perform its initialization before starting to handlemessages.Messages perform the following functions under the Walnut Kernel:� Data Delivery - up to 16 words of information can be transfered to the desti-nation process in the body of a message.� Money - messages can deliver money to a process. Attached to each messageis a sum of money which is transfered to the destination process when themessage is stored in a mailbox. Negative sums of money are not permitted.� Scheduling Control - when a message is delivered it wakes up a sleeping processand makes the message's target subprocess runnable by resetting its wakeuptime.Messages and subprocesses provide a mechanism for encapsulating events whichare not synchronized with the operation of a process.The presence of a message in a mailbox prevents a process from waiting.There are two ways of directing messages to speci�c subprocesses:

82 CHAPTER 5. THE USER PERSPECTIVE� Using a capability that is restricted to send to only one subprocess of a processensures that any message sent with that capability will only be delivered tothe subprocess named by the capability.� A subprocess must be speci�ed as a parameter of a send operation when acapability which is not restricted to a single subprocess is employed.The �rst mechanism is typically employed by server processes giving capabilities toprocesses which will be making use of the server's facilities. This mechanism ensuresthat messages cannot be delivered to other subprocesses of the server, and thislimits the opportunity for both error and malicious attack. The second mechanismis typically employed by holders of a process's master capability.Mailboxes may be set up to admit only speci�ed types of messages. This selectiveacceptance of messages was introduced to ensure that important messages could beguaranteed delivery even if all other mailboxes were full. Mailboxes can be reservedaccording to the following criteria:� Subprocess number: A mailbox can be reserved so that it will only acceptmessages addressed to a speci�ed subprocess.� Message pre�x: A mailbox can be reserved so that it will only accept messagesthat begin with a speci�ed string.� Subprocess number and message pre�x: only messages addressed to a speci�edsubprocess and beginning with the speci�ed pre�x are accepted.When a message is sent to a process it is placed in the �rst mailbox found that willaccept the message. There is no mechanism which can be used to control the orderof �lling mailboxes.A subprocess can determine the order in which messages are retrieved. Thereceive operation allows the subprocess to specify a message pre�x. The pre�x isused to retrieve the �rst message starting with a matching string addressed to thesubprocess.

5.5. MONEY 835.5 MoneyThe Password-Capability System introduced the concept of rental - for garbagecollection - and extended the use of money throughout the system to provide asystem-wide economy. The Walnut Kernel adopted the economic model used in thePassword-Capability System. This section describes the manipulation of money inthe Walnut Kernel.Each object has a money word which stores the amount of money availableto the object. The money word performs two tasks: it acts as a store of moneyaccessible to the holders of capabilities with withdrawal rights, and provides funds topay for the rental of the disk space used by the object. Processes have an additionalstore of money known as the cash word. The money stored in the cash word is usedto pay for kernel services, and acts as storage for money transfered by a process toand from objects. The kernel performs all operations which manipulate the transferor use of money.Associated with each capability is a drawing right. The drawing right of themaster capability is synonymous with the object's money word. The drawing rightdetermines the amount of money that can be withdrawn through a capability. Ca-pabilities with a drawing right of zero cannot be used to withdraw money from theobject to which the capability refers.Two operations are supported on drawing rights: deposit and withdrawal. Theseoperations are applied to the drawing rights of all the ancestors of the capabilitywhich is named by the operation. Withdrawal is only permitted when the drawingrights of all the ancestors and the capability itself are greater than the amount tobe withdrawn.Figure 5.6 is used to illustrate the e�ect of deposit and withdrawal operations.Monetary operations a�ect all the drawing rights on the path to the root of thecapability tree for an object. If a deposit is made via capability C3;2 then thedrawing rights D3;2 and D3 and the money word - M - are increased by the amountof the deposit. To make a successful withdrawal from C3;1 then D3;1, D3, and Mmust be greater than the amount to be withdrawn. If this condition is met thenD3;1, D3, and M will each be debited the amount to be withdrawn.

84 CHAPTER 5. THE USER PERSPECTIVEMC1 D2C2 D3C3 D3;2C3;2D3;1C3;1Money WordMD Drawing RightCapabilityCm Master Capability
CmD1

Figure 5.6: A Tree of Capabilities5.6 Kernel CallsThe parameters used by a kernel call are drawn from the parameter page. Theresults of a kernel call are returned in the parameter page. The parameter block isa data structure located at the beginning of the parameter page. The �elds of theparameter block are listed in �gure 5.7.The reserve �eld is used to ensure that values of the parameter block are notcorrupted by other subprocesses of the process. When the reserve �eld is setto indicate the required kernel call, other subprocesses are prevented from beingscheduled until the reserve �eld is set to zero3To make a kernel call, the reserve �eld is set to the kernel call type, the required�elds of the parameter block are set, data is placed in the message area, if required,and a system call is issued. The process blocks until the kernel call is completed.On return from a system call the error �eld contains either zero or an errorcode. If error is zero, the kernel call completed successfully, and information can3Section 6.6.1 describes the implementation of the System-Call interface and the rationale fordisallowing concurrent system calls by multiple subprocesses.

5.7. EXCEPTIONS 85error returned error codevol volume numberserial serial numberpass1 password 1pass2 password 2srights system rightsurights user rightsbase o�set of capability from front of objectlimit max allowed o�set from basemoney money to be transferedtype object typemaxo� max o�set used / requestedmaxsz max size of de�ned contentmaxcap max capabilities now allowedo�set o�set into a capability windowsubpn subprocess numbercindex index of capability in the table of loaded capabilitiesclocktime time in secondsreserve non-zero value reserves for sub-process and identi�es kernel callFigure 5.7: Structure of Parameter Blockbe recovered from the �elds of the parameter block and the message area as re-quired. When all the required data has been extracted from the parameter page,it is necessary for the program to write a zero into the reserve �eld to allow othersubprocesses of the process to be scheduled.Kernel calls always return. If the call requests an illegal operation, includingreferences to unde�ned addresses, the call returns with an error value in the error�eld of the parameter block.5.7 ExceptionsEvents which raise processor exceptions can be managed through the use of traphandling subprocesses. Each subprocess of a process may have a speci�c trap handlerassociated with it. A process can register any subprocess other than subprocess zeroor the subprocess itself, as a trap handler for a subprocess of the process. The trap-handler is invoked when a processor exception is raised. Exceptions are grouped to

86 CHAPTER 5. THE USER PERSPECTIVEallow for processor independent trap handlers to be written.Five types of exception can occur. A oating point fault is used for all arithmeticerrors, including underow and division by zero. Opcode faults are raised when illegalopcodes are detected. An address fault is raised when a memory access violationoccurs. Debug faults are system dependent and are used to implement debuggers.Alignment faults are raised on non-aligned accesses when the processor detects thistype of error.If a trap handling subprocess has not been assigned, then the default action isto terminate the process.When an exception is raised, the faulting subprocess is made unrunnable and amessage is sent to the exception handling subprocess for the faulting subprocess. Ifthe message is undeliverable the process is terminated.5.8 Controlling Process SchedulingThe Walnut Kernel provides two mechanisms for controlling the scheduling of pro-cesses:� Wait and Messages� Freeze and ThawThis section describes the conventional mechanism which employs the wait systemcall and messages. The freeze and thaw mechanism is accessed through subprocesszero, and is discussed in section 5.9.The wait system call is used for several purposes:� An argument of �1 to the system call sets the running subprocess's wakeuptime to forever4 and causes the scheduler to remove the process from thescheduling queue if there are no other runnable subprocesses of the process.� When the argument is 0, the system call surrenders the remainder of a process'stime-slice.4Forever is de�ned as 0xffffffff. It is the largest value that the clock can represent.

5.8. CONTROLLING PROCESS SCHEDULING 87� When any other argument value is used, then the wakeup time of the subpro-cess is set to the value of the argumentThe wait call is used to put subprocesses to sleep when they do not have useful workto perform.The presence of a message causes a subprocess's wakeup time to be set to now.This ensures that processes with waiting messages are scheduled.The arrival of a message causes a subprocess's wakeup time to be set to zero andthe process to be placed into the scheduling queue. It does not cause the receivingsubprocess to pre-empt any other process.A common construct in server processes is the message loop. This construct maybe represented in pseudocode as5:while truebeginwait(-1)receive(msg)server function(msg)endThe message loop waits until a message is present after which it performs a taskwhich acts on the message. If a message should arrive while the current message isbeing acted on, the wait operation will have no e�ect in the next cycle of the loop.The second message can be handled immediately after the �rst message has beenhandled.The wait and message mechanisms can be used to implement sychronisationoperations. In this application one subprocess waits, and remains blocked until itreceives a message which allows the process to continue. It is necessary to issue areceive call after the wait as the presence of the message will prevent further waitoperations having e�ect.5The kernel operations of receive and wait have been encapsulated in subroutines to simplifythe code

88 CHAPTER 5. THE USER PERSPECTIVE5.9 Subprocess ZeroSubprocess zero is part of the kernel. It performs tasks in response to messageswhich request services. These tasks typically change the state of the process - forexample, one of the functions shifts the process from running to suspended - orreport the state of the process.A mailbox is opened for subprocess zero when a process is created. Subprocesszero's reserved mailbox is never closed while the process exists. This arrangementensures that the creator of a process has control over the process at all times.Subprocess zero currently supports the following functions:Freeze prevents a process from being scheduled. On receipt of a freeze messagesubprocess zero sets the process state to frozen, and causes the process to beremoved from the scheduler queue.Thaw allows a process to be scheduled. When a process receives a message it isplaced into the scheduler queue. If the process is frozen, the process is typicallyremoved from the queue after the subprocess zero messages are parsed. Onreceipt of a thaw message, subprocess zero sets the process state to normaland process execution resumes.Wakeup sets the wakeup time of the speci�ed subprocess to now. The wakeupmessage sets the wakeup time of the nominated subprocess to the currenttime. The wakeup message is used to start a process that has suspendedactivity and has closed mail boxes. It relies on the fact that the mail boxallocated to subprocess zero cannot be closed.Cooee requests the process to send a status message using a speci�ed capability.The reply message sent by subprocess zero consists of a set of words which rep-resent the Cooee reply identi�er, the volume and serial number of the currentprocess, and a process status.Protected Freeze prevents a process from being scheduled until all protectedfreezes on the process have been thawed. On receipt of a protected freezemessage subprocess zero sets the process state to frozen, XORs the magic

5.9. SUBPROCESS ZERO 89word contained in the message with a key held in the process state, incre-ments a count held in the process state and causes the process to be removedfrom the scheduler queue. The XOR operation and the count prevent otherparties from thawing the process unless they know the set of magic words usedin the protected freeze operations applied to the process.Protected Thaw allows a process to be scheduled when all other protected freezeshave been thawed. On receipt of a protected thaw message subprocess zeroXORs the magic word contained in the message with a key held in the processstate and decrements a count held in the process state. If both the count andkey held in the process state are zero, then the process is thawed. If the countis zero and the key is non-zero then the process is terminated.

90 CHAPTER 5. THE USER PERSPECTIVE

Chapter 6Design of the Walnut KernelThis chapter describes the guiding principles in the design of the Walnut Kernel, itsoverall architecture, the rationale of some key decisions, and its detailed structureand operation.6.1 Design PrinciplesThe following design principles guided the development of the Walnut Kernel:� Avoid features available only on small classes of processors� Avoid stalls in the kernel while waiting on external events� Minimize retained kernel state variables� Ensure the kernel is scalable� Use static allocation of kernel memory� Allow for a variety of shared memory architecturesThe principles, the motivation for their inclusion as design principles and theirimplications are discussed in the remainder of the section.91

92 CHAPTER 6. DESIGN OF THE WALNUT KERNEL6.1.1 Avoid features available only on small classes of pro-cessorsThe original Monash Multiprocessor Project used purpose built hardware to assistwith the management and use of capabilities. A consequence of this decision wasthat the Monash Multiprocessor Project was tied to a speci�c processor, memoryarchitecture, bus architecture and implementation of these. This design placed anupper bound on the performance of the system and, combined with the long leadtimes and expense of developing experimental hardware, prevented the system fromadvancing. With improvements in technology the advantages conferred by the de-sign of the hardware were out-weighed by the advantages o�ered by the improvedtechnology. The system fell into disuse when it became clear that equivalent perfor-mance could be gained using conventional technology.By designing the Walnut Kernel to operate on a wide range of processors andby placing minimal requirements on the type of memory management expected bythe kernel to be available to the processor, it is hoped that Walnut Kernel will beless prone to obsolescence caused by improvements in available hardware.This principle inuenced both the design and implementation levels. An exampleat the design level is the requirements on page table or translation-lookaside bu�erentries; the Walnut Kernel expects the presence of valid and dirty bits, but doesnot expect (or use) use bits. Although the majority1 of processors support bothuse and dirty bits neglecting the presence of use bits caused no loss of performanceor utility. An implementation lacking a dirty bit would have either a signi�cantlyincreased number of page faults or a signi�cantly increased number of writes to disk,decreasing system performance. The design opted to neglect the presence of use bitsbut require the presence of dirty bits.A direct consequence of this design principle is that the Walnut Kernel does nottake advantage of the segment registers available in the Intel3862. The segmentregisters on the Intel386 would permit objects and views with byte or word size1The VAX architecture provides only a modify bit (dirty bit) [Cor86].2Intel386 is a trademark of Intel Corporation

6.1. DESIGN PRINCIPLES 93granularities to be implemented. However, as the Intel386 / i4863 is one of the fewfamilies of current microprocessors supporting segment registers and the trend inmicroprocessor design is away from the use of segmentation, it was decided to usethe more generally available mechanism of paging.6.1.2 Avoid stalls in the kernel while waiting on externaleventsThe kernel and drivers are implemented with the policy:Upon encountering a state that would cause the kernel to stall or waitbefore being able to continue, the kernel will initiate a corrective actionand then proceed with another task.A consequence of this policy is that the kernel and drivers avoid tight busy-waiting loops on external events. This policy avoids the catastrophic consequencesfor system performance that result from uninteruptable loops waiting on delayedevents. The policy is particularly applicable in a multiprocessor environment whereactions with other processors are not synchronized and the competition for accessto a resource may take a signi�cant amount of time. The policy allows the kernelto do other tasks if the current task is prevented from making immediate progress.With suitable hardware assistance the Walnut Kernel can be con�gured to allowfor long propagation times. A DMA like operation could be initiated to lock andmodify data. By surrendering control from the current task and scheduling anothertask the kernel can continue performing local operations while the operation with along propagation delay is completed by the hardware.6.1.3 Minimize retained kernel state variablesWhen any kernel activity is invoked, for any reason, the kernel will attempt to e�ectsome change in the system state. Whether or not it succeeds in completing thischange, the system state is left in a consistent con�guration independent of any3i486 is a trademark of Intel Corporation

94 CHAPTER 6. DESIGN OF THE WALNUT KERNELlocal variables of kernel routines. Thus there is no need for retention of kernel stateinformation and no need to support multiple threads of activity within the kernel.The kernel is not regarded as a process with continuing state and threads ofexecution. Rather, it is regarded as a set of state transformation rules. A rule(kernel action), once invoked, either runs to completion or is abandoned with thetransformation incomplete because of the need for a disk transfer, or a resourceconict. An abandoned rule leaves the system in a state where the transformationcan be later completed.6.1.4 Ensure the kernel is scalableThe kernel was designed to achieve decentralized operation with additional kernelsto run in parallel. The absence of centralized control allows for easy scaling interms of numbers of kernels running. Decentralized operation also encourages faulttolerance at the kernel level.With suitable hardware and the correct-and-retry nature of the Walnut Kernel itis possible to reduce the e�ects of long propagation delays for remote data accesseson the throughput of the system.6.1.5 Allow for a variety of shared memory architecturesThere are two broad categories of multiprocessor memory architecture: shared mem-ory or discrete memory. In shared memory systems all the processors have accessto the same information in memory at the same time. The hardware providessupport for coherence. In discrete memory systems the kernel must provide mech-anisms allowing access to pages of memory held by other processors. Typically themechanisms involve copying pages to local memory and providing many-readers-single-writer access to the pages. The Walnut Kernel is designed to operate withboth these architectures or their hybrids.It is necessary to support both categories of memory architecture as it a�ects thescalability of the system. The general trend is towards using symmetricmultiproces-sors (shared memory) for small systems and towards discrete memory architecturesfor large multiprocessors. Adding processors to a symmetric multiprocessor is cost

6.2. PASSIVE ELEMENTS 95e�cient while the memory bus is not saturated as only the processor module needsto be duplicated. As the memory bus approaches saturation the potential return ofadding additional processors to this shared bus architecture decreases. For systemswith a larger number of processors the bandwidth of the bus and shared memoryeventually ceases to be able to meet the demands of the processors. To avoid thisproblem it is typical to have separate buses and memory modules with some com-munication network linking the buses and memory modules. Accordingly a discretememory structure is usual for larger multiprocessors.6.2 Passive Elements6.2.1 Disk StructuresObjects are the basic unit of the Walnut Kernel. An object is composed of a bodyand a dope. The body of an object consists of an array of bytes. Not all of the bytesof an object are necessarily de�ned. All the system information about an object isstored in the object's dope. The inclusion of all the system information as part ofthe object is a distinguishing feature of the Walnut Kernel.An object resides completely on a single volume. Each volume has an identi�erpermanently associated with it known as the volume number. Volumes are usuallyrandom-access, block-oriented storage devices. The most common devices used forvolumes are disks.An object is divided into pages. The size of a page is a multiple of the pagesize of the host processor. Data is transfered to volumes in units of blocks. A blockoccupies a logically contiguous section of a volume. Blocks and pages are de�ned tobe of the same size.The blocks of a volume are numbered from zero to the number of blocks on avolume minus one. The number of a block is known as its location on a volume.Both the body and the dope of an object are stored as sets of blocks on a volume.The sets are not required to be contiguous.The body of an object has no system-imposed structure unless it contains aprocess.

96 CHAPTER 6. DESIGN OF THE WALNUT KERNEL
n

Blocks forHeader PagesCapabilityTableCapabilityHash TableList ofPage Tables
HeaderBlockHeader0 List of Disk

Figure 6.1: Object Header Blocks / PagesThe dope consists of two structural elements: the object header and a set of pagetables. The object header consists of one or more blocks. Figure 6.1 shows thecontents of header blocks of an object when joined in order. The �rst-header-blockstarts with the structure Header (see �gure 6.2). A list of the locations of diskblocks containing the header blocks of the object is stored after the Header datastructure. The capability table lists all the capabilities for the object. Empty slots inthe capability table are linked together to form a free list. The capability-hash-tableis an index into the capability table based on the �rst password of a capability. Alist of the locations on disk of the page tables of the object is the �nal element ofthe header blocks.The �rst-header-block contains su�cient information to retrieve the remainingheader blocks and hence allow access to all the pages of an object. The placementof the list of header blocks ensures that the reference to the second header block- if required - occurs within the �rst block guaranteeing access to the second andsubsequent header blocks. As the header blocks contain references to the locationof page tables which contain references to the location of pages of an object, all thepages of an object can be located using the header blocks of an object. Both pages

6.2. PASSIVE ELEMENTS 97and page tables may be unde�ned for parts of an object which have not yet beenaccessed.The structureHeader (see �gure 6.2) begins with a magic number that identi�esthe object as the �rst-header-block of an object. The dopesz �eld contains thenumber of bytes of header information. The type �eld is a 32 bit object typeidenti�er. The top bit of the type �eld is set for process-objects and clear for data-objects. The master capability of the object is stored in the vol, serial, pass1,pass2, base, limit,money, srights, and urights �elds. The information relatingto the master capability and the linc �eld forms an entry in the capability table. Thedopeblks �eld contains the number of header pages used by the object. Themaxsz�eld contains the number of bytes guaranteed to be available to an object to storeheader blocks and data blocks. The maxo� �eld contains the largest addressedo�set into an object. The maxpage �eld contains the highest addressed de�neddata block in the object. The size of the table available for holding capabilities isstored in maxcap. The numcap �eld contains the number of capabilities storedin the table. The hashmsk �eld is equal to the index of the top element in thecapability-hash-table. The freeindx �eld contains the index of the �rst elementof the free list for the capability table. The maxtabs �eld contains the maximumnumber of page tables required formaxo�. The totdef �eld contains the number ofdisk blocks allocated to the object. Themaxdef �eld contains the number of pagesneeded for maxsz. The dloco�, hasho�, capo�, and tabo� �elds respectivelycontain the byte o�set of the list of disk blocks of header pages, the capability table,the capability-hash-table, and the list of disk locations of page tables. The dreftimeand altime �elds contain the last reference time and the last alter time of the object.The squeeze �eld is used to indicate that the page table of a small object has beensqueezed into the header pages of an object to conserve space. The link, state, andrestabs, �elds are ignored when the object header is on disk.The low order bits of the serial number of an object contain the block numberof the �rst-header-block of the object. The high order bits of the serial number arerandomly selected when an object is created.The construction of the serial number of an object is a key feature of the design

98 CHAPTER 6. DESIGN OF THE WALNUT KERNELtypedef struct Headerst {Uw magic;Sw dopesz;Sw link;Uw type;Uw state;Uw vol;Uw serial;Uw pass1;Uw pass2;Sw base;Sw limit;Sw money;Uw srights;Uw urights;Sw linc;Sw dopeblks;Sw dlocoff;Sw maxsz;Sw maxoff;Sw maxpage;Sw toppage;Sw maxcap;Sw numcap;Sw hashmsk;Sw freeindx;Sw capoff;Sw hashoff;Sw maxtabs;Sw restabs;Sw totdef;Sw maxdef;Sw taboff;Uw dreftime;Uw altime;Sq squeeze;Sq dum1;Sq dum2;Sq dum3;} Header;Figure 6.2: The Header Data Structure

6.2. PASSIVE ELEMENTS 99of the Walnut Kernel as it eliminates the need for a catalog of objects on a volume.However, the kernel needs to be able to distinguish between an ordinary data blockand the �rst-header-block of an object to prevent users creating a block with theformat of a �rst-header-block and using the fake header block to access the pages ofother objects. A bitmap has been introduced to identify the contents of disk blocks.The bitmap consists of a contiguous set of disk blocks. The bitmap provides atwo bit summary of the usage of every disk block on a volume. Blocks are free, the�rst-header-block of an object, in-use, or bad. Free blocks are available to beallocated by the kernel. Bad blocks are ignored by the kernel. The �rst-header-blockof an object is distinguished from other allocated blocks that are currently in use.The essential contents of a volume are a Disk-ID-block and a bitmap. The Disk-ID-block identi�es the locations of key data structures on a volume, and the logicaland physical details of the volume.The �rst word of the Disk-ID-block contains a bit pattern which identi�es theblock as a Disk-ID-block. If the signature is incorrect, the volume is assumed tobe either corrupt or invalid. The remaining words contain: the total number ofblocks on the disk, the number of used blocks, the index of the �rst bitmap block,the number of available blocks on the disk, the Disk-Block-Mask, the name ofthe volume, the serial number of the initialization process (see section 6.8), and thenumber of reserved blocks on the disk.typedef struct Captabentst {Uw pass1;Uw pass2;Sw base;Sw limit;Sw money;Uw srights;Uw urights;Sw link;Uw dad;} Captabent;Figure 6.3: The Captabent Data StructureThe capability table is built from Captabent structures (see �gure 6.3). Thepass1 and pass2 entries contain the passwords of the capability. The o�set �eld

100 CHAPTER 6. DESIGN OF THE WALNUT KERNELgives the o�set of the capability window from the base of the object. The limit �eldcontains the size of the capability. The money �eld contains the drawing right ofthe capability. The drawing right of the master capability is known as the moneyword and represents the money held by the object. The srights and urights �eldscontain the system and user rights information for the capability. The dad �eldcontains the index of the parent of the capability. The link �eld points to the nextelement in the hash chain of capabilities.Figure 5.1 in chapter 5 identi�ed three parameters used to describe the spaceallocation of an object: the maximum o�set, the limit, and the number of pagesallocated to an object. The three parameters correspond to themaxo�,maxsz, andlimit �elds in theHeader of an object. The parameters have been selected becausethey allow e�cient sizing of tables within the object header. The maxsz parameterdetermines the number of blocks reserved for the use of an object on a volume.Reserving disk blocks prevents the over committing of resources on a volume4. Themaxo� �eld determines the number of page tables required at present. The limit�eld determines the number of page tables allowed for the object.6.2.2 Memory StructuresThe Volume Table lists the volumes that the kernel can access. It is constructedfrom an array of VolTabEnt structures. The VolTabEnt structure (see �gure 6.4)holds a pointer to the queue used by the kernel to communicate with the devicedriver which manages the volume. The entry contains all the physical informa-tion required to access the disk including: the device type (devtype), a pointer toa device properties structure containing information found out about a device atboot time (physchar), the number of reserved blocks (reserv blocks), the loca-tions of the Disk-ID-Blocks (idblk1 and idblk2), the location of the disk's Bitmap(map block), the size of the disk (size), the mask used to extract block locationsfrom serial numbers (dblkmsk and ndblkmsk), the number of available blocks(avail), and the number of used blocks (used). Pointers to copies of the Disk-ID-4Media failures can result in reserved blocks being unavailable, however, it is not practical toguard against all hardware failures

6.2. PASSIVE ELEMENTS 101typedef struct VolTabEnt {Uw vol;struct disk_q_head *queue;Uh status;Uh devtype;struct DevProp *physchar;Uw reserv_blocks;Discmapent *map;Uw *idblk;Uw idblk1;Uw idblk2;Uw max_vol_size;Uw map_block;Sw size;Sw dblkmsk;Sw ndblkmsk;Sw avail;Sw used;Uq lock;Uq pad1, pad2, pad3;} Voltabent;Figure 6.4: The VolTabEnt Data StructureBlock and the Bitmap which are stored in memory are held in the idblk and map�elds.The Active Object Table (AOT) holds information about each object loaded intomemory. The AOT contains memory images of object headers (the header blocksof an object: see �gure 6.1). The majority of the �elds of the object header areidentical when the page is in memory or on disk. However, the link, state, andrestabs �elds have meaning when the object header is loaded into the Active ObjectTable.The AOT is managed using a heap discipline. Information relating to a particularobject is found by using a hash table. The serial number of a capability is used as keyinto the aothash table. The hash table contains o�sets into the AOT and Headerdata structures are linked together to form hash chains. The link �eld is used topoint to the next element of the hash chain.The contents of the state �eld indicates the type of change the object is under-going. An object can be accessed freely if it is in normal (DOPENORMAL) state.

102 CHAPTER 6. DESIGN OF THE WALNUT KERNELAn object is completely inaccessible while the header blocks are being brought intomemory (DOPECOMING) or removed from memory (DOPEGOING), the ca-pability list is being compacted (DOPECLEANCAP), the object is being resized(DOPERESIZE), or the capability list is being rehashed (DOPEREHASH).Object headers are marked DOPEDYING if the object is being destroyed, orDOPEMAKING if the object is being made.The entries in the aotlock table correspond to the entries in the aothash table.The aotlock table provides locks for each hash chain in the AOT. A hash chain islocked whenever an alteration is made to an object header, a page table, or thephysical memory table. The design of the kernel guarantees that the locks are heldonly for short time. Centralising the locks in the aotlock table removes the need forlocks in many of the other kernel data structures.The Walnut Kernel uses demand paging with two levels of page tables. Thetop level page tables are associated with a process. Second level page tables areassociated with objects5. A page table entry may contain the location of a diskblock on a volume, or a reference to a page in memory and its associated permissions.The kernel must be able to distinguish between entries containing disk locations andthose containing memory locations. Two bits are required to identify entries thatcontain disk locations as an entry may contain a memory location, yet be invalid.Entries which refer to disk locations have a clear PTEPRESENT bit (clear validbit) and a set PTEDISC bit.The Physical Memory Table (PMT) holds information relating to the stateof each page frame of the memory. Figure 6.5 illustrates the two types of en-tries found in the Physical Memory Table. Both types of PMT entries identifythe object from which the page was drawn by volume (vol) and serial number(serial). The ventry �eld is the index into the volume table for vol. Thedblk �eld contains the location on disk for the page. The type �eld identi�eshow the page is used. Pages may be marked as kernel pages (FRAMEKER-5Second level page tables may also be associated with processes. When a second level pagetable is associated with a process it is known as a Private Page Table (PPT). Small windows areimplemented using PPT s. For simplicity the discussion of second level page tables associated withprocesses is deferred until small windows are covered (see section 6.5).

6.2. PASSIVE ELEMENTS 103
typedef struct Fizentst {Uw vol;Sw ventry;Uw serial;Sw pagenum;Sw dblk;Uw *ref;Uw dumw;Uq type;Uq state;Uq dum2;Uq dum3;} Fizent;typedef struct Fizenttst {Uw vol;Sw ventry;Uw serial;Sw tablenum;Uw dblk;Sw respages;Uw freftime;Uq type;Uq state;Uq dirty;Uq dum3;} Fizentt;Figure 6.5: The Fizent Fizentt Data Structure

104 CHAPTER 6. DESIGN OF THE WALNUT KERNELNEL), part of the AOT (FRAMEDOPEBUFFER), second level page tables(FRAMEPAGETABLE), data pages (FRAMENORMAL), top level page ta-bles (FRAMEDIRECTORY), private page tables (FRAMEPPT), or uncachedpages used for DMA bu�ers (FRAMEIOBUF). The state �eld is used to indicateprogress in bringing in and removing pages from memory.The Fizent data structure describes data pages. The ref �eld points to the pagetable word which corresponds to the physical page represented by the entry in thePMT.The Fizentt data structure describes page tables. The number of memory resi-dent pages for the page table is stored in respages. The last time a page from thetable was referenced is held in freftime. Allocation or deallocation of a disk blockin the body of an object results in an alteration to a page table. The dirty �eld isused to indicate if a page table has been altered and should be written to disk.6.2.3 ProcessesProcesses are the animate elements of the Walnut Kernel. A process object is anobject which contains the state of a process. The most signi�cant bit of the type�eld of an object is set to indicate that an object is a process object. The datastructures holding the state of the process are stored at known o�sets. In general,the pages holding the process state are not readable by user processes.The Prochd data structure (�gure 6.6) is stored in in the �rst data block ofthe process object. The master �eld holds a copy of the master capability forthe process. The nessp �eld holds the the number of necessary pages for theprocess. All the necessary pages of a process must be loaded into memory be-fore a process can be scheduled. The state �eld indicates the state of a process.A process may be runnable (PROCSTATENORMAL), performing a system-call (PROCSTATEKERNEL), handling a page fault (PROCSTATERFAULTfor read faults or PROCSTATEWFAULT for write faults), frozen (PROC-STATEFROZEN), performing house keeping tasks after it has died (PROC-STATEPROBATE), dead (PROCSTATEDEAD), or protected frozen (PROC-STATEPFROZEN). In addition if it is not currently in the scheduling queue it is

6.2. PASSIVE ELEMENTS 105typedef struct Prochdst {Capl master;Uq nessp;Uq state;Uq action;Uq stage;Uq currsubp;Uq maxsubp;Uq numsubp;Uq maxlc;Uq numlc;Uq maxmess;Uq nummess;Uq messlock;Sw cash;Uw lockword1;Uw lockword2;Uw icekey;Sw icecount;Uw *direcp;Uw dcleartime;Uw runtime;Uw wakeup;Uw type;Uw cause;Uq *messtab;Uq *subptab;Uq *tlctab;Uw tlcfree;Uq *dmaptab;Uq *fizadd;Uw faultaddress;Capl heir;Scratch *scr;} Prochd;Figure 6.6: The Prochd Data Structure

106 CHAPTER 6. DESIGN OF THE WALNUT KERNELdeemed idle (PROCSTATEIDLE). For a process in PROCSTATEKERNEL,the action �eld contains a value indicating the system-call currently being executedby the process. The stage �eld indicates the stage to which a system-call actionhas been completed. The currsubp and numsubp �elds respectively indicate thecurrent subprocess and the number of de�ned subprocesses of a process. The numlc�eld holds the number of capabilities currently loaded. The number of empty mailboxes is stored in nummess. The messlock �eld acts as a semaphore for the pro-cess's mail boxes. The money used to pay for system-calls and transfers of moneyto and from objects is stored in the cash �eld. The process's two lock words areheld in lockword1 and lockword2. The protected freeze and protected thaw op-erations use the icekey and icecount �elds. The last time the process's top levelpage table was cleared is stored in dcleartime. The runtime �eld holds the timewhen the process was last run. A process does not run until after the wakeup timehas passed. The type �eld is a duplicate of the object's type �eld. The cause�eld is used for diagnostics; it identi�es the reason for entering the scheduler. Thefaultaddress �eld contains the logical address of the memory access which resultedin a page fault. The �zadd �eld is a pointer to this Prochd data structure usinga physical address. The heir �led contains the capability of an object to which aprocess's cash should be sent upon its demise. The scr �eld is a pointer, using phys-ical addressing, to the Scratch data structure of the kernel executing the process.The direcp, messtab, subptab, tlctab, and dmaptab �elds respectively pointto a process's top level page table, message table, subprocess table, Table of LoadedCapabilities (TLC), and the map of its address space. The tlcfree �eld contains theindex of the head of the free list of the process's TLC.The sizes of the TLC, the message table, and the subprocess table are speci�edwhen a process is created. These values cannot be varied during the life of a process.Themaxlc �eld speci�es the maximum number of loaded capabilities. The numberof mail boxes - the size of themessage table - in a process is speci�ed by themaxmess�eld. The maxsubp �eld holds the maximum number of subprocesses.Each process has a Table of Loaded Capabilities (TLC). The TLC lists all thecapabilities loaded by the process, the rights held by those capabilities when the

6.2. PASSIVE ELEMENTS 107typedef struct Tlcentst {Uw vol;Uw serial;Uw pass1;Uw pass2;Uw srights;Uw urights;Uw base;Uw size;Sw displ;} Tlcent;Figure 6.7: The Tlcent Data Structurecapabilities are loaded and the location of the loaded section of the capability in theprocess's address space. The index of an entry in the table is known as the capabilityindex or cindex of a capability. The index can be used to identify a loaded capability.Empty entries in the table are formed into a doubly chained linked list. The Tlcentdata structure is illustrated in �gure 6.7. The vol, serial, pass1, pass2, srightsand urights �elds hold the values present when the capability is loaded. The baseand size �elds hold the o�set from the start of the visible part of the object andthe size of the visible part. Both quantities are in characters. The displ �eld holdsthe displacement between the beginning of the window holding the capability andthe beginning of the address space.typedef struct Subprocentst {Uw wakeup;Sw pcnt;sysstate regset;coprocstate coproc;Uw trap;Uq state;Uq priority;Uq pad2;Uq pad3;} Subprocent;Figure 6.8: The Subprocent Data StructureThe Subprocess Table holds the state of each of the subprocesses of a process.The state of the supervisor of a subprocess is stored in slot zero and the state of the

108 CHAPTER 6. DESIGN OF THE WALNUT KERNELsubprocess corresponding to the master capability of the process is stored in slot one.The subprocess table is constructed from Subprocent data structures (see �gure6.8). The subprocess is not scheduled to run until after the time in the wakeup �eldhas passed. The pcnt �eld contains a pseudo program counter value used by driveprocesses. The state of the processors when the user process is pre-empted is storedin the �elds regset and coproc. The number of the subprocess assigned to handletraps in the current subprocess is held in trap. The state �eld. Subprocesses maybe non-existent (0), alive (SUBPNORMAL), or (SUBPDEAD). Subprocessesare allocated scheduling priorities to help select between subprocesses when a processhas been scheduled to run. The priority of a subprocess is held in priority. Thelarger the value of the priority �eld the higher the priority of the subprocess. Thevalue 0xff is reserved for the supervisor.A process's address map is stored at 0x100f000 in the logical address space, andthe page containing it is marked read-only. The address map is a table of capabilityindex values for memory locations. Figure 9.4 in chapter 9 contains sample codeusing the address map. typedef struct Messentst {Uq chars;Uq subproc;Uq reserve;Uq matchlen;Sw money;Uw body [WORDSPERMESSBODY];} Messent;Figure 6.9: The Messent Data StructureThe message table is built from Messent data structures (see �gure 6.9). Eachmail box - Messent data structure - can hold a single message. Empty mail boxeshave 0xff in the chars �eld, otherwise the chars �eld contains the length of themessage. The subproc �eld holds the number of the subprocess to which themessage should be delivered. The money �eld holds the amount of money sentwith the message. Negative amounts of money cannot be sent by user processes.The body array holds the message sent.A mail box may be reserved for the use of a particular subprocess by setting the

6.2. PASSIVE ELEMENTS 109reserve �eld to the subprocess number. The value 0x� indicates that the mail boxmay be used for a message to any subprocess. A match string can be speci�ed fora mail box. The match string is stored in the body of the message and the lengthof the string is stored in the matchlen �eld. Only messages which are pre�xed bythe match string can be stored in the mail box.Each process has a parameter page. The parameter page is made up of theparameter block (see �gure 5.7 in chapter 5) and the message area. The kernel reads�elds from the parameter page when a system-call is made and returns values in�elds of the Param data structure when the system-call returns. The �elds andusage of the parameter page are described in chapter 5.
0x10000

ObjectO�set in AddresswhenLoaded ProchdMessage TableSubprocess TableTable of Loaded CapabilitiesAddress MapParamaeter Pagex3 a3x2 a2x1 a10 0x10000000xf000 0x100f0000x1010000
Process

Figure 6.10: Layout of the Process ObjectThe layout of the process object is illustrated in �gure 6.10. The Prochd datastructure is concatenated with the message table, the table of loaded capabilities andthe subprocess table to construct the �rst set of pages in the process object. Thesubsequent two pages of the object hold the address map and the parameter page. Asigni�cant feature of the process object is that the message table is entirely containedwithin the �rst page of the object to avoid extra page faults when sending a message.

110 CHAPTER 6. DESIGN OF THE WALNUT KERNEL6.2.4 Kernel Data StructuresScratch data structures hold the state of each instance of the kernel while thekernel is performing an operation (see �gure 6.11). The error �eld is used to holdan error code. Negative error codes indicate that a function cannot be performedat this time - the kernel, typically, retries the operation at a later time. Positiveerror codes indicate that a function cannot be completed. Error codes greater than20000000 indicate that the kernel is in an inconsistent state. The numeric value ofan error code indicates the routine in which the error occurred and the error thatoccurred: The rightmost 2 decimal digits indicate the error, and the more signi�cantthree digits indicate the routine.Only some of the �elds contain valid information. The set of valid �elds is deter-mined by the operation being carried out. The vol, serial, pass1, pass2, srights,urights, base, limit, money, type, maxo�, maxsz, maxcap, o�set, subpn,and cindex �elds hold information about the process or object being operated on.The ventry �eld holds an index into the volume table. The head �eld holds apointer into the AOT for an object header. The xhead �eld is a pointer to anotherobject header. The capent �eld points to a capability entry in the header of anobject in the AOT. The maximum o�set into an object is held in objlim. The sizeof the object header is held in dopesz. If the hash chain for an object header in theAOT is locked, aotres holds a pointer to the semaphore. The �elds pnum - pagenumber, dirent - second level page table entry, and pte - private page table entryare used for manipulating page table entries. Resolved physical addresses are storedin �zadd. The darg �eld contains a counter which is decremented while operationsare carried out. It is set to a positive value whenever a kernel operation started orrestarted. When darg is zero or negative, the operation is abandoned until it isretried. This use of darg ensures that no kernel action lasts for more than a certaintime, chosen to be less than a scheduling time-slice. The �eld prochd points tothe process header of the process currently being handled by the kernel and parampoints to the process's parameter page. The kerneltick �eld holds the value of thetick counter6 when the kernel function was started.6Each time a timer interrupt occurs the tick counter is advanced.

6.2. PASSIVE ELEMENTS 111typedef struct Scratchst {Sw error;Uw vol;Uw serial;Uw pass1;Uw pass2;Uw srights;Uw urights;Sw base;Sw limit;Sw money;Uw type;Sw maxoff;Sw maxsz;Sw maxcap;Sw offset;Sw subpn;Sw cindex;Sw ventry;Header *head;Header *xhead;Captabent *capent;Sw objlim;Sw dopesz;Uq *aotres;Uw pnum;Uq *fizadd;Uw dirent;Uw pte;Sw darg;Prochd *prochd;Uw *param;Uq kerneltick;Uq dum1;Uq dum2;Uq dum3;} Scratch;Figure 6.11: The Scratch Data Structure

112 CHAPTER 6. DESIGN OF THE WALNUT KERNELTwo arrays of integers are used in process scheduling. The arrays mixvol andmixserial hold the volume and serial numbers of processes to be scheduled by thekernel. Process's which are scheduled to wake up at time FOREVER7 are notpresent in the mix.6.3 Active ElementsThe operations of the active elements of the kernel may be collected into �ve groups.Object Memory Management is concerned with the moving of parts of objects intoand out of main memory, and with ensuring the stability of data stored in an object.Capability Management consists of providing all the operations on capabilities andensuring that the set of operations is consistent. Process Memory Managementgoverns the loading of views into a process's address space. Message Managementis responsible for delivering and receiving messages. Finally, the Process Schedulercontrols the scheduling of processes and subprocesses. Figure 6.12 shows the majorrelationships between these groups of functions and the data structures of the kernel.6.3.1 Object Memory ManagementThree elements of the kernel are connected with Object Memory Management: scav-enge, aotscavenge, and a collection of routines that provide access to parts ofobjects. The routines scavenge and aotscavenge each have their own Scratchdata structures and are periodically scheduled. These routines are responsible forremoving entries from memory and the active object table. A number of routinesare used to load and access a page of an object. The refer routine is central toaccessing pages.The Walnut Kernel's Object Memory Management is founded on the followingguarantees:A page remains in memory as long as any page table entry (including privatepage tables) contains a valid reference to it.A page table remains in memory as long as any process's �rst level page table7The end of time or FOREVER has the value 0xffffffff

6.3. ACTIVE ELEMENTS 113
AOT(Active Object Table)

MessageManagementProcessSchedulerMix(Scheduling Queue) Process HeaderProcess MemoryManagement
Object MemoryManagement VolTab(Volume Table)PMT(Physical Memory Table)Object Header ManagementCapability

Figure 6.12: The usage of data structures by kernel functions

114 CHAPTER 6. DESIGN OF THE WALNUT KERNELcontains a valid reference to it, and as long as any page to which it refers remainsin memory.An object's dope remains in memory (in the AOT) as long as any of the object'spage tables remain in memory.The scavenge routine examines each entry in the PMT. The routine both copiesdirty pages to disk and removes pages from memory. Scavenge stores the time atwhich the last pass through memory was completed and the number of the pagecurrently being examined in its private Scratch data structure. The scavenge rou-tine aims to examine every entry in the PMT in DIRECTORYDELAY seconds.When scavenge is scheduled it selects a target page frame number and attemptsto examine each entry in the PMT between the last entry examined and the targetentry. The target frame number is proportional to the number of seconds elapsedsince a sweep of the table was completed divided by the DIRECTORYDELAY.To avoid ooding the disk queue, scavenge will exit if there are more than SCAV-WRITELIMIT disk write operations outstanding.When scheduled by the kernel scheduler the scavenge routine checks the stateof any outstanding disk write operations. The state of each enqueued disk-write isstored in the scavnote hash table. There are four possible states for each entry:page accepted for write and selected for removal; page written and selected forremoval; page accepted for write; and page written. For each completed writeoperation scavenge:� If the page contains a page table and the page is not scheduled for removal -clears PMT dirty �eld.� If the page does not contain a page table and the page is not scheduled forremoval - clears the dirty bit in the page table entry for the page.� If the page contains a page table and the page is scheduled for removal - theobject header in the AOT is retrieved, the number of the disk block for thepage table is written into the dope, restabs is decremented, and the memorypage is released into the free list.� If the page does not contain a page table and the page is scheduled for removal

6.3. ACTIVE ELEMENTS 115- the number of the disk block for the page is written into the page table forthe object, respages is decremented, and the memory page is released intothe free list.After processing the contents of scavnote, the routine attempts to schedule pagesto be copied to disk and/or removed from memory. Pages are scheduled to be copiedto disk if they are dirty. Only if less than a quarter of the memory is free are the datapages of an object scheduled for removal. An LRU (Least Recently Used) disciplineis used to determine which pages should be removed. Scavenge clears the presentbit in the second level page table entry on clean pages to ensure that a page faultoccurs. A page fault is used to determine that a page has been accessed eliminatingthe need for a use bit in the page tables provided by hardware. The bottom fourbits of the state �eld of the �zent data structure are used to hold a counter whichindicates when a page was last accessed. The counter is incremented each time apage is examined by scavenge and cleared by any page fault on the page. The valueof the threshold at which a page is determined to be old enough to be removed isdetermined by the demand for pages. The greater the demand for pages, the lowerthe threshold. Clean pages are removed by clearing the page table entry and addingthe page to the free list. Entries are made in scavnote to indicate whether a pageis being copied to disk or copied and removed. Second level page tables are removedonly when there are no pages pointed to by the table resident in memory. Top levelpage tables are discarded and their pages released after DIRECTORYDELAYseconds has elapsed.In addition to assisting in the removal of pages scavenge will retry failed at-tempts at loading a block from disk.The aotscavenge routine performs a similar task to scavenge; however, it actson the Active Object Table. The routine examines each entry in the AOT by steppingthrough the aothash table, and pursuing each hash chain. If either the darg ofaotscavenge's scratch is zero, or the routine has processed more than the fractionof the hash table's entries than the time since the last sweep through the AOTdivided by DIRECTORYDELAY, then the routine will exit. It will resume workfrom where it left o� when next invoked. Each Header is examined and the action

116 CHAPTER 6. DESIGN OF THE WALNUT KERNELof saving the object header to disk is initiated if the time since it was last referencedis greater than a threshold value. The threshold is guaranteed to be greater thanDIRECTORYDELAY.An attempt by a process to reference an object can fail at many points. Theactions taken by the kernel depend on the point of failure. In general, the kerneltakes corrective action when a failure occurs and allows the reference to be retriedwhen the process is rescheduled. References to an object are typically generated byprocesses. The majority of references are handled by the page translation hardwareusing the page tables set up by the kernel. A page fault occurs when a page is eithernot-present, as shown by absence of the page table entry valid bit, or an attempt isbeing made to write to a page which has been marked read-only. In either case, the�xfault routine is invoked by the fault handler. The fault handler stores the faultaddress in the faultaddress of prochd. On entry, �xfault examines the top levelpage table associated with the process and recovers the top level page table entry. Ifthe top level page table entry is valid, the second level page table entry is recovered.If the fault has been caused by a not-present mark in the second level page tableentry, then the state �eld of �zent is modi�ed to indicate that the page has beenaccessed; the present bit in the page table entry is set; and �xfault returns to theprocess. If the fault was caused by an attempt to write to a page without writepermission, an error is returned. Otherwise, the process's address map is used to�nd the capability index of the the capability corresponding to the faultaddress.The entry in the process's Table of Loaded Capabilities is copied into scratch andthe refer routine is invoked. Refer checks the type of access being performed isvalid and within the loaded section of the capability. The vol and serial �elds areused to access the Active Object Table. If there is no entry for the object in thebitmap corresponding to the volume, an error is returned indicating the object nolonger exists. If there is no entry in the AOT, the recovery of the Header for theobject from disk is started, and �xfault returns. The capability table in the objectheader is checked to ensure that the capability loaded in the process's TLC is stillvalid. If the passwords do not match, an error is returned. If a page table for theobject is already in memory, refer recovers the address of the page table from the

6.3. ACTIVE ELEMENTS 117list of page tables in the object header and returns both a top level page table entryand a second level page table entry for the required access to �xfault. If a pagetable is not in memory, refer starts an operation to retrieve the page table fromdisk and returns to �xfault. If refer was successful in constructing the page tablewords, �xfault uses the words to complete the page tables and returns to the userprogram.6.3.2 Capability ManagementCapability management consists of three elements: the derivation of capabilities,the restriction of capabilities, and the revocation of capabilities. The majority ofthese operations are conducted solely in the header of the object the capabilitiesrelate to.The derivation of capabilities is performed by the addcap routine. The vol,serial, pass1 and pass2 of the capability to be derived from is passed to addcapin the scratch data structure. The rights mask and the parameters for the cover-age of the derived capability are passed in the �elds srights, urights, base andlimit. Before a derivation can be performed, the rights of the presented capabilityare checked to ensure that it has SRDERIVE right. If no derive right is present,an error is returned. If the SRMULTILOAD right is absent, the password 2 ofany derived capability is coerced to the value of the password 2 of the presentedcapability. With the exception of the suicide right and the message rights of pro-cesses, derivation consists of returning the logical-and of the rights of the nominatedcapability and the rights mask supplied by the caller. The memory area covered bythe capability is determined by the intersection of the region covered by the pre-sented capability, and the area covered by adding the base to the start of the regioncovered by the presented capability up to the extent provided by the limit. TheSRSUICIDE right can be added to the children of any capability.The system rights �eld for a process is treated di�erently from the system rightsof a data object. The last eight bits of the srights �eld limit the subprocesses towhich a message may be sent by using this capability. The bits may contain 0xff forall subprocess, or 0xfe for all subprocess other than subprocess zero, or a subprocess

118 CHAPTER 6. DESIGN OF THE WALNUT KERNELnumber. Only more speci�c or equal subprocess destinations for messages can bederived. Furthermore, it is required that the capability base be zero for a derivedcapability which has SRSEND right.The revocation of a capability is a two phase process. The delcap routine deletesa capability and all the derivatives of the capability from the capability table in theobject's header. References to a deleted capability loaded in the address space of aprocess remain valid until a page fault results from attempting to access the deletedcapability. The top level page table of every process is guaranteed to be discardedand replaced with an empty page table every DIRECTORYDELAY seconds.The �rst access after the top level page table is replaced results in a page fault,and the deletion of the capability is noted. The Walnut Kernel guarantees that acapability is unavailable to all processes within DIRECTORYDELAY seconds ofrevocation.6.3.3 Process Memory ManagementProcess Memory Management consists of two operations: mapping views into theaddress space of a process and removing a view from the address space of a process.A process requests the loading of a view into its address space using the LOAD-CAP system-call. When presented with the capability to be loaded, the WalnutKernel attempts to locate the object header in the AOT. If the object is not repre-sented in the AOT, recovery of the object header from disk is initiated. When theobject header is present in the AOT, the appropriate entry in the capability table isrecovered. If the recovered capability lacks SRMULTILOAD right and password2 of the capability is not equal to the serial number of the process, then an error isreturned. Otherwise, the values representing the area covered by adding the baseto the start of the region covered by the capability to be loaded up to the extentprovided by the limit are placed in the base and limit �elds of TLC entry. Therights �elds of the Tlcent data structure are �lled in, and the system-call returnssuccessfully. The capability's cindex is written into all address map entries coveredby the view.The removal of view from a process's address space is trivial. The �elds in the

6.3. ACTIVE ELEMENTS 119process's address map corresponding to the memory address range occupied by themapping are zeroed, and the entry in the process's TLC is invalidated and linkedinto the list of free TLC entries.6.3.4 Message ManagementThe message mechanism enables both the transfer of information between processesand control of the scheduling of processes. When a process is created an array ofMessent data structures is allocated within the process object. Only the kernelcan access mail boxes directly.A message is sent by the kernel copying a set of bytes from the source process'smessage area (the remainder of the page in a process's address space that containsthe parameter block) to the destination process's mail box. For this to occur, it isnecessary for the capability used to identify the destination to start at o�set zerofrom the beginning of the process, and to have the SRSEND right. The recipientprocess may be explicitly named using the external form of the send system-call;alternatively it can be implicitly named by sending a message to a capability loadedinto the sending process's address space using the internal form of the send system-call. The latter method is more e�cient as it eliminates the need for the kernelto verify the access rights of the destination process object. It reduces the sendoperation to a memory copy. The transmit routine implements both the internaland external forms of message sending.The transmit routine transfers money from the sender's cash word to the re-ceiver's cash word. The transfer is made after the message has been placed in themail box.Messages are always directed to a subprocess. When a message is sent to asubprocess, the wakeup time of the process is set to the current time, and theprocess is placed in the mix. Whenever a mailbox contains a message, a subprocesscannot change its wakeup time from the current time. Hence non-frozen processeswith pending messages are always scheduled to run.The receive routine is called by the receive system-call. The routine can take amatch string as a parameter which allows a subprocess to retrieve messages begin-

120 CHAPTER 6. DESIGN OF THE WALNUT KERNELning with the speci�ed string. If no match string is provided, then the message inthe �rst mail box containing a message for the current subprocess will be retrieved.When a process is created all of its mailboxes are closed, except for a single mail-box allocated to subprocess zero. After the process has completed its initialisation,the process can open its mailboxes setting the �elds which reserve mailboxes formessages with speci�ed pre�xes and speci�c subprocesses. Messages sent before theprocess has opened its mailboxes are not delivered. A system-call allows mailboxesto be closed.6.3.5 Process SchedulerAt present a round robin scheduler is employed within the kernel to schedule allprocesses with a speci�ed wakeup time. Processes which have selected to wait foreverare removed from the scheduling queue. The scheduling queue within the kernel isknown as the mix.When the process scheduler -macro schd - selects an element from the mix, thevolume and serial number of a process are passed to the startproc routine usingthe scratch data structure.Startprocmust ensure that the set of pages critical to the operation of a processare loaded into memory before attempting to transfer control to the process. Theset of critical pages consists of two parts: the dope for the object holding the process,and the set of necessary pages of the process. The necessary pages of an object arethe pages containing the Prochd, the Table of Loaded Capabilities, the subprocesstable, the message table, and the parameter page. The AOT entry for the process ischecked. If the entry is not present, retrieval of the dope is initiated. When the AOTentry is recovered, the top bit of the type is tested to ensure that the entry objectcontains a process. If the object does not contain a process, an error is returned.A lock is placed on the message table by lockingmesslock. If the lock operationfails, a message is currently being sent to this process, and startproc exits with anegative error. If the lock operation succeeds, startproc guarantees to clear thelock before exiting.The PROCSTATEMIX bit of the state �eld of the process header is set.

6.3. ACTIVE ELEMENTS 121Prochd's wakeup �eld is examined next. If the process wakeup time is NEVER(also known as FOREVER), startproc exits with a positive error which informsthe scheduler to remove the process from the mix. If it is too early to wakeup theprocess, a negative error is returned.The time the process's directory (top level page table) was last cleared is checkedto ensure that the top level page table is still valid. If scavenge has had an oppor-tunity to remove the page, a new page is created. This has a side e�ect of ensuringthat all capabilities are revalidated when they are next used.Once the top level page table has been established, references to the necessarypages page table are inserted in the top level page table. If the necessary pages arenot present in memory, they are recovered from disk.The process state is checked. If a process is dead (PROCSTATEDEAD),an error is returned, and it is removed from the mix. If a process is in probate(PROCSTATEPROBATE), the process attempts to send a message to its heircontaining the process's cash and the process's name. Only 255 attempts are madeat delivering the message to the heir. If the heir is unable to accept the message,the process changes to PROCSTATEDEAD and the cash is lost.A check for new messages is performed, and messages for non-existent subpro-cesses are erased. When a subprocess receives a message it is marked runnable.Messages for subprocess zero are processed and the operations performed.If the process is either frozen (PROCSTATEFROZEN) or subject to a pro-tected freeze (PROCSTATEPFROZEN), startproc exits allowing other pro-cesses to be scheduled.At this point, startproc chooses the subprocess to execute. If the reserve �eldof the process's Param data structure (Parameter Block) is non-zero, the subprocessthat was executing at the end of the last time-slice is re-started. Otherwise, thesubprocess with the highest priority and with a wakeup time less than the currenttime is selected. If no runnable subprocesses are found, startproc returns with anegative error.Having selected the subprocess to be run and ensuring that the pages critical tothe operation of the process are in memory, startproc returns to the macro schd

122 CHAPTER 6. DESIGN OF THE WALNUT KERNELroutine.If an error was returned by startproc, macro schd selects a new subprocessfrom the mix and calls startproc. Only when a runnable process is selected, is theremainder of macro schd executed.The remainder ofmacro schd is devoted to executing the selected process. Theactions of macro schd fall into three categories:� If the process is currently handling a page fault (PROCSTATERFAULTor PROCSTATEWFAULT), the �xfault routine is called. If the fault is�xed, the process state is set to PROCSTATENORMAL, the subprocessstate is restored, and the process is executed. If the fault cannot be �xedimmediately, the process is returned to the mix.� If the process is currently performing a system-callPROCSTATEKERNEL,the kcact routine is called to handle the system-call. If the system-call hasbeen completed, post kcact is invoked to clear any �elds in Param of datawhich are not to be returned to the process, the subprocess state is restored,and the process is executed. The process is returned to the mix if the system-call cannot be completed.� If the process is in PROCSTATENORMAL, the subprocess state is re-stored, and the process is executed.6.4 Persistent ElementsFigure 6.13 illustrates two typical layouts for a disk containing a Walnut Kernelvolume. The layout of disk is fairly exible as the only elements which have �xedlocations are the Disk-ID-Blocks. The �rst Disk-ID-block is located in the �rst blockof a data volume or at a location de�ned by a compile time constant in the kernel fora bootable volume. The duplicate Disk-ID-Block is always located in the last blockon the disk. The Disk-ID-Blocks and the Bitmap contain information relating tothe whole disk. The remainder of the disk is used to store objects.The reserved area is located at the front of the disk and is typically used to hold

6.4. PERSISTENT ELEMENTS 123

Last Reserved Blocks
Boot BlockOperating SystemDisk ID BlockBitmapObjectsDisk ID BlockBootable Volume

Disk ID Block
ObjectsDisk ID BlockData Volume

0
Last

Bitmap0

Figure 6.13: Disk Layout

124 CHAPTER 6. DESIGN OF THE WALNUT KERNELthe operating system and the boot block. The reserved area is ignored by the kernel.Typically data volumes do not have a reserved area.The Disk-ID-Blocks are duplicated to assist in the recovery of information from acorrupted volume. The location of the bitmap and the identi�cation of the reservedarea simplify the recovery procedure. Furthermore, the duplicate Disk-ID-Blocksallows a volume with a damaged Disk-ID-Block to be mounted.Unlike the Password-Capability System and �le based operating systems, theWalnut Kernel does not possess a File Allocation Table (FAT) or its equivalent. AFAT is a lookup table that is used as the �rst step of translating a name into a disklocation. Instead the Walnut Kernel uses part of the objects name - the low orderbits of the object's serial number - to locate an object.A �le allocation table allows names to be independent from position. The absenceof a FAT structure initially appears to be a critical problem for the Walnut Kernel asit ties objects to particular locations on disks. The failure of a disk block containingthe header of an object would result in the loss of the object. In practice the presenceof a FAT has little advantage for the operation of the Walnut Kernel. Three issuesare signi�cant: reliability, reconstruction and security.Reliability and reconstruction are related issues. Enhancing the reliability of asystem's data storage reduces the likelihood of needing to reconstruct lost informa-tion. Both processes require redundancy in the data to infer the lost components.A �le allocation table provides a centralised listing of all the items on a disk.They are frequently duplicated to several locations on a disk to prevent the poten-tially catastrophic results of loss of the table - the loss of all translation informationand hence the loss of access to all the objects on the disk. The entries in a FATeither contain information relating to an object or point to block of informationabout an object.Redundancy has been built into the Walnut Kernel's persistent representation.The Walnut Kernel has a pair of Disk-ID-Blocks which are used to identify thevolume and, the header pages of an object are recognizable by signature words atboth the top and bottom of the page allowing pages to be identi�ed. The signaturescan be used in reconstructing damaged bitmaps.

6.4. PERSISTENT ELEMENTS 125The presence of a FAT would not signi�cantly enhance the reliability of thesystem above the level provided by the current scheme as:� Loss of a header block results in the loss of all derived capabilities for an object.Although a FAT could contain a duplicate of all the information contained inthe header of an object the signi�cant penalty in terms of both space andspeed would be unacceptable.Nor would reconstruction be signi�cantly enhanced by the presence of a FAT as:� The data regarding the location of header pages is already duplicated in thebitmaps.The use of the low order bits to identify the disk location of the header page ofan object has a minimal e�ect on the security of the system (see section 10.3).The absence of a FAT is signi�cant in terms of restoring data from a backupmedia. Under the Walnut Kernel it is not possible to restore an object if the block onwhich the header page is required to reside is damaged. The disk storage mechanismlacks position independence. A system using a File Allocation Table would not beconstrained to restoring an object to the same physical location. However, themajority of modern disks employ re-mapping techniques which translate accesses tofailed sectors to replacement sectors seamlessly. Thus the hardware appears to befaultless on restore even if there has been a failure.A more subtle problem is present. Under the Walnut Kernel it may not bepossible to backup a single object and restore that object at a latter date. Theproblem stems from the lack of position independence. If a block required for theheader page is already in use then it is not possible to restore the object.The backup and restoration of capability based systems is an open question.Problems exist as to the meaning of partial backups and restores; the semantics of thedeletion of an object is changed as the object may have been backed up. The securityof backed up objects is also subject to signi�cant doubts. Solutions employingcryptography to protect the contents and signatures to prevent tampering havebeen put forward. These mechanisms are vulnerable to cryptographic attacks withselected plain texts and hence require extremely strong algorithms to remain secure.

126 CHAPTER 6. DESIGN OF THE WALNUT KERNELFurthermore as they rely on an encryption key derived from secret information heldby the system it is typical for backups of objects on the system to be generatedusing keys related to keys used to backup other objects on the system. Relying onrelated keys decreases the system security as the compromise of the encryption ofone object can give clues to compromising other objects.The Walnut Kernel does not address the problems of backup - apart from thetrivial case of sector by sector backup and restoration of the complete system -at this stage. Our view is that backing up an object creates a new object with anew name, which should be distinguished from the original, even if its body andpasswords are the same.6.5 Small Windows & Private Page TablesSecond level page tables are typically associated with objects. However, to providesmall windows, a collection of second level page tables - known as Private PageTables (PPT) - is associated with each process. In the description of the system,the second level page tables associated with processes were neglected for simplicity.This section describes the operation of small windows and PPT s.A compile time constant determines the number of top level page table entriesdevoted to implementing small windows. These entries are separated from the pagetable entries used for large windows by the entry used to hold the second level pagetable for the process object (see �gure 6.14).Private Page Tables are subject to scavenging and require replacement if thetable may have been removed. The operation of PPT s is analogous to the operationof top level page tables. When a reference is made to an object using a capabilityloaded into a small window and the PPT is invalid, the capability is validated, anda pointer to the required page of the object is made. The only signi�cant di�erencesbetween the usage of PPT s and top level page tables are that the PPT s are a perprocess data structure, and the dirty bits in the object's page tables need to be setwhen a write operation is performed on a small window. To ensure that the dirtybits of the object's page tables are correctly updated, entries in PPT s created byreads are not marked writable, even if the capability allows the object to be written

6.5. SMALL WINDOWS & PRIVATE PAGE TABLES 127

Window
Private PageTable Page TableObject
Private PageTableProcess 2

ObjectPage of
.............
.............

..
............. Large WindowSmall Window..

z j* qU*zProcess 2Top Level PageTable
Top Level PageTableProcess 1

Process Object
Process 1
Figure 6.14: Windows and Objects

128 CHAPTER 6. DESIGN OF THE WALNUT KERNELto. This causes the �rst write operation to page fault, and allows the dirty bit inthe object's page table to be set. The PPT entry is then marked writable.6.6 System ArchitectureThe design of the Walnut Kernel is divided into common and hardware architecturedependent components (see �gure 6.15). This division in the design is reected in theimplementation which simpli�es the task of porting the kernel to other processorsand allows the identi�cation of features required to allow the implementation of theWalnut Kernel on other architectures.The components of the Walnut Kernel common to all implementations includethe system-call interface, and memory and capability management. The low levelfunctions that support the common components of the system are architecturedependent. The architecture dependent components include the low level devicedrivers and the kernel interface to essential system hardware.The functions of the modules of the kernel are de�ned as follows:System-Call Interface module as the interface between user programs and theWalnut Kernel. The module performs the initial veri�cation of arguments tosystem-calls and ensures that only permitted information is returned to theuserSubprocess Zero Interface interprets messages sent to subprocess zero of a pro-cess. This mechanism augments the system-call interface.High Level Functions have been described in section 6.3.Kernel Scheduler module is driven by the timer interrupt and it calls device driverroutines which require regular execution and the process scheduler to allowpre-emption of user processesDevice Drivers are not logically part of the kernel. In some implementationsthe collection of interrupt driven modules that interface with the hardwareexecute within the kernel. In other implementations hardware may perform

6.6. SYSTEM ARCHITECTURE 129
IndependentArchitectureDependentSystem-Call InterfaceHigh LevelFunctionsMessageManagement

PagingSupportHardware DevicesTimerKernelScheduler
DeviceDriversWalnutKernel ProcessSchedulerObjectMemoryManagementProcessMemoryManagementCapability& ObjectManagement

Subprocess 0Interface

Architecture

Figure 6.15: Components of the Walnut Kernel

130 CHAPTER 6. DESIGN OF THE WALNUT KERNELall the functions required[Cat88]. In both cases a user level process gains accessto the device through a number of pages of physical memory accessed by thecapability mechanism.Kernel Memory*
j- --

-Mapable PhysicalMemory ControlBu�erstatestateBu�erControlstateDisk QueueInterrupt HandlerInterrupt Handler IO DeviceIO DeviceSecondary StoragePhysical Memory

Figure 6.16: Organization of the Walnut KernelThis design applies to both single processor systems and multiprocessor systems.Figure 6.16 presents a high level representation of the organization of the WalnutKernel.Interfaces to devices are placed into memory regions which can be mapped intoordinary processes. The remainder of the physical memory accessible to the pro-cessor is used for paging. The architecture exploits the sharing of memory to allowthe kernel and user processes to communicate with devices. In systems with pur-pose built devices the device can interrogate the shared memory area directly todetermine its actions. Devices which require a processor to provide close control ofthe stages of their operation are supported using low level device drivers which are

6.6. SYSTEM ARCHITECTURE 131scheduled using the kernel scheduler and interrupts. The low level drivers transferdata and operate on instructions found in the shared bu�er area.The disk device / device driver is unique in that it is the only device which hasdirect access to the tables used by the kernel. The disk device noti�es the kernelthat a page has been brought into memory by setting a bit in the physical memorytable indicating that the page is present.The kernel is unaware of the operation of other classes of input / output devices.All other devices are handled by user level device drivers which interact with thedevices using the standard capability mechanism to map in the memory shared withthe physical device or the low level device driver.6.6.1 System-Call InterfaceThe system-call interface is the mechanism through which user processes explicitlycommunicate with the kernel.The System-Call Interface consists of both architecture dependent and architec-ture independent elements. The system dependent component provides a transitionof privilege level to supervisor mode and starts kernel code at a �xed address. Theportable component communicates directly with the majority of the high level mod-ules of the kernel. The user process transfers information to the kernel by �llingin a parameter block that is accessible to both the kernel and the user process andusing the system dependent mechanism for switching to supervisor mode.The System-Call Interface performs some checking on calls to ensure that re-quests are valid and legal before invoking the appropriate kernel routines to performthe requested operation. After completing the required kernel operation, the param-eter block containing the values to be returned to the user process is post processedto erase �elds which contain information not to be passed back to the user. Thispractice simpli�es the task of showing that the kernel does not leak information touser processes.The programmer's view of the parameter block, user level system-calls and mes-sage operations are discussed in detail in appendix A.The `reserve' �eld of the parameter block is used to select the type of system-

132 CHAPTER 6. DESIGN OF THE WALNUT KERNELcall to be executed. Furthermore, setting the `reserve' �eld to a non-zero valueguarantees that only the current subprocess of a process is scheduled until the �eldis set zero. It is imperative that subprocesses set the the reserve �eld to the system-call identi�er before setting any of the other �elds of the parameter block. Failure todo so may result in the parameters of a system-call being corrupted by the operationof another subprocess of the process. At the completion of the system-call, a processmust copy any values required from the parameter page before clearing the `reserve'�eld.Other mechanisms were considered for transferring information between userprocesses and the kernel. These included using registers to pass parameters, passinga pointer to parameter block located in the processes address space, using a blockof data located on the stack, and using multiple areas for both each subprocess andeach type of system-call.The use of registers for transferring data was rejected as it places constraintson the choice of processor and platform. This is not compatible with the designprinciples.Using the stack to pass parameters was rejected because of the extra e�ort re-quired to check the validity of the parameter area on each system-call to preventattempts to read memory outside the area permitted. Furthermore, using the stackwould have the potential to allow programmer's to create errors which would bedi�cult to trace. Many processors have stacks which grow towards zero allowingstring operations which overow the space allocated on the stack to corrupt theparameters of subroutines which have not yet completed. Routines constructing theparameters of system-call which use other subroutines are especially vulnerable asthe e�ect of a system-call varies widely with minor changes to the parameter block.The use of a parameter block �xed in a process's address space was motivatedby the following considerations:� Fixing the block in the address space eliminates the need to test whether theparameter block lies in an area of memory validly accessible to the process.Using �xed memory locations simpli�es the task of ensuring that the kerneldoes not leak information and cannot be tricked into altering system state

6.6. SYSTEM ARCHITECTURE 133invalidly.� Including the parameter page in the set of pages required to be present inmemory for a process to execute ensures that the parameter page is alwayspresent while a process is running, so processes can make system-calls withoutthe risk of a page fault.The current design supports passing a wide range of parameters to the kernelas the message area can be used to pass any data structure (slightly smaller than apage in size) required to the kernel. The design o�ers great exibility and potentialto extend the design.We decided not to allow subprocesses of a process to execute in parallel. Thiseliminated the requirement to provide multiple parameter blocks. Should it bedeemed desirable to allow subprocess to operate in parallel the kernel can be easilymodi�ed to allow subprocesses to operate in parallel until a subprocess sets thereserve �eld to a non-zero value. Other subprocesses would then not be scheduleduntil the reserve �eld is cleared. Mutual exclusion on the `reserve' �eld preventssimultaneous system-calls from the same process simplifying the kernel design. Ine�ect, system-calls would become `critical regions' which only one subprocess couldenter at a time.6.6.2 Subprocess ZeroA special subprocess known as subprocess zero was introduced in the Walnut Kernel.Subprocess zero is an extension of the kernel that interprets specially formattedmessages sent to a process. It allows a process to control the execution of anotherprocess by sending a message to the other process's subprocess zero. This mechanismsupports only a limited number of operations on a process including suspending /resuming the running of the process, starting a subprocess and enquiring about aprocess's status. The mechanism is implemented by parsing any pending subprocesszero messages at the start of a process's time-slice and then performing the actionassociated with the message. If the content of the message is not recognised themessage is ignored.

134 CHAPTER 6. DESIGN OF THE WALNUT KERNELThere are two alternative implementations of this mechanism: extending thesystem-call mechanism by adding calls to perform the tasks currently handled bysubprocess zero, or requiring all processes to provide an executive subprocess whichhandles the messages and performs the actions currently delivered to subprocesszero. The current mechanismwas selected because it provided the conceptual equiv-alent to the latter mechanism with the immutability of the former mechanism. Thedesign considers the functions performed by subprocess zero to be semantically asso-ciated with a process, but requires that all the functions be present in each processin a consistent form.6.6.3 Device DriversThe UNIX model of a device driver consists of two halves both of which are builtinto the UNIX kernel. The top-half of the driver interacts with user processes.It runs in synchrony with the user process and may suspend itself using the sleepsystem-call. The bottom-half of the device driver runs asynchronously with respectto user processes. It is typically interrupt driven.The Walnut Kernel handles devices in a manner which di�ers signi�cantly fromthe UNIXmodel. Under the Walnut Kernel a user level process performs the tasks ofthe top-half of the UNIX device driver. The user process (also known as the devicemanager) communicates with either the hardware or a low level driver using a sharedbu�er area. If interrupts or the system I/O address space need to be addressed tooperate a device then a low level driver is required. The low level device driver iscompiled into the kernel, and typically performs the task of handling interrupts andmoving data between bu�er pages in the unity mapped region of the kernel and thedevice. Low level device drivers use only physical addresses to access the device,and the data and control bu�ers. Although the low level driver is compiled into thekernel it is logically not part of the kernel as it operates on only a de�ned area ofphysical memory in response to interrupt events.In a multiprocessor system the low level driver could be replaced with specialisedhardware writing directly into shared memory.This method of implementation avoids a number of potential security holes:

6.6. SYSTEM ARCHITECTURE 135� There is no requirement for a special class of user level processes that canaccess physical I/O. Only the kernel has direct access to hardware functions,eliminating a common avenue of attack.� Careful coding of the low level device driver can insure that the kernel doesnot leak information or alter data which does not belong to the device.This method also provides a number of signi�cant performance advantages as itallows the low level drivers to respond rapidly to interrupts. Two factors contributeto the performance of this mechanism:� The use of physical addresses and bu�ers statically allocated in memory: Thisavoids the overheads of paging and ensures the presence of bu�ers in memory.� The direct use of the interrupt, which eliminates the need to invoke user rou-tines upon an interrupt.It should also be noted that the Walnut Kernel is at least as e�cient as the UNIXmodel in terms of the number of memory copies required to transfer data from thedevice to the user program. Under UNIX at least 3 copies are required to transferthe data from the device to the user process8. The Walnut Kernel typically uses 3copies, but requires only 2 copies. The two copy scenario is achieved by providingthe capability of the memory bu�er to the user level process that is going to usethe data. In this scenario data is copied from the device into the bu�er and thenretrieved by the user process.6.6.4 Kernel SchedulerThe Kernel Scheduler periodically invokes routines that have been registered withit. These routines include the Process Scheduler and device drivers. It indirectlyactivates the scavenger routine by calling the Process Scheduler. The Kernel Sched-uler is driven by a hardware interrupt and invokes each registered routine in turn.The Kernel Scheduler provides the ticks which are used to pre-empt running tasks.8device { bottom-half { top-half { user process

136 CHAPTER 6. DESIGN OF THE WALNUT KERNEL6.6.5 DiscussionThe architecture enhances the portability of the kernel. The kernel interacts withonly one class of input/output device - disk drives. The interface to this class ofdevices consists of a disk queue. By standardising the queue interface the kernelcan be made portable up to the disk queue interface. Any system dependent codeis placed on the hardware side of the disk queue.The logical separation of devices from the kernel allows the easy introduction ofspecial purpose processors on multiprocessor systems. This provides an opportunityto use a special purpose processor which handles disk transactions freeing the generalpurpose processors to handle user code. Other special purpose IO processors mayalso be directly mapped into the memory of a processor. This makes the kernelextremely exible as new peripherals can be made available without modi�cationto the kernel by mapping the devices into the address space and using user levelprograms to control the new devices.This architecture is slightly less e�cient at handling interactive programs thanconventional systems such as UNIX. When a process blocks on IO in a conventionalsystem, the process scheduler is noti�ed that the process cannot be run, and the pro-cess is typically removed from the short term scheduling queue until the IO operationhas completed. Under the Walnut Kernel this optimisation is not available to theprocesses which manage devices. Device drivers are separated from the kernel andthis prevents the scheduler from being noti�ed that a process is blocked on IO. Thename of the device manager process could have been stored in the data accessible tothe low level device driver and messages sent to the process on device activity at thecost of increasing the coupling of the device driver and the kernel, and additionalsystem load resulting from messages sent by the kernel to the device manager. Theabsence of this optimization results in a small loss of e�ciency. Careful program-ming practices, such as surrendering the processor quickly on determining IO is notpossible, reduce the impact of this architectural limitation. E�cient blocking IO isprovided for other processes through stream IO libraries. These libraries put thereading process to sleep when the process is blocking on input. When more data isavailable, the reading process is reawakened by a message from the writing process.

6.7. DESIGN ISSUES 137A signi�cant feature of the kernel - to the user - was the decision to makethe kernel occupy a region of the process address space. From a system designpoint of view, making the kernel permanently resident in memory was of greaterimportance. By making the kernel permanently resident in memory and a part ofthe user process address space, a number of signi�cant problems were avoided andthe task of implementation simpli�ed. Development and debugging time was saved.The elimination of page faults within the kernel simpli�es the virtual memorysystem. In systems where paged kernels are employed, it is possible for the kernelto be stalled while paging in a critical component. In addition the problem of pagefaulting while handling a page fault has been eliminated, resulting in a reduced sizeof the kernel stack and reduced complexity in handling page faults. As page faultsshould not arise in supervisor mode, the leaking of kernel powers to user processesis prevented.A unity mapping of the kernel memory region into the process address spaceallows the kernel to switch between virtual and physical addressing schemes easily.Unity mapping memory simpli�es the design and implementation of low level devicedrivers.A major advantage of placing the kernel at a �xed location in the physical addressspace is that it enables use of a logic analyzer to be used to trace the addresses ofexecuting instructions. During the early phases of development the logic analyzerproved invaluable as it provided a mechanism for determining the cause of failuresat the instruction level.6.7 Design Issues6.7.1 Pages versus SegmentsThe overriding concerns of portability forced a much coarser granularity of protec-tion onto the Walnut Kernel than was present in the Password-Capability System.Although it would be desirable to have the 4 byte protection granularity found onthe Password-Capability System available, this would require the use of either seg-ment registers, where the processors have these available. Is not possible to provide

138 CHAPTER 6. DESIGN OF THE WALNUT KERNELextremely �ne levels of control where only the paging mechanism is available us-ing memory access instructions. It would be possible to provide �ne grain controlon accesses to an object mediated by the kernel. This could be implemented as asystem-call which would recover a set of bytes speci�ed by the caller. This mecha-nism su�ers from signi�cant overheads and was deemed too ine�cient to be widelyused.The Walnut Kernel has a signi�cant advantage over the Password-CapabilitySystem in that the Walnut Kernel supports approximately 250 capabilities in aprocess address space at a time. This number could be easily increased should thenumber be considered insu�cient. The older system supported only 32 capabilitiesat a time. Although it would have been possible to rewrite the Password-CapabilitySystem's kernel to handle greater numbers of concurrently loaded capabilities, themodi�cations would be far greater than those required on the Walnut Kernel.The division of windows into small and large types reects a compromise betweenthe space e�ciency provided by large windows and reduced granularity o�ered bysmall windows. Although the compromise adds complexity to the view of the systemseen by the programmer, it allows programmers greater exibility in dealing with,and control over, objects being manipulated by Walnut Kernel programs.6.7.2 Multiple ProcessorsA peer implementation was selected for the design of the multiprocessor systemrather than a master/slave implementation. The use of a uniform architecture forboth uniprocessor and multiprocessor systems eliminates optimisations available forthe two classes of implementation. However, it signi�cantly eases the task of port-ing the system and reduces development costs. In the case of multiprocessor de-velopment it allows low cost compatible uniprocessor hardware to be used in thedevelopment phase before shifting to multiple processors for the production phase.Supporting shared memorymultiprocessors is relatively simple in that the kernelcan access information available to other processors by uttering addresses within theshared component of the system memory. The code and data used by the kernelcan be shared in total. The only exception is that the scratch data structures need

6.7. DESIGN ISSUES 139to be distinct for each instance of the kernel. Typically an instance of the kernel isassociated with each processor in the system. If each processor possesses su�cientprivate storage, each instance of scratch may be held in the memory associated witheach processor. In the case of fully shared memory multiprocessors it is necessaryto distinguish the private storage of di�erent instances of the kernel by using anindexing scheme based on processor number to prevent the overwriting of the areasby other kernels.As commercial SMP machines typically have uniform memory access speed, theorganization of system tables has a limited e�ect on the operating e�ciency of thekernel. In direct contrast to this, the performance of implementations on machineswith NUMA (Non-Uniform Memory Architectures) organization is sensitive to thearrangement and location of system tables. On such systems it is necessary to placefrequently accessed data in memory local to the processor. On architectures witha large communication path diameter, the organization of memory can become acritical factor in system performance.To allow for e�cient implementation of the kernel on multiprocessor systemswith a NUMA organization, the Walnut Kernel has been designed to allow processinformation to be stored in memory local to the processor executing the process, andto minimize access to centralised tables. This approach leads to distributing systemtables across the system. By associating system tables with individual processes,the Walnut Kernel provides a mechanism for decentralising the majority of thesystem tables and ensuring that kernel information required for a process can beeasily identi�ed and hence moved to memory local to the executing processor. Afew centralized data structures are still required. Key among these structures area list of objects currently in use in the system (AOT) and a list of processes to berun (mix). The kernel was designed to minimise the number of accesses required tothese structures.Multiprocessors with partitioned data in address spaces which are private toa processor or group of processors9 such as the SP2 [AMM+95] can be supportedby the Walnut Kernel. The SP2 is representative of a class of multiprocessors,9Systems without a globally addressable memory space

140 CHAPTER 6. DESIGN OF THE WALNUT KERNELwhich has recently become popular, known as a network of workstations. Thesesystems communicate using message passing. The Walnut Kernel would implementdistributed shared memory on this class of architecture by copying blocks of mem-ory from address space to address space using the message mechanism provided bythe hardware. Access to common tables would be performed by encapsulating theoperations on the tables into messages and either broadcasting the message, whereappropriate, or transmitting the message to the node managing the table. Shar-ing pages of user data could be performed by sharing read only copies of a page.The �rst process to attempt to write to a page would invalidate all other copiesof the page and then allow the process to write to the page. A short time laterthe process would return the page to a read-only state and allow other processes totake new copies of the page. This mechanism allows processes to provide the sem-blance of shared memory on a partitioned data machine. However, the mechanismis expensive in both communications costs and page fault handling. This indicatesthat although the Walnut Kernel can operate in that environment it would incursigni�cant overheads with programs using �ne grained parallelism.The practice of timing out data structures used by the kernel and the page map-ping mechanism applied to a process have signi�cant advantages over the alternativemechanism of recording processes that use a given capability and updating a�ectedprocesses upon revocation of a capability. Although the timing out approach placesa constant overhead on process execution this overhead is not directly dependenton the number or arrangement of the derivatives of an object's master capabilitynor is it dependent on the number of processes sharing a capability. The overheadof updating lists of processes using a given capability is especially burdensome onmultiprocessing systems. This is because it requires the list to be locked duringupdates caused by processes loading and unloading capabilities. Contention overlocks can cause major performance bottlenecks. The Walnut Kernel avoids thisproblem by ensuring that the structures describing a capability are only locked fora short time when a capability is being modi�ed. This ensures that processes onseparate processors sharing resources are not inhibited signi�cantly by the loadingand unloading of capabilities.

6.7. DESIGN ISSUES 141The expiring of page tables too rapidly introduces a signi�cant overhead to aprocess, however, reducing the rate causes an increase in the length of time therights conferred by a revoked capability persist. A balance between these competinginterests determines the rate at which page tables are replaced. Noting that the costof rebuilding page tables for a working set of pages is proportional to the numberof active pages within the tables makes a rapid rate of expiration attractive as itreduces the amount of work required for the rebuilding of a table. A period of theorder of a second is viable.6.7.3 MessagesThe message passing mechanism does not preserve the order of messages. In partic-ular, when messages are passed between a single sender and a single receiver thereis no guarantee that the messages will be received in the order sent. The propertyof preserving the order of messages is highly regarded by other system designers andis supported in systems such as the SP2 [SHFG95]. The presence of the propertyreduces the level of non-determinism present in parallel programs, enhancing thereproducibility of results.Although the issues of preserving the order of messages were considered, thecurrent design of the message passing mechanism makes no attempt to preservechronological order. The decision was made on pragmatic grounds, as to properlysupport order of delivery it is necessary to have synchronized clocks for each pro-cessor to provide a precise representation of a universal time across the system.The requirements for precise timing would restrict the type of hardware that couldbe employed in contradiction of the design principles. Furthermore, encouragingprogrammers to believe that the order of messages is strictly preserved could pro-mote unsafe programming practices in a multiprocessor system. Programmers mightattempt to exploit the property using a collection of processes resulting in an in-crease in non-determinism of the system rather than a decrease in non-deterministicbehavior.When a Walnut Kernel process sends a message the process remains blockeduntil either the message is delivered or it is determined that the message cannot be

142 CHAPTER 6. DESIGN OF THE WALNUT KERNELdelivered. Another potential implementation is to block the process only until themessage is queued for delivery to the other process. The alternative implementationis attractive as it allows a process to dispatch messages quickly and continue pro-cessing, however, it also has signi�cant disadvantages. Among the problems is thedesign issue of the correct sizing of the queues to contain undelivered messages andthe absence of a guarantee of delivery of a message. The current implementation doesnot su�er from the problems inherent to the alternative and although an individualprocess is delayed, other processes are able to use processor cycles while delivery istaking place. In addition, the Walnut Kernel implementation places greater controlof the message mechanism in the hands of the programmer, as the programmer isable to determine what action to take if a message is deemed to be undeliverable.In systems with a delivery bu�er shared by a number of processes it is possibleto create a deadlock by preventing the delivery of messages from a process to aprocess expecting that message. This potential is not present in the Walnut Kernelas each process has its own mail boxes. The ability to reserve mail boxes allowsthe programmer to guarantee the availability of a set of mail boxes for a given task.Control of the allocation of mail boxes gives the programmer greater control overmessage delivery allowing the programmer to manage resources to minimise or avoidthe risk of deadlock.6.7.4 Processes and SubprocessesThe original Capability Based Kernel did not support subprocesses and providedno mechanism for asynchronous event noti�cation. The Walnut Kernel introducedsubprocesses as a mechanism to allow asynchronous events to be handled by a pro-cess.Subprocesses consist of a thread of execution through the process's address space.The Walnut Kernel supports up to 250 subprocesses within a process. Subprocessesare pre-emptivelymultitaskedwith the exception that they share access to a commonparameter block and the subprocess claiming the parameter block excludes othersubprocesses of the process from executing until the parameter block is released.Facilities for dealing with asynchronous events were added to processes by allowing

6.7. DESIGN ISSUES 143subprocesses to receive messages and reserve mail boxes for their use. A messageconstitutes an event asynchronous to the process. Subprocesses are necessarily co-operative by nature as they share a single address and share a critical commonresource - the parameter block - and hence have no protection from each other.Processes may be adversarial in nature as they are immune from the e�ects of otherprocesses unless address space is shared or another process possesses capabilities tothe process or objects used by a process.Only a single subprocess of a process may be active at one time. The designdecision was driven by two considerations: ensuring compatible behavior betweenuniprocessor versions and multiprocessor versions, and avoiding splitting processdata structures over the local memories of more than one processor. By eliminatingmultitasking at the subprocess level processes have compatible behavior on bothsingle processor and multiprocessor systems. In NUMA machines, signi�cant per-formance losses could result from a processor executing a subprocess with non-localprocess data structures when increased load on the communication mechanisms oc-curs.The restriction on concurrent execution to processes encourages the use of sub-processes for their original function of supporting asynchronous events. The abilityof a process to control the level of the exposure to the actions of other processes -by explicitly sharing address space - makes processes superior to subprocesses formany co-operative tasks.6.7.5 Execute-Only CodeDuring the design process, it was observed that it would be desirable for the kernelto support the execute-only right found in the Monash Multiprocessor Project. Asthe primary target machine (Intel386) did not support execute right directly withinpage tables, the design option of introducing execute right by manipulating thepage tables was explored. Several mechanisms for synthesising execute only code onmachines with execute right implied by read right were proposed. The most timee�cient mechanism was:

144 CHAPTER 6. DESIGN OF THE WALNUT KERNELFor each execute-only object loaded into the process's address space,a new set of top level page tables and private page tables is created.These page tables have read right set for the execute-only capability. Allother entries in these page tables are set to invalid. The normal pagetables used by the process have the invalid bit set for entries relating toexecute-only objects.Upon entry to an execute-only object a page fault occurs. The faulthandler checks the Table of Loaded Capabilities and discovers that thefault location corresponds to an execute-only page. The fault handlersubstitutes the appropriate set of page tables for the normal set of pagetables.When an access is made outside the the execute-only area a pagefault occurs. If the access is made to a non-execute-only capability thenormal page tables are used, otherwise the appropriate set of page tablesfor the new execute-only capability are loaded.The mechanism is quite expensive as it incurs the cost of a page fault for bothentry to and exit from execute-only code and every memory access outside theexecute-only capability. In addition the mechanism adds a signi�cant number ofoverhead pages to a process using execute-only capabilities as it requires the presenceof a number of sets of page tables.The overheads required to provide execute-only code across a wide range ofplatforms were considered too high. Two motivations exist for the need for execute-only code. The �rst is the desire to hire out code to a user with the certainty thatthey cannot retain the use of the code after the hire period has ended. Unfortunately,the Walnut Kernel does not currently support a mechanism suitable for renting code,except by renting the services of a process which has access to that code. The secondmotivation is to hide a critical piece of information - typically a capability - within acode object. A new mechanism was introduced to provide an alternative solution tothe problem of hiding critical data - the SRMULTILOAD right. SRMULTILOADright allows capabilities to be derived which are only usable by a speci�c process,making dissemination of the capability unproductive.

6.7. DESIGN ISSUES 145A number of mechanisms have been considered for hiding the contents of anobject. One mechanism requires a new class of objects known as protected objects.Protected objects are unreadable until a system-call - enter - is made which causesa jump to a �xed location in the object. The object is then made readable. Afurther system-call - leave - is used to make the protected object unreadable andreturn to the caller. Protected object mechanism is only a partial solution as it doesnot provide adequate protection in a process with several subprocesses and it doesnot protect the calling subroutine from the code contained in the called subroutine.The mechanism can be enhanced by making all other protected objects containedin a process unreadable when an enter call is made. This prevents called routinesfrom spying on the caller. Further enhancement is required to deal with multiplesubprocesses. Pages must be made readable or unreadable depending on whichsubprocess is executing. This is undesirable as it requires a process to maintaininformation about the accessibility of the object represented by each entry in theTLC for each subprocess. At present no acceptable mechanism has been found.The prefered approach to making code widely available but unreadable is toencapsulate it in a Walnut Kernel process. Users wishing to employ the code canthen request its execution by sending the process a message including capabilitiesfor the data on which the code is to operate. Clearly, this approach is ine�cient forcode bodies with very short execution times, but these are unlikely to be candidatesfor hiring.6.7.6 HardwareThe minimum requirements for supporting the Walnut Kernel on a system are:� Support for paged virtual memory. This may be implemented using eitherpage tables or translation look-aside bu�ers. If page tables are supported thena two or more level page table is required and page table entries must be ofregular size and format having at least valid and dirty bits.� A timer interrupt. A regular source of interrupts is required to allow pre-emptive multitasking to function.

146 CHAPTER 6. DESIGN OF THE WALNUT KERNEL� Integers of at least 32 bits in size must be available.� Hardware support for atomic access to memory locations.� Access to a time source of at least second accuracy.� A privilege mechanism and a method for making system-calls.These requirements are met by a wide range of currently available microproces-sors from both the RISC and CISC design streams.The Walnut Kernel places minimal requirements on the contents of page tables.It requires only the presence of a dirty bit and a valid bit (of course). The use of theWalnut Kernel's own data structures combined with the minimal requirements on apage table entry, enhance the kernel's portability. However, this comes at the costof duplicating part of the data contained in the page tables. On systems with onlytranslation look-aside bu�ers, such as the R4000 [MIP91], no duplication occurs.6.8 System InitializationThe system initialization process is unique within the Walnut Kernel as althoughit is persistent (as are the other processes) it is restarted each time the kernel isstarted. The capability mechanism enhanced with the restrict operation allows userprocesses to manipulate the system memory with high security. The initializationprocess is run as an ordinary user process. The only special feature of the initial-ization process is that no other process can execute before the initialization processallows the process scheduler to start. It uses system-calls to derive relatively safe ca-pabilities for user level device drivers from a capability for the kernel address space.The initialization mechanism allows the existing derivation code to be employedminimizing the amount of specialised code for use only during initialization foundwithin the kernel.Currently the initialization process performs the following tasks:1. read the capability for the system memory from the wall (a page mapped intothe address space of all processes)

6.9. MONEY 1472. derive capabilities required by device drivers3. restrict the capability for the system memory4. remove the capability for the system memory from the wall5. start the process scheduler6. send messages to device drivers containing the required capabilitiesThe scheduler is enabled to schedule processes other than the initialization pro-cess by writing into an address in the kernel area of the systemmemory. By ensuringthat other processes are not scheduled before the initialization process has restrictedand removed the publicly readable version of the system capability, leakage of in-formation critical to the function of the system to malicious processes is prevented.The current system uses a constant for the value of the capability for the physicalobject. However, by having the initialization process read the value of the capabilityfrom the wall, a randomly selected set of passwords could be employed withoutchanges to the initialization process.6.9 MoneyThis section addresses the issues of rent collection and payment for kernel services.The mechanisms discussed have yet to be implemented in the experimental versionof the kernel.The rent collector periodically scans every process on the mounted volumes anddeducts rental proportional to the time since rent was last collected from the object.The rent collection mechanism allows for variations in the rate of operation of therent collector and for consistent charging in proportion to resource use for o�-linevolumes. Rent is collected from an object's store of money. Bankrupt objects aredeleted.The system-call interface incorporates a charge which is levied against the cashof the process making the call. Although it would be desirable to levy the processfor the amount of work required to complete the system-call, this would introduceuncertainty for the caller and complicate the collection process.

148 CHAPTER 6. DESIGN OF THE WALNUT KERNEL6.10 Process SchedulerThe Walnut Kernel's existing round-robin process scheduler is suitable for testingpurposes in an experimental implementation, but is inadequate for a productionsystem. In a mature system, a more sophisticated scheduler would be employed.This scheduler would use a round robin policy for a set of processes with currentwakeup times (the process is scheduled to wake up at or before the current time).A set of lists of processes with access times in the future would be maintained. Thelists would contain processes scheduled for wakeup within a time period. Periodicallyeach list would be examined and elements would be migrated to appropriate lists orthe current queue. Figure 6.17 illustrates the proposed scheme.
Scheduler6� �� �EXEC Stage n QueueStage 2 Queuet1 � wakeup < t2Scan Rate = 1 sec Scan Rate = t1 sec Scan Rate = tn�1 sectn�1 � wakeup <1Stage 1 Queuewakeup < t1wakeup = 0Round Robin Figure 6.17: Proposed Scheduling SchemeIt is intended that this scheme will be implemented in two parts. The �rst willconsist of the existing round robin scheduler within the kernel but enhanced so thatthe interface to the queue will be accessible to user processes holding an appropriatecapability. The second part will be one or more user level processes which willmaintain the lists of processes, and move processes into the mix.The proposed mechanism allows process scheduling to be conducted at the userlevel. User level scheduling o�ers the possibility of exploring alternative near termand long term scheduling schemes, and simpli�es the kernel. Short term schedulingis retained in the kernel for the purposes of e�ciency, to eliminate the need tocommunicate with a user process on each process swap.The current implementation of the process scheduler is clearly inadequate for a

6.10. PROCESS SCHEDULER 149production system. The highly restrictive limits it places on the number of processesis inappropriate for a persistent based system. However, the implementation allowedthe system to be assembled and tested quickly.The proposed scheduler addresses the de�ciencies of the current implementation.

150 CHAPTER 6. DESIGN OF THE WALNUT KERNEL

Chapter 7ImplementationAt present there are two implementations of the Walnut Kernel. The �rst of theseruns under both UNIX and MS-DOS1. This version simulates the hardware sup-porting the kernel. The second version runs on IBM-PCs using Intel386 and i486processors based on an ISA bus architecture. This chapter describes the two imple-mentations and the mechanisms used to load user programs onto a native system.7.1 The Standalone ImplementationThe Standalone version of the Walnut Kernel emulates aspects of the underlyinghardware and executes above a host operating system. Its name has been the subjectof debate and is sometimes considered a misnomer. It was named the Standaloneversion early in the development to imply that it did not require the support codeused in a native version. The name is somewhat misleading as the Standaloneversion is dependent on the host operating system for persistent storage, memoryand IO. This version does not support the execution of compiled programs. Instead,a special type of process known as drive processes are executed.Drive processes are interpreters for a simple language that allows the contents ofthe parameter block to be speci�ed and system calls to be invoked. The language hasconstructs that allow for iteration and alternation providing a language su�cientlypowerful for testing all the higher level functions of the kernel.1MS-DOS is a trademark of Microsoft Corporation151

152 CHAPTER 7. IMPLEMENTATIONThis version of the kernel shares all the architecture independent code of the ker-nel with the exception of the process scheduler which has been modi�ed to supportthe operation of drive processes and the system call mechanism. The scheduler, inthe standalone version, is a loop which selects the next process to run, sets up theparameter block, and invokes the drive process interpreter. When the drive processreturns, the `program counter' - position in the drive process program - is stored andthe loop is repeated. The drive process does not access the system call mechanism,instead it calls the routines that the system call mechanism would use directly.The system memory controlled by the Walnut Kernel is simulated by allocatinga large block of memory when the kernel is started. This is then divided up bythe support routines before the scheduler is invoked. Accesses to memory by thedrive process are simulated by having the drive process call a subroutine whichaccesses the page tables constructed by the kernel in the simulated memory. Theseroutines emulate the activities of access which result in page faults as well as ordinaryaccesses.A single volume is simulated by the supporting software. It is represented asa memory array. This volume can be loaded from or stored to disk. The user isprompted for a �le, when the kernel starts, from which to read the disk image andhas the option of specifying a �le name for storing the image when the system isshutdown. The disk images are accurate representations of the data stored in diskblocks on a native system. These images are used as one of the mechanisms forloading programs into a native system (see section 7.3).The Standalone system was invaluable in the development of the Walnut Kernelas it permitted the development of the kernel in an environment where debuggingfacilities where available. Activities of the kernel could be logged to �les and re-peatable test scripts could be run. Early in the development of the i486 versionseveral signi�cant di�culties occurred: triple faults could occur which resulted in areboot; timing problems resulted in subtle, di�cult to repeat errors; and there wasno permanent store available for logging. The Standalone version provided both amechanism to build disk images used to initialize the native system, and a testingground that allowed the high level routines to be exercised in a friendly environment

7.2. I486 IMPLEMENTATION 153before attempting to use them in a native system.The Standalone version of the kernel has been used in the following environments:� 80386 based PC running DOS� 80486 based PC running OS/2� 80486 based PC running FreeBSD� R3000 based workstation running Ultrix� R4000 based workstation running Irix7.2 i486 ImplementationThe current implementation of the Walnut Kernel runs on Intel386 and i486 basedpersonal computers. The kernel makes direct use of the system hardware, requiringonly the boot sector loader and initialization code contained in the PC BIOS.Use of an existing operating system as a host allows the implementor to use thework of the designers of the host operating system. However, the price is a loss ofexibility, and the additional overhead of accessing the host operating system. Forthese reasons the kernel was made to rely only on the system hardware for support.The option of using MS-DOS as a host was rejected. In addition, only the loadingand initialization services provided by the BIOS were used as the standard PC BIOSroutines are written to operate in the processor's real mode (16-bit mode) only.The i486 supports a number of architectural features which may be exploited atthe operating system level[Int90, CG87]. These features include:Segments - Variable length segments are provided as the primary mechanism formemory protection. This mechanism enables checking of segment type (read-able, writable, and executable), segment limits, and segment privilege levels.Paging - Two level page tables with user/supervisor and read/write bits are sup-ported. Translation lookaside bu�ers are loaded automatically by the processorusing the contents of the page tables.

154 CHAPTER 7. IMPLEMENTATIONMultiple Privilege Levels - Two distinct privilege mechanisms are present: a 4level segment based mechanism and a 2 level page based mechanism.Tasks - A task data structure is required by the processor. This data structure con-tains the values of registers for a task at each of the privilege levels supportedby the processor.I/O space - Access to the I/O memory space of the processor can be controlled ona segment based privilege level basis or on a per task basis using a map whichallows access to I/O addresses selectively.The current system uses Intel's `Flat Model' of memorymanagement. Under thismodel, segments are present in a minimal capacity, and cover the complete addressspace of the processor. The paging mechanism is used to provide protection and alarge virtual address space. This decision conforms to the requirements of section6.1.1 where only features available on a wide class of processors are exploited bythe Walnut Kernel. A two level privilege scheme is the most general mechanism forproviding the necessary protection for the kernel. This mechanism was adopted inthe interests of portability.The task mechanism and its associated I/O address space access managementallowed the Walnut Kernel to have user level processes with the ability to operateas low level device drivers. A scheme was adopted using a single task with multipleuser processes and a single kernel shared by the user processes. The current schemehas the advantages of greater portability o�ering similar levels of support to thosefound on RISC processors. It also avoids the need for the kernel to manage multipletask state segments.I/O address space access was limited to the kernel to force low level drivers intothe kernel. User level low level drivers have the apparent `advantages' of being mod-i�able during the operation of the system and having the same facilities availableas user level programs. User level drivers can complicate the support of user pro-cesses as they place new and signi�cant demands on the kernel. The ability to allowselective access to hardware facilities is required for user level drivers. In systemswith memory mapped I/O this is clearly compatible with the concept of capabil-

7.3. LOADING PROGRAMS INTO THE WALNUT KERNEL 155ities. Supporting systems with a separate I/O address space requires additionalcomplexity to be added to the capability model. This is because there is no longera single uniform resource consisting of memory to be managed, but two distinctresources, memory and I/O address space to be managed. The user level driverapproach is further complicated by the need to ensure that drivers have adequateaccess to physical memory and execution time. Lack of either of these resourcescould result in a deterioration of system performance. By placing device interrupthandlers into the kernel, it is possible to make the kernel responsible for the correctoperation of the system. This allows the kernel to ensure that accesses to hardwaredo not place the system into an unstable state. Moving low level drivers into thekernel allows scheduling and resource issues to be handled easily. As a result of theseconsiderations, the Walnut Kernel implements device interrupt handlers within thekernel.The kernel does not use many of the special features of the Intel386 and i486 toensure a simple migration path from the initial implementation to generic hardware.i486 implementation currently has low level device drivers for RS232 serial ports,Centronics parallel ports, keyboard, and color and monochrome text based displays.The circular bu�ers used to access these devices are held in the �rst 16 pages ofmemory. Access to volumes (block oriented devices) is provided by a low leveldevice driver which supports ST506 and IDE based hard disks. A oppy disk driveris provided for reading programs from DOS formatted disks.7.3 Loading Programs into the Walnut KernelThere are three mechanisms currently available for loading executable programs intothe Walnut Kernel:� Using a serial port under the control of a drive process.� Adding a program to the collection of objects written to the boot drive whenthe system is initialised.� Using Shell (see section 9.6) to read the program from a DOS formatted oppydisk.

156 CHAPTER 7. IMPLEMENTATIONThe Walnut Kernel expects executable programs to consist of two parts. The�rst part is the `text' component (the instructions to be executed), and the secondpart is the `data' component (static data, global variables, etc). Constants can beplaced in either part. Two objects are used so that the program data can be copiedand hence used for each each process without interference, and the program codecan be shared. Programs are currently compiled under gcc and linked with ld. Aprogram reads the resulting a.out �le and produces a text and a data �le. These arethen transfered to the Walnut Kernel using one of the techniques described below.The i486 version of the Walnut Kernel currently supports drive processes. Theseare used as a debugging aid and for testing purposes. The two serial ports providedin the current version are used to provide a console - operating on a glass tty - forthe drive processes, and a serial IO stream used for transferring data. A primitivecommunication protocol is used on the serial connection to drive a program runningunder DOS. The program reads disk �les and transfers them through the serialconnection. Although this mechanism is still present in the kernel, it is no longerused. The simple protocol was prone to failures caused by the loss of synchronizationbetween the sender and receiver; at the time the inconvenience caused by this was notsu�cient to warrant the additional e�ort required to improve the protocol. Othermechanisms have been implemented which are faster and more reliable.When a bootable system is being created, the initialization process and the datait operates on must be transfered to the system. These objects must be presentbefore the system is started to ensure that they are placed in standard locations andhence can be found by both the kernel and the initialization process. To performthis task, the standalone version of the kernel is employed, to load the objects in aprescribed order and create a disk image �le. The volume and serial numbers areknown for each object created by the standalone version because: the size of eachobject is known, the order of loading is speci�ed, the algorithm for allocating diskblocks is known and no objects are removed. Furthermore, the series of instructionsused by the standalone version to load the object from disk includes instructionsto store the master capability of the objects loaded in an object on the disk. Thisobject is read by the initialization process on startup and then deleted. Other user

7.3. LOADING PROGRAMS INTO THE WALNUT KERNEL 157programs can be added by having the standalone version load their code and dataobjects. The master capability for the objects created can be displayed using a driveprocess. The �nal disk image �le produced by the standalone version is read by oneof the install programs, and the blocks are copied to the install disk.A facility to read �les from DOS formated oppy disks and make objects underthe i486 version of the kernel was introduced into the shell. This mechanism uses theoppy disk manager to access the oppy disk at the sector level. Shell has functionswhich allow it to read �les from disk and read the disks directory.

158 CHAPTER 7. IMPLEMENTATION

Chapter 8PerformanceThis chapter details a number of performance measurements carried out on theWalnut Kernel. The method of the experiments and the conditions under whichthey were conducted are discussed. In addition, the performance of a conventionalUNIX operating system, operating on similar hardware, is provided to permit somecomparison to be made between the Walnut Kernel and a conventional operatingsystem. The tests conducted under UNIX approximated the functions of the WalnutKernel. However, signi�cant di�erences in design between UNIX and the WalnutKernel, prevent a close comparison of the performance of the two systems.8.1 Test Environment8.1.1 SoftwareThe tests were conducted on a version of the Walnut Kernel which did not containthe kernel debugger but retained diagnostic code. This version of the kernel had notbeen optimised for performance.The tests on UNIX were run on a FreeBSD1 V1.1R operating system [Wal94].This version of UNIX is a derivative of the University of California Berkeley's Net-working Release 2 of 4.3BSD.Note that the Walnut Kernel was compiled without optimisation, whereas the1The FreeBSD CDROM is a trademark of Walnut Creek CDROM159

160 CHAPTER 8. PERFORMANCEUNIX kernel was highly optimised.8.1.2 HardwareThe test machines were as close to identical as possible in that they used mother-boards, peripherals and interface cards sourced from the same manufacturer. Thecritical parameters of the test machines were speci�ed as follows:Intel 486DX 33MHz8 Mb RAMCaviar 2120 HDDBoth the 80486DX's internal cache and the external 128k cache were disabled forthe tests. The caches were disabled to make the initial conditions of all experimentsas similar as possible. In addition, because of the wide variety of external cachesavailable for the i486 and the di�culty in determining the type of cache in usefrom system speci�cations, disabling the external cache would tend to improve therepeatability of results when the experiments are performed on similarly speci�edhardware.There is no apparent reason to suggest that the memory reference patterns ofthe Walnut Kernel would be less favorable for caching than UNIX.8.2 TimingThe test programs on the Walnut Kernel had access to a 32 bit counter that isdriven by a 1.19318 MHz frequency source. This counter was derived from channel0 of the system's Programmable Interval Timer [SC90, Mac84, Tri92, Nor85]. Highresolution timing - The resolution of the timer is �840nS - is achieved by pollingthe Programmable Interval Timer's counters [Rod92].The 8254-2 Programmable Interval Timer supports 3 channels. Although severalmodes of operation are supported by each of the 8254-2's channels, only the squarewave generator mode is relevant to the implementation of high resolution timer.When con�gured as a square wave generator, a channel provides a 16-bit counterwhich is driven by the 1.19318 MHz frequency source. The 16-bit counter is loaded

8.2. TIMING 161with the reload value, and the counter proceeds to count downwards by two. Eachtime the counter reaches zero, the output bit of the channel is inverted and thecounter is reloaded with the reload value. The output bit of a channel in this mode,with an even reload value, generates a square wave with a 50% duty cycle.
Cascade1.19318MHz

8254-2 - Programmable Interval Timer8259A - Programmable Interrupt Controller
DRAMrefreshcircuit 8259A

IRQ8
IRQ15IRQ14IRQ13IRQ12IRQ11IRQ10IRQ98259A
IRQ0
IRQ7IRQ6IRQ5IRQ4IRQ3IRQ2IRQ1 ProcessorPinInterrupt

8254-2
Reload 0Cnt 0Reload 1Cnt 1Reload 2Cnt 2
Figure 8.1: Timer and Interrupt Hardware in the IBM-PC/ATIn the IBM-PC/AT architecture (see �gure 8.1): channel 0 is used to providetimer interrupts; channel 1 is used to provide memory refresh cycles, and channel 2is used as a tone generator for driving the system speaker. Channel 0's output bitdrives interrupt request line 0 (IRQ0) which is connected to the interrupt controller.

162 CHAPTER 8. PERFORMANCEThe interrupt controller generates a timer interrupt2 on each positive transition ofIRQ0.As the 16-bit counter provided by the 8254-2 is decremented by twos, the leastsigni�cant bit of the timer's counter provides no useful information. A 16-bit counteris synthesised by extracting the 15 useful bits from the timer's counter and usingthe timer's output bit to provide the most signi�cant bit of the synthesised countervalue.The process scheduler is entered whenever a timer interrupt occurs or a processsurrenders its time-slice. The process scheduler determines the number of countsthat have elapsed between the current access to the timer and the last access, andadds this to a 32 bit counter that is visible to programs. This guarantees thatwhenever a process's code is entered the current value of the 32 bit counter isaccessible.The microsecond timing provided by FreeBSD is derived from the channel 0timer of the Programmable Interval Timer using a method similar to that describedabove. The gettimeofday() library function is used to access the time.8.3 Walnut KernelThree programs were written to test the performance of the Walnut Kernel. Theprograms contained several tests. Each test consisted of 100 repetitions of a set ofsystem calls. The results of the tests were written into an object created by the testprogram.A 25 second delay was built into the test program to allow the drive-type3 processto be used to freeze any other processes present on the system and to allow time forthe system to settle after performing this task.2Timer interrupts are known as ticks3Drive processes are processes which execute a simple command interpreter built into thekernel. Drive processes are intended only to be used in the development phase of the WalnutKernel and will be removed from other versions of the kernel

8.3. WALNUT KERNEL 1638.3.1 Program 1This program tested the performance of communication related system calls. Specif-ically it tested the speed of the following system calls:� external send� send� receive� load capability� unload capabilityTest 1 and Test 2These tests measured both the time taken to execute an external send system call andthe total time taken to complete the transfer from the beginning of the �rst attemptuntil the end of the successful attempt. In both tests no money was transferredbetween the sender and the receiver. Test 1 had a message of zero length and Test2 had a message of 64 bytes length.Test 3 and Test 4These tests measured both the time taken to execute a send system call and the totaltime taken to complete the transfer from the beginning of the �rst attempt until theend of the successful attempt. The target process was loaded into a large windowof the test process and identi�ed by o�set. In both tests no money was transferredbetween the sender and the receiver. Test 3 had a message of zero length and Test4 had a message of 64 bytes length.Test 5 and Test 6These tests measured both the time taken to execute an external send system calland the total time taken to complete the transfer from the beginning of the �rstattempt until the end of the successful attempt. A wait of one second was introduced

164 CHAPTER 8. PERFORMANCEbetween each repetition of the test to ensure that the target process had an emptymailbox available to receive the message. In both tests no money was transferredbetween the sender and the receiver. Test 5 had a message of zero length and Test6 had a message of 64 bytes length.Test 7 and Test 8These tests measured both the time taken to execute a send system call and the totaltime taken to complete the transfer from the beginning of the �rst attempt until theend of the successful attempt. The target process was loaded into a large windowof the test process and identi�ed by o�set. A wait of one second was introducedbetween each repetition of the test to ensure that the target process had an emptymailbox available to receive the message. In both tests no money was transferredbetween the sender and the receiver. Test 7 had a message of zero length and Test8 had a message of 64 bytes length.Test 9 and Test 10This test measured both the total time taken to transfer a message and the timetaken to execute a receive system call. The transfer time is calculated from thebeginning of the �rst attempt to perform a send to the time at which the contentsof the message is made accessible by a successful receive call. A message of 4 byteslength and with no money was sent. A wait of one second was introduced betweeneach repetition of the test to ensure that the target process had an empty mailboxavailable to receive the message.Test 9 used an external send system call to perform the transfer. Test 10 useda send system call to a process loaded into a large window.Test 11 and Test 12These tests measured both the time taken to load and the time taken to unload anobject from a window of the test process's address space. Test 11 used a largewindow and Test 12 used a small window.

8.3. WALNUT KERNEL 1658.3.2 ResultsThe following table summarises the raw results for each experiment. The measure-ments are in microseconds.Messages High Low Average MedianExp 1 - 0 byte transferK EXTSEND 782.78 458.44 482.55 477.72Total time 5558.26 471.85 755.38 489.45Exp 2 - 64 byte transferK EXTSEND 812.95 460.11 496.79 496.99Total time 3286.18 492.80 752.45 500.34Exp 3 - 0 byte transferK SEND 880.84 585.83 610.72 605.94Total time 3095.93 600.92 913.76 613.49Exp 4 - 64 byte transferK SEND 882.52 584.99 622.11 624.38Total time 2567.93 620.19 919.03 628.57Exp 5 - 0 byte transferK EXTSEND 511.24 497.83 504.71 505.37Total time 511.24 497.83 504.71 505.37Exp 6 - 64 byte transferK EXTSEND 533.03 517.11 525.89 526.32Total time 533.03 517.11 525.89 526.32Exp 7 - 0 byte transferK SEND 993.14 616.84 742.84 626.06Total time 993.14 616.84 742.84 626.06Exp 8 - 64 byte transferK SEND 1013.26 636.12 762.22 645.33Total time 1013.26 636.12 762.22 645.33Exp 9 - 4 byte transferExt. Trans 813.79 794.52 805.00 805.41K RECV 301.71 298.36 299.84 300.04Exp 10 - 4 byte transferSend Trans 1294.86 888.38 1025.80 899.28K RECV 306.74 273.22 284.51 274.90

166 CHAPTER 8. PERFORMANCEAddress Space Management High Low Average MedianExp 11Load Large 3118.56 740.88 779.63 755.96Unload Large 885.03 621.03 631.12 626.06Exp 12Load Small 995.66 690.59 711.31 706.52Unload Small 652.88 633.60 641.66 638.638.3.3 Program 2This program tested the speed of system calls which manipulate objects. The fol-lowing system calls were tested:� Make Object� Bank� Destroy CapabilityTest 1 to 4This test measured the time required to execute amake object system call, to performa deposit and a withdrawal on that object using the bank system call, and to destroythe object using a delete capability system call with the master capability of theobject. There was a 1 second delay between repetitions of this test.Test 1 generated objects of a single page in size. Test 2 made a 2 page objects,Test 3 made 4 page objects and Test 4 was applied to 8 page objects.8.3.4 ResultsThe following table presents the raw results for each experiment. The measurementsare in microseconds.

8.3. WALNUT KERNEL 167Object Management High Low Average MedianExp 1 - 1 page objectK MAKEOBJ 800.38 613.49 710.73 708.19Deposit 515.43 489.45 502.35 502.02Withdraw 374.63 348.65 359.49 356.19K DEL 341.11 319.31 330.78 329.37Exp 2 - 2 page objectK MAKEOBJ 903.47 673.83 795.79 810.44Deposit 515.43 489.45 503.70 503.70Withdraw 373.79 349.49 360.45 362.06K DEL 341.94 319.31 330.44 329.37Exp 3 - 4 page objectK MAKEOBJ 1002.36 611.81 870.35 911.85Deposit 520.46 493.64 504.54 502.86Withdraw 373.79 349.49 360.41 358.71K DEL 342.78 319.31 330.24 328.53Exp 4 - 16 page objectK MAKEOBJ 2053.34 709.87 960.45 999.01Deposit 531.35 494.48 508.59 509.56Withdraw 372.95 347.81 361.32 364.57K DEL 348.65 320.15 330.47 331.898.3.5 Program 3This program tested the performance of process related system calls. Speci�cally ittested the speed of the following system calls:� make process� bank� unload capability� delete capabilityTest 1This test measured the times required to execute a make process system call, toperform a withdrawal on that process's object using the bank system call, to unloadthe new process from the test process's address space, and to destroy the process

168 CHAPTER 8. PERFORMANCEusing a delete capability system call with the master capability of the process. Therewas a 2 second delay between repetitions of this test.8.3.6 ResultsThe raw results for each experiment are in the following table. The measurementsare in microseconds.Process Management High Low Average MedianExp 1K MAKEPROC 104149.42 74981.98 76018.40 75020.53Withdraw 377.98 354.51 367.82 367.92K UNLOADCAP 641.98 623.54 632.44 632.76K DEL 346.13 323.51 336.53 336.918.4 UNIXTwo programs were written to perform measurements under UNIX. The �rst pro-gram contained several separate tests. The second program contained a single testroutine. Each test consisted of 100 repetitions of a set of library calls. The resultsof the tests were written into a number �les created by the test program.The programs were run on a FreeBSD system which had just been rebooted andhad only a single interactive session operating on it. This session was used to runthe two test programs.8.4.1 Program 1This program evaluated the times taken to perform interprocess communicationtasks, �le system tasks and memory allocation tasks.Test 1 and Test 2These tests used two processes connected by a pipe to test the time required tosend and receive messages. After creating a pipe, the test process created a childprocess through the use of a fork system call. The child sent messages to the parent

8.4. UNIX 169process through the pipe. The times spent in the write and read library functionswere recorded. Both the write and read calls were operated in non-blocking mode.Test 1 had a message of zero length and Test 2 had a message of 64 byteslength.Test 3 and Test 4These tests used two processes connected by a pipe to test the times required tosend and receive messages. After creating a pipe, the test process, created a childprocess through the use of a fork system call. The child sent messages to the parentprocess through the pipe. The times spent in the write and read library functionswere recorded. A one second delay between attempts to transmit a message wasintroduced. Both the write and read calls were operated in non-blocking mode.Test 3 had a message of zero length and Test 4 had a message of 64 byteslength.Test 5This tests used two processes connected by a pipe to test the time required to sendand receive messages. After creating a pipe, the test process, created a child processthrough the use of a fork system call. The child sent messages to the parent processthrough the pipe. The time taken from entering the write library function to exitingthe read library function was recorded. A one second delay between attempts totransmit a message was applied. Both the write and read calls were operated inblocking mode.Test 6 and Test 7Test 6 measured the time required to create a zero length �le using fopen and thetime required to destroy the �le using unlink.Test 7 measured the time required to open an existing �le using fopen and thetime required to close the �le using fclose.

170 CHAPTER 8. PERFORMANCETests 8 to 15Tests 8 to 11 measured the time required by malloc to allocate space and freeto release the allocated space. The tests allocated 1, 2, 4, and 16 pages of spacerespectively.Tests 12 to 15 measured the time required by calloc to allocate space and freeto release the allocated space. The tests allocated 1, 2, 4, and 16 pages of spacerespectively.8.4.2 ResultsThe following tables show the raw results for each experiment. The measurementsare in microseconds.Inter-Process CommunicationHigh Low Average MedianExp 1 - 0 bytesread 93156 296 1235.21 297write 1385 569 592.35 572Exp 2 - 64 bytesread 1054 296 495.17 645write 15902 569 877.45 677Exp 3 - 0 bytesread 816 296 313.80 297write 16528 580 740.60 581Exp 4 - 64 bytesread 4740 519 1403.62 521write 15952 566 722.30 568Exp 5 - 8 bytestransfer 16958 999 1162.52 1003write 24047 1750 2074.98 1815File Management High Low Average MedianExp 6 - Create Filefopen 15146 14497 14693.86 14654unlink 26102 23076 23719.08 23732Exp 7 - Open Existing Filefopen 1410 874 911.27 877fclose 1208 463 482.72 465

8.4. UNIX 171Memory Management High Low Average MedianExp 8 - 1 pagemalloc 2985 1178 1244.34 1187free 616 140 149.74 142Exp 9 - 2 pagesmalloc 1923 1196 1255.79 1205free 378 140 146.62 142Exp 10 - 4 pagesmalloc 2864 2043 2307.17 2296free 691 140 151.66 142Exp 11 - 16 pagesmalloc 108099 2457 3806.77 2731free 396 140 146.83 142Exp 12 - 1 pagecalloc 64795 1020 1710.56 1028free 587 140 145.47 141Exp 13 - 2 pagecalloc 180489 1870 5304.91 1881free 867 139 150.68 141Exp 14 - 4 pagecalloc 4046519 3575 63252.07 3610free 866 140 148.58 141Exp 15 - 16 pagecalloc 3134522 16196 336518.51 102325free 65845 141 8146.38 1438.4.3 Program 2This program evaluated the times taken to create a new process.Test 1This test used a fork library call to generate a child process which performed anexit. The time required by the parent process to perform the fork was measured.8.4.4 ResultsThe following tables list a summary of the raw results for each experiment. Themeasurements are in microseconds.

172 CHAPTER 8. PERFORMANCEProcess Management High Low Average MedianExp 1fork 47191 11294 14263.85 113318.5 ObservationsMaking direct comparisons between the Walnut Kernel and FreeBSD is di�cultas the two architectures support di�erent paradigms and operations. The WalnutKernel's memory object paradigm is not reproduced in UNIX. Operations on objectshave some of the characteristics of operations on �les - persistence - and othercharacteristics best modeled by UNIX's memory management libraries. A majordi�erence, in operation, between the two systems was the method of acquiring thecurrent time. Under FreeBSD a system call was required to get the current timewhereas under the Walnut Kernel the current time was available as a by-productof any system call. The use of intrusive measurement on UNIX and non-intrusivemeasurement on the Walnut Kernel made the duplication of some of the behaviorsof the test programs impractical. As a result, only broad comparisons can be madebetween the systems.8.5.1 Walnut Kernel BehaviorEvery 10 seconds a process is required to rebuild its private and top level page tablesand the process also invalidates all its windows. When the process next accesses amemory location the capabilities for that window is revalidated. Introducing a delaybetween tests reduces the number of operations per second and increases the e�ectof these overheads per operation performed.8.5.2 Messages & IPCAn unexpected feature of the measurements of the Walnut Kernel's message deliverysystem was that K EXTSEND performed better than K SEND. This raises the pos-sibility of improving the message transfer performance of the system by optimisingK SEND. The transfer of data to a process which is already loaded into the sender's

8.5. OBSERVATIONS 173address space should require fewer checks on the accessibility and validity of thetarget process. In addition, the transfer of data should be simpli�ed as the targetpage is loaded into the processes address space.
0100200300400500600700800

U Exp 3 U Exp 4 WK Exp 5 WK Exp 6uS Write / External Send Performance HighAverageMedianLow
Figure 8.2: Comparison of External Send to Write OperationsFigure 8.2 compares the K SEND and write times for the two systems. Themessage transfer performance of the two systems is similar. The graph indicatesthat the performance of the external send operation is typically faster than that ofthe write operation, and that the worst cases encountered for the Walnut Kernelwere signi�cantly better than those encountered by FreeBSD.Figure 8.3 compares the time taken to complete a transfer of data between twoprocesses. The Walnut Kernel performs signi�cantly better than FreeBSD in thistest. The worst case performance of IPC using pipes under UNIX is signi�cantlyworse than for the equivalent operation under the Walnut Kernel.8.5.3 Address Space Management & File ManagementThe typical performance of fopen and load capability operations to be similar. asshown in �gure 8.4. However, the worst case performance of the Walnut Kernel loadcapability large operation is approximately twice the cost of the worst case of fopen.

174 CHAPTER 8. PERFORMANCE
02004006008001000

U Exp 5 WK Exp 9uS Transfer Performance HighAverageMedianLow
Figure 8.3: Comparison of Transfer Time Between Two ProcessesAlthough the typical speed of performing an unload operation is about 30% largerthan that of fclose, the worst case performance of the Walnut Kernel is better thanUNIX.8.5.4 Object Management & File ManagementThe creation of objects under the Walnut Kernel is approximately equivalent to thecreation of �les under UNIX as objects and �les represent the units of persistentstorage found in the two systems. Figure 8.5 compares the performance of the twosystems in this area.Although the time required by the Walnut Kernel to create an object is depen-dent on the size of the object and the initial number of capabilities required, objectcreation time seems to be signi�cantly faster than �le creation time under FreeBSD.The destruction of objects is approximately equivalent to the deletion of �lesunder UNIX, as both destroy items in the persistent store. In �gure 8.6 the WalnutKernel is shown to perform better in terms of returning more quickly than FreeBSD.However, it should be noted that although this prevents new Walnut Kernel pro-cesses loading the object immediately, processes which currently have the object

8.5. OBSERVATIONS 175
050010001500200025003000

U Exp 7 WK Exp 11 WK Exp 12uS Fopen / Load Performance HighAverageMedianLow

020040060080010001200
U Exp 7 WK Exp 11 WK Exp 12uS Fclose / Unload Performance HighAverageMedianLow

Figure 8.4: Comparison of File Operation Times to Object Operation Times

176 CHAPTER 8. PERFORMANCE
02000400060008000100001200014000

U Exp 6 WK Exp 1 WK Exp 2 WK Exp 3 WK Exp 4uS File Creation / Object Creation PerformanceHighAverageMedianLow
Figure 8.5: Comparison of File Creation Time to Object Creation Timeloaded will retain access for 3 seconds.8.5.5 Process ManagementThe fork operation to the make process operation are compared for purposes ofcompleteness. The comparison yields little useful information as the result of a forkis to produce a copy of an existing process, whereas the make process operationproduces a new process. The closest approximation of the Walnut Kernel's makeprocess o�ered by UNIX is a fork followed by an exec. Unfortunately as the execsystem call does not return, it is not possible to measure the speed of that systemcall using user level programs. Figure 8.7 compares the two operations.8.6 ConclusionWhere operations were comparable, the Walnut Kernel performed as well or betterthan the competing FreeBSD system. The Walnut Kernel's poorest performance,when compared to UNIX, was in the generation of new processes. However, thiscomparison is of limited signi�cance: as the Walnut Kernel generates a new process

8.6. CONCLUSION 177
05000100001500020000

U Exp 6 WK Exp 1 WK Exp 2 WK Exp 3 WK Exp 4uS File Deletion / Object Destruction PerformanceHighAverageMedianLow
Figure 8.6: Comparison of File Deletion Time to Object Destruction Time

010000200003000040000500006000070000
U Exp 1WK Exp 1uS Make Process / Fork Performance HighAverageMedianLow

Figure 8.7: Comparison of Fork to Make Process Time

178 CHAPTER 8. PERFORMANCEwith di�ering contents (the equivalent of a fork followed by an exec under UNIX);and because UNIX returns as soon as it is clear that there are adequate resourcesfor the new process to be created unlike the Walnut Kernel which returns as soonas the new process is ready to execute.

Chapter 9User Level ProgramsThis chapter1 describes programming techniques used for application programs andapplications that have been written to operate under the Walnut Kernel. Theseapplications have allowed programmers to explore the possibilities o�ered by acapability-based operating system and provided feedback to the operating systemdesigners. This feedback has resulted in changes to the design of the kernel.Four programs are described:� Initproc - the initialization process� Glui - a screen multiplexor� Shell - a user shell� Wyrm - an arcade style gameInitproc is responsible for deriving capabilities used by processes which manageaccess to devices. Shell and Glui form a user level interface which allows access tothe functions of the kernel and to objects within the system. The game Wyrm is anexample of a highly interactive application which demands fast response times fromthe system and is IO bound.Program structures and data structures used in the applications are describedin section 9.1. Section 9.3 describes enhancements to the Walnut Kernel's process1The majority of the material contained in this chapter is reproduced from [CPW95].179

180 CHAPTER 9. USER LEVEL PROGRAMSstructure to assist the implementation of shared libraries. Sections 9.4 to 9.7 discussthe application programs.9.1 StructuresThis section describes a number of common structures found in programs operatingunder the Walnut Kernel. It addresses both organization of programs and datastructures.9.1.1 Program StructuresWalnut Kernel programs are similar to programs which are implemented underGUIs in that both types of programs respond to external events. GUIs providetwo constructs for handling events:Message Loops are a loop which contains a call to a function that accepts anevent from a queue of events, and then calls a function to handle the event.Callback Functions are registered with the user interface and are invoked with aset of parameters when an event occurs. Callback functions are used to handleasynchronous events.The Walnut Kernel supports constructs which perform similar tasks, but are imple-mented di�erently.while truebeginwait(-1)receive(msg)server function(msg)end Figure 9.1: Pseudocode for a Message LoopThe Walnut Kernel typically handles messages by using a message loop (see�gure 9.1). This simple construct places the process (or subprocess) into a sleep

9.1. STRUCTURES 181state until a message arrives, receives a message, handles the message, and returnsthe process to a sleeping state. As a process cannot sleep when there are messageswaiting for it, the message loop can handle multiple messages without the need totest for the presence of a message before going to sleep.Asynchronous events which would be handled with a call back function under aGUI are implemented through the use of subprocesses. A subprocess is a thread ofcontrol within a process to which a message can be speci�cally addressed. Whena message arrives for a subprocess, the subprocess is made executable. Typically amessage loop is used to receive and handle the message before putting the subprocessback to sleep.9.1.2 Data StructuresPersistence, sharing and relocation shape the types of data structures in commonuse under the Walnut Kernel.File oriented operations are typically performed on a stream of data, convertingthe contents of an input stream to an output stream. Persistent data structuresdo not require conversion to and from a secondary storage format, eliminating thestream orientation imposed by the �le mechanism. In addition, programmers areable to perform random access operations on input and output data structureswithout the overheads that would be present on a stream oriented system. Theabsence of these constraints provides a new degree of freedom in the design of datastructures.A hash table is an example of a data structure that bene�ts from a persistentimplementation. On a persistent system the hash table is stored in a directly usableform. This can be contrasted with a �le oriented system which has the choice ofextracting the data from the table and storing it in a linear form, or storing thetable as a block of memory dumped to disk. The former requires either a complextransform on the data to recover it in the correct order for storage, or an additionaldata structure that keeps track of the order in which data should be stored. Thelatter approach requires the table to be read at the beginning of the program andwritten at the end of the program, introducing a signi�cant IO overhead.

182 CHAPTER 9. USER LEVEL PROGRAMSThe easy sharing of data requires programmers to be aware of synchronization,access control, and locking issues. Currently systems programmers work in an envi-ronment where sharing considerations are important. Application programmers needto become aware of the issues and techniques for managing shared data. Provisionmust be made in shared data structures for collective access to the data structure.This may include choosing data structures that allow simultaneous access (circularbu�ers) or employ locking.Programmers have a choice of loading an object at a �xed address or allowingthe loading of an object at an arbitrary address. If an object is always locatedat a �xed address, pointers may be used within the object to refer to other partsof the data structure. This arrangement has the advantage of speeding referenceswithin an object. However, it causes a loss of exibility and may restrict the sharingof objects. This is because programs will only be conveniently able to load oneobject at a time that occupies a set of points in the address space. Relocatableobjects use index values to refer to parts of the object. This requires an additionoperation before a dereference operation can be performed resulting in a potentialloss of performance.
FullWrite6 � ReadEmpty � Read� Write6..........................Partly Full � Write� Read6Figure 9.2: A Circular Bu�erCircular bu�ers (see �gure 9.2) are used to transfer stream oriented informationbetween processes. Two implementations are used:� A minimal implementation is used by character mode devices such as serialports and the keyboard to communicate with their manager processes.

9.2. LEGACY CODE 183� An optimized version is used for interprocess communication.Both circular bu�er implementations do not require locking, but ensure thatdata is correctly transfered from the sender to the receiver. They operate by givingthe sender read/write access to the write-pointer, and read-only access to the readpointer. The receiver has read/write access to the read-pointer, and read-only accessto the write pointer. This eliminates contention over updating the pointers. Thedata structure operates safely even if information relating to the position of theother pointer is old. The data structure has a minor ine�ciency in that there isalways a single wasted slot when the data structure is full.In the more e�cient implementation, both the sender and receiver have a privatepointer known as the tripwire. The tripwire is set to point to either the value ofthe other pointer or the top of the bu�er. Before sending or receiving an elementfrom the circular bu�er, the value of the pointer is compared against the tripwire todetermine if there is the risk of over�lling the bu�er or crossing the end of the bu�er.This mechanism saves the cost of a comparison on most accesses to the bu�er byconverting the separate tests for over�lling and wrapping, from top to bottom of thebu�er, into a single test. If the comparison indicates that either of the boundaryconditions has been reached, further tests are carried out to determine which of thetwo conditions caused the problem, and the tripwire is set to a new position.9.2 Legacy CodeA library has been constructed that emulates many of the functions found in the Cstdio library. This library has two roles:� It allows the reuse of a large quantity of existing C code, reducing developmente�ort.� It provides an environment that is familiar to a large range of programmers al-lowing them to use existing skills while learning about the features the WalnutKernel environment o�ers them.Under the emulation library �les and streams are implemented using the same cir-cular bu�er code. Files gain no advantage from being implemented using circular

184 CHAPTER 9. USER LEVEL PROGRAMSbu�ers; however, there is no performance penalty either. By choosing to implementthe two mechanisms in the same way, code volume is reduced and code maintenanceis simpli�ed.9.3 Shared LibrariesOne of the major objectives of the Walnut Kernel was to encourage sharing of codeand data. Section 9.1.2 discussed mechanisms which allow the sharing of data. Thissection describes existing mechanisms for the sharing of code.The executable code may be either relocatable or non-relocatable. Relocatablecode uses relative addressing to reference other parts of the library module. Non-relocatable code is linked using absolute addresses for all references. Relocatablecode simpli�es the implementation of shared libraries. In the absence of relocatablecode it is necessary either to force modules to be always loaded at the same addressor create multiple versions of a module at di�ering addresses.Several classes of data2 may be required by shared libraries: embedded data,shared data and data local to an instance3 of the code. Embedded data consists ofliteral constants compiled into the code. Shared data is accessible to all invocationsof a library and may be seen and modi�ed by each instance. A variant on shareddata is constant data shared by all instances but typically not modi�ed. Data localto an instance of the code is private to that instance and is typically not accessibleto other instances of the code.The current implementation of the Walnut Kernel supports relocatable code.The password-capability model is well suited to supporting the majority of theclasses of data. Embedded constants can be protected from alteration by not pro-viding the write system-right on capabilities given to users. Sharing of data isachieved by loading capabilities. Providing mechanisms which support data local toan instance is less straight forward.2This taxonomy of memory types is based on work conducted for the Monads project [Geh82].3For the purposes of this discussion an instance of the code is created by loading a piece oflibrary code into the address space of a process. If the code is multiply loaded into a process, thereare said to be multiple instances of the code.

9.3. SHARED LIBRARIES 185Section 12.1.2 describes a number of potential approaches to supporting sharedlibraries. The remainder of this section addresses current mechanisms and the mod-i�cations to the process structure required to assist their implementation.
1Library fn 1 Code DataCode DataLibrary fn 2Find Capability IndexProcess ObjectProcess Address Space

Private Data Pointer Table(Stored in Process Object)
0xffffffff
0x0

250
Figure 9.3: Implementation of Local Storage for Shared Library CodeTo support data local to a process, a module must be able to create an object,load the object into the address space of the process and be able to locate theobject to allow the module to read and write the module's local data. There aretwo varieties of solutions. The �rst variety involves structuring the address space ofthe process so that either modules are always loaded in the same place or providinga �xed relation between the location of the object used to store local data and thecode object. Both these mechanisms place restrictions on the layout of memory.The second variety of solution is to store the address of the object containing localdata in a location known to the module. This appears to be a catch-22 situation, asthe module requires a private location to be able to store the address of its local data

186 CHAPTER 9. USER LEVEL PROGRAMSobject. This paradox can be avoided by providing a table stored - by convention - inthe process object. The module has access to the address its code is loaded at anduses the address to index into the table. This provides a small private store readilyaccessible to a shared library module. The table is typically used to store pointersto a local data object. The mechanism is illustrated in �gure 9.3.A table indexed by the addresses of locations where objects can be loaded isrelatively large. An enhancement which makes more e�cient use of space is to usethe Capability Index for the window in which the code is running. Capability indicesrange from 1 to 250, keeping the table down to a manageable size. Although it ispossible to use the K CAPID system call to �nd the index value for an address, it wasconsidered too ine�cient to use a system call for a potentially frequent operation.To assist in the rapid translation of addresses to Capability Indices, the processstructure was altered to make the Address Map readable. This allowed a shortsegment of assembly code (see �gure 9.4) to be used to rapidly translate addressesto index values.9.4 InitprocWhen a Walnut Kernel is booted, it generates an object known as the system object.This object contains all the memory pages occupied by kernel code, kernel data, anddevice driver interfaces and bu�ers. The initialization process derives capabilitiesfrom the system object used by the processes which manage devices. The restrictoperation is then applied to the master capability. This operation removes rightsassociated with a capability without a�ecting the rights of the children of the ca-pability. This eliminates a potential security hole associated with the existence of acapability allowing unfettered access to the kernel and device interfaces. After deriv-ing the set of less powerful capabilities, Initproc noti�es the scheduler that it is safeto schedule other processes, and sends messages to all manager processes containingthe capabilities they require to access the devices they manage. Initproc completesits operation by entering a message loop and waiting for a message indicating thatthe system is to be recon�gured.Initproc illustrates a number of features of programming under the Walnut Ker-

9.4. INITPROC 187.globl _codecapindexPROCHDADDRESS = 0x1000000MAPADDRESS = 0x100f000.text.align 2, 144/* addr = calling_address_magic();if (addr < PROCHDADDRESS)uqp = MAPADDRESS + ((addr >> 12) & 0xfff)elseuqp = MAPADDRESS + ((addr >> 22) & 0xfff)return (*uqp);*/_codecapindex:movl (%esp), %eaxpushl %ecxcmpl $PROCHDADDRESS, %eaxjge bigwinsmallwin:movl $12, %ecxsarl %cl, %eaxandl $0xfff, %eaxjmp bothbigwin: movl $22, %ecxsarl %cl, %eaxandl $0x3ff, %eaxboth: movb MAPADDRESS(%eax), %eaxandl $0xff, %eaxpopl %ecxret Figure 9.4: Find Capability Index for Executing Code

188 CHAPTER 9. USER LEVEL PROGRAMSnel; however, the process is unique among Walnut Kernel processes in that it isrestarted from a �xed address each time the kernel is booted. Apart from alwaysstarting Initproc from a �xed address, the kernel provides no special functions tosupport this code. Thus all of Initproc's code operates at the user level, requiring nospecial kernel support or privileges. All other processes resume their operations fromthe point at which they were stopped when the system was shutdown. Furthermore,as the system object is stored in volatile storage, the system object does not retaininformation about the capabilities applying to it over a reboot. The initializationprocess is responsible for remaking the capabilities used by the manager processesbefore allowing other processes to be scheduled.The kernel scheduler monitors a word in the Wall. When the word becomes non-zero, the kernel scheduler allows the scheduling of any runnable process. Initprocderives a capability for the Wall from the system object. This capability is sent tothe Wall manager and used by Initproc to notify the scheduler.In addition to the easy sharing of data demonstrated by the above application,persistence is also exploited in Initproc. The derivative capabilities generated fromthe system object are stored in an array. When Initproc is restarted following ashutdown, it examines this array and generates derivative capabilities with the samename and rights as those found in the array before restarting the scheduler. Thissimpli�es the design of the manager processes as the capabilities given to managersby Initproc appear to persist over the reboot. Holders of derivatives of capabilitiesdistributed by Initproc will �nd that those capabilities no longer work.9.5 GluiGlui is the manager process for the screen and the keyboard. It provides severalstream mode interfaces to the keyboard and screen. A series of keystrokes are usedto switch between sessions. In addition, Glui supports a mechanism for giving directaccess to the screen memory for a number of processes. Like Initproc, Glui functionsusing system calls available to all processes.When the Walnut Kernel is booted, Initproc sends a message with a capabilityfor the resources managed by each manager process. On receipt of the messages

9.5. GLUI 189
Bu�erInputScannerVT100Emulator

Hardware Device Drivers Glui Apps
KeyboardScreen Keyboard Bu�erScreen Bu�er(mem mapped) Inbuilt VT100Emulator InputBu�er

Screen ImagesInbuilt VT100Emulator Output
Figure 9.5: Keyboard and Screen IOcontaining capabilities for the keyboard, the screen, the VT100 emulator built intothe kernel, and the Wall, Glui creates 10 virtual screens and derives a capabilitywhich allows messages to be sent to Glui. This capability is then placed on theWall.The screen and keyboard IO architecture of the Walnut Kernel is illustrated in�gure 9.5. To provide terminal multiplexing facilities, Glui intercepts all keyboardinput scanning for control sequences. If no control sequences are found, the keyboardinput is placed in the input bu�er for the application currently being displayed onthe screen. The output bu�er of the current application is polled periodically. Ifnew information is found in the bu�er, it is passed to the VT100 emulator codebuilt into Glui. This emulator writes its output directly to the memory mappedscreen bu�er. To move the cursor and sound the bell, Glui passes control codes tothe VT100 emulator built into the device drivers.To change the display to another application, Glui stops accepting input fromthe current client program. The current contents of the screen are copied to a bu�erassociated with the current application. This bu�er is located within Glui and is notmade accessible to other programs. The bu�er corresponding to the new application

190 CHAPTER 9. USER LEVEL PROGRAMSis copied to the screen, and the output bu�er of the new application is read to updatethe screen. Keyboard output is directed to the input bu�er of the new application.Glui supports two types of output services:� a VT100 emulator� the hardware screen bu�erWhen a process requires IO through the VT100 emulator and keyboard, it sendsa message to Glui using the capability on the Wall. If there is a virtual screenavailable, Glui sends a message back which contains the capability for a keyboardbu�er and a screen bu�er. These bu�ers use the circular bu�er protocol discussedin section 9.1.2. The process requesting the screen may send data containing VT100screen control sequences via the output stream. Input is received via the inputstream.When direct access to the hardware screen bu�er is requested, the process mustsupply for itself a capability that allows the process to be frozen. If this capabilityis not provided, or does not allow Glui to send the freeze message, the request willbe rejected. If a suitable valid capability is supplied, a capability without SRMUL-TILOAD right and with a password 2 equivalent to the requesting process's serialnumber is returned to the requesting process. When loaded by the the request-ing process, this capability allows direct access to the screen bu�er; however, thiscapability cannot be loaded by any other process.Protected freeze and thaw are used on the processes granted direct access tothe memory mapped screen bu�er. This prevents other processes from thawing aprocess with a usable capability for writing to the screen. Glui is able to ensurethat only one process writes to the screen at a time, preventing corruption of thescreen's contents.Both the SRMULTILOAD right and the protected versions of freeze and thawwere introduced to enable Glui to allow controlled direct access to the hardwarescreen bu�er. Other solutions were considered, including locking processes [AW85]and schemes for the rapid revocation of capabilities.Under the Walnut Kernel, a process is locked when it is created with a 63-bit

9.6. SHELL 191lockword. This lockword is XORed with each `alter' capability4 before the capabilityis used by the kernel. The process can only use capabilities which have been XORedwith the lockword, and then be passed to the process. This prevents a lockedprocess from communicating with other processes without the assistance of a partywho knows the lockword value. This mechanismwas considered, but locking severelycurtailed the ability of the client program to communicate.Although a number of rapid revocation schemes were considered, the generaliza-tion of these schemes to a multiprocessor environment either resulted in a mecha-nism insu�ciently responsive, or required an unacceptably high overhead to supporta relatively infrequent operation.9.6 ShellShell is a command interpreter. It provides mechanisms for managing objects, or-ganizing `�les' generated through the stdio emulation code and launching programs.Shell has detailed information relating to the structure of a process which followsthe conventions adopted for the Walnut Kernel.When Shell is �rst started it sends a message to Glui requesting a terminalemulator output bu�er and a keyboard input bu�er. On receipt of these capabilities,it presents the user with a prompt and awaits further instructions. Users can runprocesses in two modes:� Yielding the screen to the new process. The input bu�er and output bu�erused by Shell are given to the new process for its use until the new processterminates.� Creating a new screen for the new process. The shell requests a new set ofbu�ers from Glui which are given to the new process.The two modes di�er in several respects. When the new process is to inherit thescreen from Shell, the bu�ers are made available to the new process and the shell4A non-alter capability does not possess write rights and cannot be used to transfer informationto another process. Alter capabilities can be used to transfer information.

192 CHAPTER 9. USER LEVEL PROGRAMSgoes into a loop which polls the new process's status. Shell ignores the contentsof the bu�ers and does not take any command input until it detects that the newprocess has ceased to function. Shell then resumes using the bu�ers and acceptingcommands. When the screen is not inherited from Shell, a set of bu�ers is requestedfrom Glui and made available to the new process. Shell continues to interpretthe input from the keyboard and remains active on the screen that it is currentlyconnected to.Two mechanisms were introduced into the Walnut Kernel to allow processes todetermine the state of another process:Cooee Messages are sent to a process and results in aCooee replymessage beingsent to a capability speci�ed in the cooee message. The Cooee reply message isautomatically generated by the kernel and contains a �eld indicating whetherthe process is running, frozen, sleeping or dead.Peek System Call returns a value which indicates whether the process is running,frozen, sleeping or dead.The Cooee message was introduced �rst; however, polling processes to determinetheir state proved to be useful and popular, so the more e�cient peek mechanismwasprovided. The peek mechanism has the advantage of a signi�cantly lower overheadas it requires only a single system call and the message passing mechanism is avoided.A process object conforming to the Walnut Kernel conventions contains:Startup Code Area (optional) This area may contain a small amount of codeused in starting a process.File Descriptor Table (mandatory) This area contains the �le descriptors for useby the process. Note: The �rst 3 elements of the File Descriptor Table aremandatory to allow for standard output, standard input and standard error.The entries in this table are used by the Unix emulation library.Private Data Pointer Table (mandatory) This area contains pointers to privatedata. The table is indexed by the capability index of the executing code andis used to locate data used by the executing code.

9.7. WYRM 193Default Heap (optional) The default location for the creation of the heap.Default Stack (optional) The default location for the creation of the stack.To start a process, the shell takes a code object and a data object for the programto run in the new process. The data object is duplicated. A new process is madeby invoking the kernel. The capabilities for the code object and the duplicate dataobject are passed to the kernel as autoload capabilities5, the stack pointer andprogram counter are set and the wakeup time for the new process is set to forever.After the new process is created, Shell, modi�es the pages of the object loaded intothe shell's address space. Shell writes into the �le descriptor table the capabilities forthe new process's standard input, output and error, and any other �le descriptorsthat are required. The command line arguments and a capability for the objectcontaining the process's environment strings are written into the heap space. Amessage is sent to the process to wake the process up.The method used to create processes allows multiple copies of a program to berun simultaneously. The scheme is economical of both disk space and memory spaceas it shares a single image of the code. The data is duplicated to prevent multiplecopies of a program interfering with each other.9.7 WyrmWyrm6 is an arcade style game inspired by the games nibbles[Cor90] and worm[Toy91].Apart from its frivolous value, Wyrm has been used to test the responsiveness ofthe interface and a number of IO mechanisms.The current version of Wyrm makes use of the Unix emulation stream IO codeto communicate via standard IO with Glui which draws the parts of the game on thescreen. This version is highly responsive and shows that the two layers of software5Autoload capabilities are automatically loaded into the address space of a process when theprocess is created.6A wyrm is a mythical creature of great power. The game was sarcastically named wyrmbecause of its lack of speed. After tracing a number of implementation problems in the stream IOcode Wyrm now proudly lives up to its name.

194 CHAPTER 9. USER LEVEL PROGRAMSprovided by the existing IO structure are su�ciently quick for highly interactiveapplications.Early in the development of the Unix emulation libraries a misplaced �ush hadcaused us to believe that the system performance was inadequate. At that time, aversion of Wyrm which made direct use of the screen was written in an attempt todetermine where the bottleneck lay. This resulted in changes in the design of thekernel and Glui to correctly support the sharing of memory mapped bu�ers.

Chapter 10SecurityThe Walnut Kernel di�ers from the Password-Capability System in a number ofrespects. This chapter outlines the e�ect of these di�erences on the security of theWalnut Kernel. The Password-Capability System required that objects be continu-ous and that there be su�cient storage to contain the object when the object wascreated. The Walnut Kernel has paged objects which may have unallocated pageswithin the object. Other signi�cant di�erences include the introduction of the re-strict operation by the Walnut Kernel, serial numbers having a physical meaning,capabilities with non-random passwords, the SRMULTILOAD right and the pro-tected freeze and thaw operations.10.1 ObjectsThe Walnut Kernel uses three parameters to describe the storage and address spacerequirements of an object. The Password-Capability System used a single parameterto describe these features of an object. The separation of storage requirementsof an object from the size of the address space used by the object was aimed atovercoming the limitations imposed by having a page sized protection granularity. Italso provided an opportunity to introduce a new degree of freedom into the WalnutKernel not found in the Password-Capability System. Figure 10.1 compares thestructures of the two systems' objects.The decoupling of the address space requirements from the storage space re-195

196 CHAPTER 10. SECURITY

Guaranteed available disk spaceUnde�ned pages within objectDe�ned Pages within objectPotential Unde�ned Pages
O�setMax LimitTop ofHighestReferencedPage

Origin Size Origin
Password-Capability System

Contents of object
Walnut Kernel

Size
SizeFigure 10.1: Comparison of Walnut Kernel and Password-Capability SystemObjects

10.1. OBJECTS 197quirements increases the exibility of the object mechanism. In the Walnut Kernel,several uses have been proposed that make use of this exibility. These applicationsinclude the construction of single-object processes and the storage of source codeand its derived object code in the same object. Compiler designers tend to use alarge address space and populate it with widely separated code and data segments.Compilers using this approach on the Password-Capability System would have com-mitted a large amount of system disk resources. In contrast the Walnut Kernelrequires fewer resources.The second suggested application places code into the same object as the com-piled output. This mechanism ensures that source code is available to maintenanceprogrammers. The wide separation of the starting address of the source code fromthe compiled object code eliminates the need to relocate code on code growth. Thissimpli�es the task of locating the start of the sections of an object, and allows theobject to be easily partitioned into source and code segments using the capabilitymechanism.The mechanism of assigning the pages of an object when the page was �rstaccessed introduced a secret channel. The channel resulted from the changing ofthe state of an object when a read operation was carried out on memory accessedthrough a read-only capability. To transfer information through this channel thefollowing pre-conditions must be ful�lled:� All the pages of the volume must be allocated to objects on the volume� There must be a known number of unassigned pages in the object throughwhich the information is to be conveyed and the location of unassigned pagesmust be known.The transmitter of the message sends it by reading from previously unassigned pages.This results in the pages being assigned. After the assignment has taken place, thereceiver of the message determines the number of pages left by reading from acollection of unassigned pages1 until a fault results from attempting to allocate a1The collection of pages used by the receiver must be disjoint from the set used by thetransmitter

198 CHAPTER 10. SECURITYpage. The address-fault exception handler of receiving process is invoked, and thenumber of pages the receiver has managed to access corresponds to the message.The existence of a new secret channel has been demonstrated. However, thetransmission mechanism can be easily frustrated by either freeing space on the vol-ume, restricting information relating to the assignment of pages in shared objects,or ensuring that read-only capabilities are assigned only to sections of objects whichare completely assigned.10.2 RestrictThe security analysis of the Password-Capability System was based on a modelwhich required child capabilities to be no more powerful than their parents. Theintroduction of the restrict operation allows parent capabilities to be made lesspowerful than their children. The Walnut Kernel modi�ed the requirement on childcapabilities to apply only at the instant of creation.The initial motivation for restrict was to provide a mechanism which allowedthe kernel memory object to be made available, safely, to the initialization process.When the Walnut Kernel is started an object is created which covers the kernelprogram and data areas. The initialization process derives smaller views from thekernel memory object, which contain bu�ers used to communicate with hardwaredevices, and kernel variables which may be used to send information to processesor allow possessors of the capability to perform restricted functions2. Possessionof the master capability for the kernel memory object allows the holder completecontrol of the system. Early versions of the Walnut Kernel used a capability with awell known value for the kernel memory object3. The restrict call was introduced toallow the initialization process to remove all the rights of the kernel object's mastercapability after the smaller views were derived.2This mechanism has been proposed as a method of allowing the kernel to be noti�ed that thesystem should be shutdown.3The current system passes the value of a randomly selected master capability to the initial-ization process. The restrict call is used at the completion of derivation as an additional securitymeasure.

10.3. SERIAL NUMBERS 199The restrict operation reduces the rights of a capability by performing a bitwise-and of the rights mask supplied with the rights bitmap of the capability. The restrictoperation will only operate on capabilities which have suicide right.To show that the Walnut Kernel retains the security properties of the Password-Capability System, it is necessary to show that the restrict operation introduces nobehaviors that cannot be achieved under the Password-Capability System. The re-strict operation places a system enforced limitation on the usage of a capability. Thelimitation is equivalent to a program on the Password-Capability System voluntarilyforegoing the use of some of the rights conveyed by a capability. Thus, the Wal-nut Kernel is no more subject to rights ampli�cation than the Password-CapabilitySystem.Appendix B contains a formal description of the e�ects of the restrict operation.10.3 Serial NumbersThe Walnut Kernel uses the less signi�cant bits of the serial number to locate theheader page of the object. The remaining bits of the serial number are randomlyallocated (see �gure 10.2). When an object is referenced, the block number of theheader page is extracted by performing a bitwise-and of the Disk-Block-Mask andthe presented serial number. The header page is accessed and the presented serialnumber is compared with the serial number stored in the header page. If they match,the operation which made reference to the object is allowed to continue. If there isno match, an error is returned indicating that the capability is invalid. This di�ersfrom the mechanism in the Password-Capability System where serial numbers ofobjects were allocated randomly, and a table was used to convert the serial numberto a reference to the physical representation of an object.This change has the potential to reduce the security of the system by reducingthe size of the name space that an individual must search to �nd a valid capability.In practice the mechanism has a minimal e�ect on system security. It can be shownthat the impact of this change is equivalent, in the worst case, to reducing the serialnumber's length by 1 bit. The proof follows:The random bits of the serial number are unpredictable hence those bits do not

200 CHAPTER 10. SECURITYS = B + (R&M)B Block Number of Header PageM Disk Block MaskR Random NumberS Serial NumberFigure 10.2: Components of the Walnut Kernel Serial Numberreduce the size of the space which must be searched.The user has limited knowledge of the state of the physical device. The user canonly determine the header blocks which have been allocated to capabilities the useralready knows. This is the same level of knowledge as found in the password capa-bility system. Furthermore, as the system operates, objects are created, destroyed,enlarged and shrunk. This results in a continually changing set of candidate headerblocks. Selection from the changing random pool results in a random series of po-tential header blocks.Unless the disk holds exactly a power of two blocks, the most signi�cant bit ofthe block number will not be biased towards zero. The worst case would occur whenthere is only a single block number with a serial number in which the top bit is set.This would result in reducing the search space by a bit.Assuming the worst case, the serial number is 30 bits in length4. Although theserial number of an object was never regarded as a secret, a 230 item search spacefor serial numbers is su�ciently large to make random probing for capabilities notviable.10.4 Non-Random PasswordsThe Walnut Kernel introduced a mechanism for creating capabilities with passwordsspeci�ed by the process performing the derive operation. This mechanism wasintroduced to allow the initialization process to create capabilities derived from the4The top bit of the serial number is used to mark alter capabilities

10.5. SRMULTILOAD RIGHT 201kernel memory object with known passwords. The kernel memory object has theunique feature of retaining no state over a system reboot. All other objects reside ona physical medium allowing the state of the object to remain in existence until theobject is destroyed. Accordingly, all the capabilities derived from the kernel memoryobject are forgotten whenever the system reboots. Without the ability to generatecapabilities with known passwords, all processes using capabilities derived from thekernel memory object would, after a reboot, have to handle the loss of access tothe view provided by that capability. The initialization process regenerates thecapabilities for the kernel memory object after each reboot before allowing otherprocesses to restart. Regenerating the capabilities simpli�es the processes whichinterface with the kernel memory object.The ability to create capabilities with non-random passwords is essential to allowcapabilities without the SRMULTILOAD right to perform a useful role.The creation of capabilities with known passwords has a minimal e�ect on thesecurity of the system. As the random password mechanism remains, the user isstill able to create capabilities which have a full range of password values providingthe same level of security as in the Password-Capability system. In addition, thenon-random mechanism can be used, with no impact on system security, in the twofollowing roles:� A capability can be made available to a wide range of users by creating acapability with a known name. Using a known name is equivalent to widelyadvertising a capability with a random password.� Deleted capabilities can be replaced by a possessor of a su�ciently powerfulcapability. Accordingly those who knew the original name of the capabilitycan make use of the new capability created with the same passwords, entailingno further spread of information10.5 SRMULTILOAD RightThe SRMULTILOAD right was introduced to allow capabilities to be created whichcould only be used by a speci�ed process. The screen manager uses this mechanism.

202 CHAPTER 10. SECURITYThe screen manager acts as a screen multiplexer supporting several text screens.The user can switch between screens by using a hot key sequence.To speed up access to the screen and allow greater control over the screen, themanager can grant direct access to the screen's video bu�er to a process. However,the screen manager needs to be able to ensure that only one process can exercisewrite access to the screen bu�er at a time. When the hot key sequence is pressed, thescreen manager uses a protected freeze to prevent the process with a capability tothe screen bu�er from executing, and switches control of the screen to a new process.In this example, the screen bu�er capabilities given out by the screen manager donot have SRMULTILOAD right; so only the designated process can use them. Otherprocesses cannot use the capability so if the capability is given to a third party thescreen's contents cannot be altered through the use of that capability.Capabilities without SRMULTILOAD right can only be used by processes whoseserial number is equal to the value of password 2 of the capability.This mechanism allows only a decrease in the number of potential users of acapability thus allowing tighter control over the use of capabilities. As it restrictsthe potential domain of use of a capability it does not decrease the security of thesystem.10.6 Protected Freeze and ThawThe protected freeze and thaw mechanism is an enhancement of the freeze andthaw mechanism that allows a process to ensure that a process under its controlcannot awake unexpectedly through the action of another process.The screen manger example (section 10.5) used for the SRMULTILOAD rightalso employed a protected freeze and protected thaw. The motivation for the in-troduction of this new mechanism was that the original freeze and thaw mechanismcould not prevent a third party process from waking up a process holding a capabilityfor a screen bu�er and hence altering the contents of the screen.The protected freeze mechanism and thaw mechanism uses a magic number toprevent a process from being thawed unless all the processes which used a protectedfreeze on a process have thawed the process. The magic numbers are XORed together

10.6. PROTECTED FREEZE AND THAW 203and a process is only runnable when the number of protected freezes equals thenumber of protected thaws and the product of the XOR operations is zero.This mechanism provides an enhancement on an existing mechanism. The basicproperties of the mechanism do not a�ect the security model of the Walnut Kernel.The mechanism has enhanced the security of the system by allowing a process toexert control over the execution of another process without the risk of a third processoverriding the inhibition of execution.

204 CHAPTER 10. SECURITY

Chapter 11Proposed HardwareThis chapter describes a proposal for a novel hardware environment on which theWalnut Kernel may operate. The proposal presented here was originally jointlydeveloped by Dr Ronald Pose of the Department of Computer Science at MonashUniversity and myself in 1993. A paper [CP94] outlining the design of a node ofthe multiprocessor and a mechanism for avoiding the problems associated with aglobal system clock was presented to the Seventeenth Annual Computer ScienceConference. This paper is reproduced in appendix C. Further work based on thisproposal has since been undertaken by Dr Pose and a number of his postgraduateand honors students [PFR94, FPR95].11.1 Design GoalsThe Secure RISC Multiprocessor Project undertook to design a scalable generalpurpose multiprocessor. The architecture was required to support a wide range ofsizes varying through: single processor workstations, multiprocessor workstations,medium size multiprocessors and large clustered multiprocessors.In addition the system was required to be built of modular components, usea passive backplane for interconnecting processors, provide high performance byminimizing the potential for performance limiting bottlenecks in the bus structure,be su�ciently exible to support a variety of algorithms - rather than being tunedto a speci�c class of algorithms - and provide mechanisms to support fault tolerance.205

206 CHAPTER 11. PROPOSED HARDWAREA key requirement was to allow the number of processors to be increased grad-ually when demand for processor power was required and budgets allowed. Largecommercial multiprocessors tend to scale incrementally up to the size of the inter-connection network. Scaling beyond this size typically requires replacing the inter-connection network with a larger network. This can make upgrading prohibitivelyexpensive.To achieve the goal of gradual scaling, we proposed an architecture where theswitching network was distributed evenly across the nodes of the system. We alsodetermined that the speed of processors and memory must be allowed to vary fromnode to node. This decision allowed older, less fast, nodes to be retained in a usefulrole in a system which had acquired more recent faster processor and memory unitswhile still exploiting the new units to their maximum potential.11.2 ArchitectureThe design goals eliminated a number of popular multiprocessor organizations. Nei-ther hypercube nor tree architectures were suitable as they lacked adequate pathredundancy for fault tolerance and they were unable to support well a wide varietyof algorithms. Dr Pose put forward a series of bus topologies with varying degreesof interconnection between buses. These designs were mesh-based, providing re-dundant paths and allowing for the possibility of minimising bottlenecks by routingaround network `hotspots'. We converted the proposed bus interconnection schemesinto a regular1 implementable form. The resulting 4-way and 6-way interconnectiondesigns are illustrated in �gure 11.1. Furthermore, we observed that the patternscould be converted into cylindrical and spherical forms by folding the mesh in halfand connecting busses at the edges of the mesh.Figure 11.2 provides the conventional representation of the processor intercon-nection topology. The diagram shows the direct connections between processors.The 4-way interconnection pattern allows a processor to directly communicate with6 other processors, and the 6-way interconnection pattern allows a processor to1A structure of repeated subunits

11.2. ARCHITECTURE 207

4-way Multiprocessor Node BoardBus SegmentBus Joiner 6-way
Figure 11.1: Bus Structures

208 CHAPTER 11. PROPOSED HARDWAREcommunicate with 10 other processors.Conventional clock distribution mechanisms were unlikely to be su�ciently scal-able to be used on an architecture with widely variable topologies and bus lengths2.To meet the demands posed by this architecture we proposed a system built froma single type of node. Each node had its own clock which it exported to the othernodes on its bus segment when communicating.11.3 Node DesignThe Multiprocessor Node board (Figure 11.3) supports a combination of processor ormemory modules on the M-P bus (Memory - Processor Bus). These modules are tobe constructed on daughter boards which are plugged into the Multiprocessor Nodeboard. A single Multiprocessor Node board behaves as a classic SMPmachine. Usingthe 2 external ports it is possible to connect to an external network of multiprocessornode boards using a passive backplane.Each Multiprocessor Node Board has a local clock pulse generator. This is usedto provide clock signals to the processor and memory daughter boards, the controllogic, and the arbiters. This clock is also gated out through the ports to clock theexternal bus when the port becomes a bus master.The requirement for a global clock is eliminated by using the FIFOs to decouplethe local clocks from the clock found on the external bus.11.3.1 Functional DescriptionThe Multiprocessor Node Board consists of 4 major functional blocks connected bya state machine (the control logic). The blocks are:� M-P Bus� Bus Switching Unit2A technique known as `Salphasic Clock Distribution' [Chi90] can be used to distribute a syn-chronous clock signal with the required accuracy. However, a synchronous design does not allowprocessors to operate at arbitrary speeds, reducing debugging exibility and negatively a�ectingthe cost of system expansion

11.3. NODE DESIGN 209
4 Way

Processor NodeConnectionO� Diagram Connection
6 Way
Figure 11.2: Topology of Processor Interconnections

210 CHAPTER 11. PROPOSED HARDWARE
Figure 11.3: Block Diagram of Multiprocessor Node� 2 Port Interface UnitsM-P BusThe Memory-Processor bus (M-P bus) is a data, address, and control signal bus.The data and address paths are 64 bits wide, with the data and address signalsmultiplexed onto the bus. This bus runs using a split bus protocol provided by theprocessors[MIP91] on the daughter boards plugged into the Multiprocessor NodeBoard.The processor units and memory units on the M-P bus form a classical sharedmemory, SMP machine.Bus Switching UnitTo help provide o�-board communications the switching unit provides 4 operationalstates:� Port A connect Port B� M-P Bus connect Port A

11.3. NODE DESIGN 211� M-P Bus connect Port B� No ConnectionPort Interface UnitsEach port has a port interface unit which performs the 2 functions of transmittingdata onto a bus and receiving data from the bus.To receive data this unit recognizes relevant information on the bus and acceptsit into the input FIFO, otherwise bus tra�c is ignored.To transmit data the port interface unit arbitrates for the bus, and then outputsdata from the output FIFO.11.3.2 Operational DescriptionAll addresses in the system are partitioned into 2 regions. The most signi�cantbits of the address determine which Multiprocessor Node Board is to be accessed,and the least signi�cant bits determine the address of the memory location on theMultiprocessor Node Board (see Figure 11.4). Two Multiprocessor Node boardnumbers are reserved: node board number zero always refers to memory local tothe node board, and the maximum node board number refers to hardware controlmemory local to the node board.The Node Number is used to index into a routing look-up table held in staticRAM, which is decoded to determine where the memory location can be found.There are three types of access available to the processor:� Local Memory - Memory is addressed directly over the M-P bus.� Remote Memory - Discussed in Section 11.3.2� Hardware Control Memory - The bus ports are isolated and the routing (look-up) tables are modi�ed by the processors.In addition a Memory to Memory DMA transfer facility is available to facilitatepage sized transfers.

212 CHAPTER 11. PROPOSED HARDWAREMSB LSBNode Number Memory LocationNode Numbers:0 : : : 0 : Local Memoryf : : : f : Hardware Controlx : : : x : O� Board MemoryFigure 11.4: Partitioning of AddressesPort A Look-UpRead In M-P Bus Look-UpIn A Out A Out B In B Port B Look-UpRead InFigure 11.5: Contents of Look-Up TablesRoutingThis section illustrates the operation of routing data between memory and processorby following the path of a memory accessTransfers between nodes employ a packet structure. A packet comprises a header,a body containing the data and a packet check sum. The header contains the sourceand destination addresses, the packet size and the packet type. Packet types includeread, write and an indication of whether the destination is a processor or memory.Packets are constructed and interpreted by control logic in the multiprocessor nodeboard.Local memory operations use the intrinsic addressing mechanism of the proces-sor.

11.3. NODE DESIGN 213Memory accesses are routed through the network in a manner similar to a packetbased store-and-forward network.When a processor utters an o�-board address, the high order bits of the addressare used to index the M-P Bus look-up table. The look-up table contains bits whichindicate which port should be used to attempt the access (Figure 11.5).If the output FIFO on the required port is below the high water mark (the pointat which it is guaranteed that the largest permissible packet will �t in the FIFO) andthere is no tra�c currently passing through the switch, then the switch is connectedto the appropriate port. A packet header is constructed and transferred to the FIFO.Data is transferred to the output FIFO. A check sum is added to the FIFO. If theconditions are not met the processor should reattempt the operation later.When there is data in the output FIFO and the bus to which the port connectsis idle, an attempt is made to arbitrate for the appropriate bus (The arbiter isdiscussed in Section 11.3.4). When the port becomes the bus master the packet isbroadcast onto the bus.The high order bits of the destination address of the packet on the bus are usedto index into the port look-up tables of all ports attached to the bus. If the port's`Read In' bit is set and the input FIFO is below the high water mark, then the dataon the bus is read into the FIFO, otherwise the data is ignored.The node number of the destination address in the header of the �rst packet inthe FIFO is used to index the M-P Bus look-up table. If the `In' bit is set, theswitch allows the contents of the packet to be directed to the memory on the M-PBus; otherwise the switch is set to permit the ow of data from the input FIFO tothe opposite output FIFO.11.3.3 Design FeaturesThe M-P bus and switched external memory packet transfer allows better utilizationof processor memory resources. Both the external and M-P buses may be loaded tothe level providing optimal utilization of the bus capacity.The design introduces a memory hierarchy based on the number of hops betweennodes. This feature introduces a new degree of exibility in the management of

214 CHAPTER 11. PROPOSED HARDWAREboth memory pages and processes. The throughput of a process is maximized byrelocation of the process and/or its data to minimize the memory access time. Theoptimization of overall system performance is complicated by memory's being sharedby multiple processors. Peak performance is achieved by balancing processor load,memory load, and process average access time [BFS89].By employing FIFOs on each port, the risk of being unable to accept data ona port due to tra�c on the M-P bus to the other bus's port is reduced. However,this design decision has the cost of adding latency to every transfer through a mul-tiprocessor node. The presence of FIFOs on each port is especially valuable wherelarge packet transfers are expected as it e�ectively doubles the depth of the FIFOsfor ow through tra�c, hence reducing the risk that a packet will not be acceptedbecause a FIFO is above the high water mark.11.3.4 ArbitrationThe project has considered many arbiter designs. The designs were evaluated againstthe following required properties:� Fairness - Each node must have a similar probability of becoming bus masteras the starvation of a node would prevent the delivery of data.� Guaranteed Result - A bus master is selected every time an attempt is made.� Varying Asynchronous Clocks - Arbiters are synchronous with respect to theirlocal clock.The mechanism proposed in the paper used a priority based arbiter to resolvebus master conicts. Priorities were rotated after each arbitration to ensure long-term fairness. The implementation employed a set of bus-request lines and a setof acknowledge lines to provide a handshake. This ensured that the priority-basedphase was not undertaken until after all nodes on the bus had acknowledged thatthey had recorded the request state of all other nodes. The recording of the requeststate of other nodes was necessary to reduce the e�ects of potential meta-stabilitiesin the components of the arbiter on the result. The implementation was de�cient

11.3. NODE DESIGN 215in that it reduced the arbitration speed to a multiple of the speed of the clock onthe slowest board on a bus. A variant on this design was proposed which useda clock which was independent of the node's master clock to supply the arbiters'requirements. The independent arbitration clock could operate at a high speed andcould be run at a uniform rate across the boards resulting in an improvement in thespeed of arbitration and a simpli�cation of the arbitration circuitry.Dr Pose currently has students working on alternative solutions to be imple-mented in VLSI. Work undertaken by Ted Kehl of the Department of ComputerScience and Engineering at the University of Washington in the areas of self tun-ing of VLSI circuits and a mutual exclusion element which restricts the spread ofmetastable voltages [KB] o�ers the opportunity to produce a simple arbiter withthe required properties.

216 CHAPTER 11. PROPOSED HARDWARE

Chapter 12Continuing & Future WorkThis chapter outlines likely future developments in the Monash Secure RISC Mul-tiprocessor project for the system software and the hardware. Section 12.1 coverssoftware and section 12.2 covers hardware developments.12.1 SoftwareThe Walnut Kernel provides an environment which supports persistent shared mem-ory. This section outlines further work on the kernel itself and on a number ofprojects which exploit its features. The section also details the advantages of us-ing a capability based operating system for these tasks and problems likely to beencountered by implementors of these projects.12.1.1 KernelDevelopment of rent and charging code have both been postponed in the currentversion as their presence was not required during the initial development phase. Itis planned to implement these monetary functions and disk reconstruction code inthe near future.Although the current kernel has functions which allow the manipulation ofmoney, it does not contain code to implement charging by kernel operations andrent collection. Provision has been made for the implementation of these features.217

218 CHAPTER 12. CONTINUING & FUTURE WORKCharging for kernel services is intended to be performed by debiting a processa �xed amount of money per service when the service is requested. This allows thebudget required for the needs of a process to be easily calculated.The rent collection mechanism is intended to run periodically. It will examineeach object mounted on a volume and debit the appropriate amount of rent. Typi-cally the rent collector will run when the system load is light. As the rent collectormay visit objects at irregular intervals1, it is necessary to store a time stamp in eachobject to determine when rent was last collected and the amount currently due.At present the Walnut Kernel provides no mechanism for the recovery of cor-rupted volumes. Provision has been made for reconstruction software to be incor-porated. It is expected that the reconstruction software would consult the bitmapwhich describes the allocation of pages on the volume and scan the volume for pagescontaining magic numbers indicating that the page contains a header page. By com-paring this information it should be possible to con�rm that a volume has not beencorrupted when the volume is mounted and failing that restore at least part of thelost data.12.1.2 User CodeUser InterfaceThe Walnut Kernel currently supports a text based interface which provides screenmultiplexing - the interface provides a number of virtual screens which may beconnected to processes, and the user may select for viewing any virtual screen byusing a sequence of keystrokes. This interface was developed by Mr Glen Pringle.Support for a graphical interface is planned. This will require modi�cation ofthe kernel by the addition of code to control the mode of the graphics card.At present the text based interface interacts with a shell which supports theexecution of programs and basic object management, using a simple interactivecommand language. Where traditional operating systems use a hierarchical direc-tory structure, this shell employs a set based representation directory structure. MrGlen Pringle is continuing work on the shell.1High system load or unmounting a disk may result in rent collection operation being delayed

12.1. SOFTWARE 219Unix Compatibility LibraryTo allow the exploitation of the signi�cant quantities of existing C code available toUNIX systems, a partial emulation of the C libraries which provide an interface toUNIX has been constructed.The input-output and memory allocation functions of the standard C library arebased on the functionality found in UNIX operating system. As the Walnut Kernelis based on a di�erent paradigm, code which emulates the features of UNIX usingthe functions provided by the Walnut Kernel has been written. This work has beenonly partially completed.Mr Carlo Kopp's work on a library that emulates the functionality provided byUNIX for standard input-output is nearing completion.Professor Chris Wallace, Mr Glen Pringle and myself have developed a partialemulation of the standard C memory allocation routines. Work is continuing in thisarea.Work is also continuing on the development of a replacement for standard Clibraries where existing libraries are unable to operate in the environment providedby the Walnut Kernel.Shared LibrariesThe Walnut Kernel was designed to facilitate the sharing of memory objects. Thedevelopment of shared libraries under this environment presents a number of chal-lenges. It is necessary to provide mechanisms which allow the relocation of code, thedynamic linking of code and support the storage of variables local to the instanceof the shared library being used. In addition it is necessary to consider policies forupdating and possibly removing old libraries.Preliminary work has been performed to demonstrate possible mechanisms forimplementing shared libraries. This work exploited the i486's support of positionindependent code.A number of possible approaches to the problem of implementing shared librarieshave been put forward. These include:Locating modules of the libraries at a �xed virtual address. This requires

220 CHAPTER 12. CONTINUING & FUTURE WORKprograms which use modules from these libraries to load the module and any pagesrequired to store data local to the instance of the module at a �xed location in theprocess's address space. This mechanism is simple to implement and allows the moste�cient addressing modes available on the processor to be used. It has signi�cantdisadvantages in that it places restrictions on the organization of program memory,and may prevent modules from multiple libraries being used in the same programdue to clashes in address space usage.Where the processor provides support for position-independent code, a table ofpointers located at a known place in the process's address space can be used toaccess data items and subroutines which are not contained within the code module.The table can be indexed with the capability index allowing the shared routines to bearbitrarily placed in the available address space. This mechanism o�ers exibility inthe structuring of process address space and does not prevent modules from multiplelibraries being employed. The use of indirect access to data and code outside theshared module reduces the e�ciency of the code.An alternative mechanism for use on systems supporting position independent-code is to employ a buddy scheme. This method places a data object at a �xeddistance away from the code object. This object would contain all references andlocal storage for the instance of the shared module. This scheme o�ers the majorityof the features of the table-based mechanism described above while surrenderingonly a marginal degree of exibility in the organization of the process address space.The mechanism also allows faster addressing modes to be used. This is because codecan be generated in the buddy page that makes most e�cient use of the availablemodes while allowing the code to be customised for access to data in the currentinstance of the shared library.Professor Chris Wallace has students currently investigating the implementationof shared libraries under the Walnut Kernel.With suitable language support it is possible to dynamically replace a sharedlibrary. Languages such as Erlang2 provide mechanisms which allow the most recentversion of a function to be called in preference to the version existing at the time of2A functional language developed at Ericsson and Ellemtel Computer Science Laboratories[AVW93]

12.2. HARDWARE 221starting the program. More traditional languages, such as C, do not provide directsupport for the replacement of a module.To support the dynamic replacement of modules, without language support, itis necessary to check for the existence of a new module each time a function in themodule is called. This process is potentially expensive and careful evaluation of thecosts and bene�ts of providing dynamic replacement of modules is required.12.2 HardwareChapter 11 described the design of the proposed hardware and described work cur-rently being undertaken by Dr Ronald Pose of the Department of Computer Sci-ence, Monash University and his students. This work covers the implementationof hardware based on the principles outlined in [CP94] and VLSI-based distributedarbitration circuitry.To optimise performance on the environment presented to the operating systemby this hardware requires the operating system to dynamically relocate both pro-cesses and data pages. To provide best performance it is necessary to balance thecompeting goals of increasing parallelism by employing a greater number of pro-cessors and decreasing the overhead of interprocess communication by limiting thenumber of processors. The wide range of memory access speeds provided by thisdesign makes this optimisation complex. It is a signi�cant research area in its ownright.Recent research by Dunning and Ramakrishnan of Bowling Green State Uni-versity [RD93] has shown that the assignment of tasks to a multiprocessor systemof moderate size is an NP-complete problem. It is expected that work on assign-ment of tasks will rely on heuristics and concentrate on the avoidance of worst caseperformance.The original intention was to implement the Walnut Kernel on the proposedhardware. However, to speed development, a i486 based platform was selected. Aport of the Walnut Kernel to the proposed hardware is still intended.

222 CHAPTER 12. CONTINUING & FUTURE WORK

Chapter 13ConclusionThe Secure RISC Architecture project is the successor to the Password-CapabilitySystem. The features of the kernel on the earlier system have been retained. TheWalnut Kernel, however, incorporates signi�cant innovations and alterations to en-hance the applicability of the kernel to a wide range of commonly available hardwareand to meet the needs of programmers. The hardware component of the project isscalable from a single processor system to a cluster of multiprocessors. The widescaling range is gained by abandoning centralised clocks and distributing switch-ing hardware. This chapter identi�es the features of the Walnut Kernel and of theproposed hardware and evaluates them in the context of other systems.The design of the Walnut Kernel incorporates signi�cant changes to the originalpassword-capability model to allow a more portable implementation. It demon-strates that a useful system can be constructed using the password-capability modelwhich is easily transportable between hardware platforms. Furthermore, the WalnutKernel showed that portability has not been won at the cost of security.Signi�cant departures from the Password-Capability System include moving froma system based on capability registers (a segment register like mechanism) to usingpaging for all access control; the introduction of the subprocess mechanism; theability to restrict the rights of a capability after it has been created; and the intro-duction of the SRMULTILOAD mechanism and the ability to create capabilitieswith non-random passwords.The shift from capability registers to a page-based implementation has made the223

224 CHAPTER 13. CONCLUSIONgranularity of protection coarser. While �ne grained control has been lost, it is notcrippling. This change forces programmers to use capabilities which cover largerregions of memory than those used in the Password-Capability System. If space isat a premium, programmers can aggregate small data structures, which have thesame security requirements, into a single object. O�setting the coarsening of theprotection domain is the ability to load and access a far greater number of objectsat one time. This reduces the number of load and unload operations required, incomparison to the Password-Capability System, and allows the programmer greaterexibility.Di�culties found while writing application programs have motivated changes tothe functions provided by the kernel.The message passing mechanism was required to handle messages of di�erenttypes in di�erent ways and to guarantee the delivery of high priority messages. Thisrequirement was met by introducing a subprocess mechanism, and functions whichallow the reservation of mail boxes based on target subprocess or message pre�x.The subprocess mechanism provides elegant handling of events asynchronous to aprocess. The mechanism can also be used to implement a form of co-operativemultitasking within a process.The initialisation process requires a capability for the physical memorywhere thekernel resides. Although the passwords for this capability are randomly allocated,this situation presents a signi�cant opportunity for attacking the system. To improvesecurity it was useful to be able to remove rights, through the restrict operation,from this and other capabilities. The ability to remove rights from a capability afterit has been created is a fundamental change from the Password-Capability System.Access to this capability would allow a process unfettered access to the system. Therestrict operation deletes rights from a capability preventing those rights beingused by processes that load the capability after the restrict operation has beenperformed. Instances of the capability loaded at the time of the restrict operationare una�ected. The operation enhances the security of the system by pruning rightspresent in the capability tree.While writing the screen and keyboard device manager - Glui - it was found

225that device managers needed greater control over processes using capabilities whichallow access to raw devices. A new mechanism to control the scheduling of a processwas introduced, along with a mechanism to limit the use of a capability to a singleprocess. Capabilities without the SRMULTILOAD right can only be loaded byprocesses with a serial number equivalent to the password 2 of the capability. Thismechanism provides a a method of restricting the use of a capability to a speci�cprocess. This mechanism is teamed with the protected freeze and thaw opera-tions. These operations allow a process to be frozen and to prevent another processfrom unfreezing it.To make the SRMULTILOAD right useful it was necessary to add the ability tospecify the passwords of a derived capability. This mechanism increases exibility,as it allows capabilities with widely known values to be used as mechanisms foraccessing services, and it does not reduce the security of the systemAnother signi�cant di�erence from the Password-Capability System is that partof the serial number of a capability under the Walnut Kernel is used to representthe disk block of the header block of the object. This change has been shown tohave a minimal cost in terms of the ability to guess a capability. At most one bit ofthe serial number is lost.The current �xed queue size round robin scheduling mechanism is inadequatefor a production system. However, a user process providing storage for the namesof processes to be scheduled and long and medium termed scheduling is planned toovercome the de�ciencies of current scheduler.Two types of windows have been introduced into the Walnut Kernel. This makesthe programmer's task more complex. All capabilities can be loaded into smallwindows but only a small fraction of the process address space is available for smallwindows. Some capabilities cannot be loaded into a large window. The convenienceof the size of large windows is traded for the exibility of small windows.Execute only code is not available under the Walnut Kernel as its target popu-lation of processors does not generally support execute without read in page tableentries. This prevents the use of embedding capabilities in execute only code as amechanism of protecting capabilities. Furthermore, it prevents the hiding of algo-

226 CHAPTER 13. CONCLUSIONrithms and implementations from users of library code. Mechanisms that providethese protections using the available facilities are being investigated.The Walnut Kernel does not have an adequate backup mechanism. Currentlyvolumes can be archived at the block level and restored after a failure of the media.However, although individual users can backup the contents of an object they can-not backup an object itself. The set of capabilities derived for the object and thecapability for the object is lost. The partial backup and restore problem is commonto most capability based systems. In addition, there is a need to eliminate tamper-ing with the contents of a backed up object to prevent manipulation of the money�eld.Unlike the Password-Capability System, which was designed around customhardware, the Walnut Kernel was written with portability as a high priority. Thedesign traded the advantageous features of a speci�c architecture for a more genericset of functions. In the case of the i486 implementation this meant sacri�cing the�ne grained control o�ered by segment registers for the more widely available pagingmechanism.The Walnut Kernel incorporates a general mechanism for accessing devices byrepresenting the interfaces to devices as operations performed on blocks of memorymapped into the kernel's address space. This model of interaction between thekernel and hardware exactly describes the actions of a multiprocessor system withspecialised IO controllers which write into shared memory blocks. It is also a good �tfor uniprocessor versions of the kernel as a timer interrupt or a device interrupt canbe used to activate an interrupt service routine which treats the memory block asmemory shared with the kernel. This model has the valuable side e�ect of allowinginterrupt service routines to be written as if they are separate from the kernel. Thissimpli�es the task of porting the kernel from system to system as the device driversare clearly identi�able and independent of the kernel code.A simple but e�ective memory management model was adopted for managingthe physical memory. Part of the physical memory is reserved for the kernel. Thekernel is loaded into this section of memory and remains resident. The kernel areais not paged and is present in all process address spaces. The physical memory used

227to hold pages of objects is managed by allocating new pages - on demand - fromthe list of free pages. Pages are added to the free list by a procedure in the kernelwhich periodically invalidates and disposes of clean pages, and writes dirty pages todisk. The simple expedient of periodically disposing of page tables and maintaininga last reference time for each page of an object allows the kernel to ensure that apage cannot be accessed and can safely be removed from the physical memory.The Walnut Kernel allows a far greater number of capabilities to be loaded by aprocess than the Password-Capability System. Also, the address space of a process isconsiderably larger in the Walnut Kernel. These facilities are partial compensationfor the loss of �ne grained access control that was provided by specialised hardware.The performance measurements indicate that the Walnut Kernel provides similarperformance to a conventional operating system, where the operations are compa-rable. This demonstrates that capability based operating systems in general andthe Walnut Kernel in particular could become practical alternatives to conventionaloperating systems.The survey clustered operating systems into categories based on the kernel typeand the dominant paradigm of the kernel. From a commercial perspective the mostsuccessful operating system has a monolithic kernel and has a �le based paradigm.Small kernel and micro-kernel based operating systems have emerged as both pro-duction and research systems. Capability based operating systems tended to beexperimental.KeyKOS demonstrated that a capability based operating system o�ered featuresand facilities demanded by commercial computing users. Of particular importanceto the commercial environment were the high level of security, ease of sharing dataand the ability to accurately charge for services. Furthermore, a capability basedoperating system provided these features as a natural extension of the operatingsystem.The concepts of small kernels and micro-kernels are valuable as they allow soft-ware engineering practices to be applied to systems programming. Critical pieces ofcode are isolated, and well de�ned interfaces are used for communication betweenboth kernel components and layers of software providing services.

228 CHAPTER 13. CONCLUSIONThe Walnut Kernel was designed as a small kernel to provide the functionalityrequired in a commercial environment. The password-capability mechanism is moreexible than the alternatives of segregation and tagging. Tagged architectures aredemonstrably not cost e�cient, while segregated architectures are more complicatedand less exible. The ability to directly manipulate a capability and treat it as ordi-nary data eliminates the need for the kernel to mediate all operations on capabilities.If the kernel is required to perform all operations on capabilities the set of opera-tions is limited to those explicitly provided for by the operating system designer.The Walnut Kernel allows user code to extend the range of operations available formanipulating a capability. Examples of where this ability might be useful includecommunicating capabilities through an untrusted third party. The Walnut Kernelwould allow the most up-to-date encryption algorithms to be employed. Alternativesystems are either unable to provide this facility or the algorithm is �xed in thekernel.Single address space operating systems such as Opal provide a more direct linkbetween capabilities and addresses than the load/unload capability model employedby the Walnut Kernel. This simpli�es the application of the paradigm and reducescomplexity for the programmer. Users of a SASOS list a set of capabilities forthe protection domain that the program is allowed to use. Users of the WalnutKernel are required to explicitly load capabilities into their address space. The Wal-nut Kernel enjoys greater portability than SASOS operating systems as an addressspace signi�cantly larger than 32 bits is required to adequately support the SASOSparadigm. The Walnut Kernel functions well in a 32 bit address space.The container mechanism used in Grasshopper is more general than the loadingof segments provided by the Walnut Kernel. Containers are a collection of segmentsof objects. Containers may be nested within other containers. Under Grasshopper,the locus of a process's execution jumps from container to container as it proceeds.Similar functionality could be emulated under the Walnut Kernel by employing aset of routines within each Walnut Kernel process that load and unload segmentsbased on addressing exceptions. However, the implementation would be less elegantand less e�cient.

229The hardware proposed is novel in two respects. The hardware distributes theinterprocessor switches allowing for cost e�ective system growth, and it eliminatesthe requirements for central clocking of the system.Current multiprocessors, such as the CM-5, use centralised interconnects whichallow easy growth up to the capacity of the interconnect. Adding a single processorwhen an interconnect is full, incurs the cost of adding either a new interconnectionmodule or replacing the existing interconnect. The cost of the interconnect dom-inates the sizing of the system. By distributing the switching hardware, we allowthe interconnect to grow as the system expands. This allows the number of mod-ules to be right sized for the problem, as the cost of the interconnection no longerdetermines the most cost e�cient size of the system.Eliminating the requirement for central clocking, the multiprocessor allows greaterexibility in the physical layout of the system. In addition, it lifts size constraintson a multiprocessor allowing systems to be constructed using multiple cages, andeven cages separated by large physical distances. This allows systems to be easilyput together for large jobs. The mechanism proposed has the additional bene�t ofallowing processors to operate at di�erent clock speeds within the same multipro-cessor. This has signi�cant advantages in that allows investment in earlier modelprocessors to be retained without losing the full bene�t of incorporation of fasternew processors into the system.The Secure RISC Architecture project incorporates both hardware and softwareelements to address the problem of building systems which range in size from singleprocessor workstations through to large multi-cabinet multiprocessors. The WalnutKernel operating system and the hardware were designed to be mutually supportiveto provide performance, security and reliability.

230 CHAPTER 13. CONCLUSION

Appendix AUser Level Programmer's GuideThis appendix is drawn from the technical report 95/222 entitled The Walnut Ker-nel: User Level Programmer's Guide. This technical report is available from theDepartment of Computer Science, Monash University:Title: The Walnut Kernel: User Level Programmer's GuideAuthor: Maurice CastroNo.: 95/222Revised: November 1995I present it in support of my thesis.
231

232 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.1 OverviewThe Walnut Kernel is a capability-based operating system under development inthe Department of Computer Science at Monash University. This operating sys-tem draws on the concepts of and experience gained from the Password-CapabilitySystem1.The Walnut Kernel employs 128-bit names - Password-Capabilities - for viewsonto persistent objects. The random allocation of names within a sparse name spaceprovides a known level of statistical security for views and the contents of objects.Associated with each name is a set of rights which entitle the holder of the capabilityto access a section of the named object in a speci�ed way.The Walnut Kernel was designed as a portable operating system although itcurrently runs only on 80486 based PCs. Programs are compiled on a FreeBSD 1.1system and transferred onto the target machine on oppy disks. Work is continuingon the development of the kernel as well as the development of interfaces, shells,and utilities for the system.This document contains a programmer's manual for the Walnut Kernel. Thedocument is subject to revision as the kernel alters and currently describes only thelowest level of the kernel interface.AcknowledgmentsThe author would like to acknowledge the following contributions:� Prof C.S. Wallace - co-author of the kernel� Mr Glen Pringle - author of many of systems utility programs� Mr Carlo Kopp - author of the UNIX compatibility librariesThe `Secure RISC Architecture' project is supported by a grant from the Aus-tralian Research Council (A49030623). Maurice Castro is a recipient of an Aus-tralian Postgraduate Research Award.
1M. Anderson, R D. Pose, and C S. Wallace. A Password-Capability system. The ComputerJournal, 29(1):1{8, 1 1986.

A.2. OBJECTS 233A.2 ObjectsAll entities controlled by the Walnut Kernel are objects. A Walnut Kernel object isanalogous to a segment in segmented computer architecture. It comprises an orderedarray of bytes. An individual byte is identi�ed by its `o�set', a number indexingthe array. The �rst byte has o�set zero. An object is de�ned by the followingcharacteristics:Maximum O�set The largest addressed o�set in the object. (Note: this value isset on creation and automatically increases, as long as there are pages availablein the allocated space of the object)Limit The largest addressable o�set allowed in the object.Maximum Size The maximum number of bytes guaranteed to be available to anobject. The number of bytes includes storage for the objects capabilities anddope vectors. (In practice this value represents the maximum number of pagesand header pages guaranteed to be available to an object. The number of pagesis calculated by dividing the maximum size by the page size and roundingupwards.)Maximum Capabilities The maximum number of capabilities that can representthis object. (Note: this value automatically increases, as long as there is spaceavailable to hold the new derived capabilities)Money The amount of money the object has available. Su�cient money must bepresent in an object to pay for its resource consumption.Each object has at least one capability that allows access to the object - theobject's Master Capability. Deletion of the object's master capability results inthe deletion of the object. Other capabilities for views of the object are derivedfrom the master capability or its descendants.

234 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.3 CapabilitiesTheWalnut Kernel employs password capabilities to identify access rights to objects.Each capability (see �gure A.1) consists of a 128 bit identi�er composed of four 32 bitvalues: a volume number, a serial number, password 1 and password 2. Associatedwith each capability is a view which determines the region of an object a capabilityapplies to, a set of user rights, and a set of system rights which control how thatcapability is to be used.32 bitsVolume 32 bitsSerial 32 bitsPassword 1 32 bitsPassword 2Figure A.1: A Password CapabilityA.3.1 ViewA view is the attribute of a capability that de�nes the region of the object that canbe addressed by the possessor of the capability. Views are contiguous regions andare de�ned by an o�set from the base of the object and an extent. The view entitlesthe user to address part of an object, it does not guarantee that pages are containedin that region nor that the pages are readable by user processes.A.3.2 User RightsUser rights consist of a set of 32 bits which are managed by the kernel. The kernelattaches no meaning to the user rights bits. They are intended to be used by userprocesses to implement access to services in a way that is analogous to the controlsystem rights bits have over access to kernel services.A.3.3 System RightsThe system rights associated with a capability are encoded in a 32-bit word, basicallyas the OR of bits representing particular rights (the SRSEND �eld is an exception).For the numeric value of the system rights symbols see �gure A.4.SRDERIVE - Allow capabilities to be derived from this capability.SRSUICIDE - Allow this capability to destroy itself and its children.SRDEPOSIT - Allow the holder of this capability to deposit money into the ob-ject.

A.3. CAPABILITIES 235SRWITHDRAW - Allow the holder of this capability to withdraw money fromthe object.SRREAD - Allow the holder of this capability to read from the view.SRWRITE - Allow the holder of this capability to write to the view.SREXECUTE - Not used.SRUSER - Allow user processes to use the view.SRPEEK - Allow the holder of this capability to perform a peek system call onthe process represented by this capability (see A.11.2).SRMULTILOAD - Allow this capability to be loaded by any process. If this rightis absent then only processes with a serial number equivalent to the capability'spassword 2 may load this capability.SRSEND - an 8-bit �eld which, if non-zero, speci�es the subprocess to whichmessages may be sent by using this capability. This �eld has two specialvalues: 0xff - allow messages to be sent to any subprocess of the process, and0xfe - disallow messages to subprocess zero but allow messages to be sent toany other subprocess of the process.A.3.4 Deriving CapabilitiesDerived capabilities have equal or lesser rights than than their parent capability, atthe time of derivation. Suicide right is an exception as this right may be added tothe children of capabilities which do not hold this right.The rights of a parent capability may be reduced through the use of the re-strict system call after a child capability has been derived. The child capability isuna�ected by the restriction of the parent capabilities rights.

236 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.4 Process StructureA process in the Walnut Kernel is essentially an object which contains state infor-mation relating to the execution of the process. The minimal information foundwithin a process object is:� Sub-process table� Message slots� Table of Loaded Capabilities� Process cash� Lock words� Parameter page� Address mapOf these only the parameter page and the address map are directly accessible to theuser process. The address map is read-only. The parameter block and the remainderof process object are both readable and writable by the user process.The process structure is detailed in diagram �gure A.2.A.4.1 Process Address SpaceThe address space of a process operating under the Walnut Kernel is composed ofthree regions:Kernel Area is located at the bottom of the address space and is not addressableby user processes.Small Window Area is located above the Kernel Area and has a page sized gran-ularity. Single pages or multiple pages of objects may be mapped into thisregion of the address space by a user process. These mapped regions alwaysbegin and end on a page boundary.Large Window Area is located above the Small Window Area. It has a coarsergranularity than the Small Window Area. The �rst large window contains theProcess Object. All other large windows are allocated by the process.On a system with a 4 kilobyte page size, large windows have a granularity of 4megabytes and small windows have a granularity of 4 kilobytes.Two distinct paradigms are used to describe how the address is populated withobjects.The Password-Capability system used the term `Window Registers' to describea set of segment registers. The Password-Capability system used the upper bits of

A.4. PROCESS STRUCTURE 2370xffffffff0xffb000000xff700000H+0x400000
9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>; large windowsRM Message AreaP Parameter BlockA Address MapH 9>>>>>>>>=>>>>>>>>; Process object

0x4010000x400000
9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>; small windows0xd0000xc000 The Wall0x00000000 9>>>>=>>>>; Kernel AreaDescription Constant Name ValueR remainder of process object PARAMADDRESS + 0x1000 0x1011000M message area EXTRAADDRESS 0x101004cP parameter page PARAMADDRESS 0x1010000A address map 0x100f000H process header PROCHDADDRESS 0x1000000Figure A.2: Process Address Space: This diagram describes the major featuresof the address space seen by a process operating on a system with 4 kilobyte pages.The message area and the parameter block are collectively known as the parameterpage.

238 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEthe virtual address to indicate which register was in use. We retain this terminologyin the Walnut Kernel. The analogy between the two systems is imperfect as: theWalnut Kernel supports two classes of window registers; and although the numberof window registers is �xed on the Walnut Kernel the location of the registers inthe virtual address space is not �xed, under the Password-Capability System bothof these parameters were constant.The second paradigm describes the operation of the system. On a system with4 kilobyte pages, it views the address space as two address ranges. The addressrange from 0x400000 to 0xffffff can have objects loaded on 4 kilobyte boundaries.The address range 0x1400000 to 0xffffffff has objects loaded on 4 megabyteboundaries.A.4.2 Parameter PageThis page is composed of two parts: the parameter block and the message area.The parameter block is a structure de�ned in the �le param.h. This block is usedto pass parameters to the kernel when a system call is made. The second area isused to pass additional information to the kernel and to receive information fromthe kernel. The information passed via the message area varies with the type of call.Parameter BlockThe declaration of the parameter block structure is found in �gure A.3.The �elds are named after the function they are used for in the majority of calls.The values contained in the �elds are:error The error �eld contains an integer error value on returning from a systemcall. If the value is zero then the system call completed successfully. If thevalue is greater than zero the system call could not be completed successfully.If the return value is negative2 or greater than 2000000010 an internal kernelerror has occurred: contact the system's maintainer urgently and report thevalue. The �le include/kerror.h contains a translation table which allows errorvalues to be converted to ascii strings.vol serial pass1 pass2 The capability �eld composed of vol, serial, pass1 andpass2, contains either a capability being passed to a system call or a capa-bility being passed back by a system call.srights The system rights �eld contains one of� a bitmap indicating the system rights provided by a capability (FigureA.4 de�nes the symbolic and numeric forms of the system rights bits)� a mask which restricts the system rights provided to a derived capability2Negative error values are used internally by the kernel to indicate partial completion of asystem call which cannot be completed because of a transient problem.

A.4. PROCESS STRUCTURE 239
/* -- *//* Parameter Structure *//* -- */typedef struct Paramst {Sw error;Uw vol; /* volume ID */Uw serial; /* serial in volume */Uw pass1; /* password 1 */Uw pass2; /* password 2 */Uw srights; /* System rights */Uw urights; /* User rights */Sw base; /* Offset of cap from front of object */Sw limit; /* Max addressing offset from base *//* Zero means "to end of object" */Sw money; /* money word */Uw type; /* Type of object */Sw maxoff; /* Max addressing offset in whole object */Sw maxsz; /* Max size of defined content */Sw maxcap; /* Max capabilities now allowed */Sw offset; /* An offset in a capability window */Sw subpn; /* A subprocess number */Sw cindex; /* Index of a capl in a process TLC */Uw clocktime;Uw reserve; /* Non-zero shows reserved by sub-process */} Param; Figure A.3: Parameter Block Declaration

240 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDE� a set of limits used in the creation of a process� an encoded process state when inquiring about a process stateurights The user rights �eld contains either� a bitmap indicating the user rights provided by a capability� a mask which restricts the user rights provided to a derived capabilitybase The base �eld contains an o�set from the beginning of a view or - on processcreation - the time, in seconds, at which the new process is scheduled to wakeup.limit The limit �eld contains one of� the length of a message� the maximum addressable o�set of an object� the maximum size of a viewmoney The money �eld contains one of� the amount of money in an object� the amount of money to be deposited or withdrawn� the amount of money to be sent with a message� the amount of money received from a messagetype The type �eld contains the object type. The top bit of this �eld is set ifthe object is a process. The following type values are reserved by the kernel:0000000000000003 Prototype process0000ffff Physical memory object8000000080000002 Drive process80000003 Prototype processmaxo� The maximumo�set �eld contains the current maximumo�set of an object.maxsz The maximum size �eld contains the current maximum size of an object.maxcap The maximum capability �eld contains the current maximum number ofcapabilities for a processo�set The o�set �eld contains an o�set into a process's address space.subpn The subprocess number �eld contains the destination subprocess numberfor a message.

A.4. PROCESS STRUCTURE 241cindex The capability index �eld contains the index into the table of loaded capa-bilities that a capability occupies.clocktime The clocktime �eld, after returning from a system call, contains thecurrent time in seconds. The clocktime �eld is set to the wakeup time for aprocess when a wait system call is made.reserve The reserve �eld provides both a locking function which prevents othersubprocesses accessing the parameter block and indicates the type of kernelcall being made. The currently available kernel call constants are listed in�gure A.5.#define SRDERIVE 0x40000000 /* System rights bits */#define SRSUICIDE 0x20000000#define SRDEPOSIT 0x10000000#define SRWITHDRAW 0x08000000#define SRREAD 0x04000000#define SRWRITE 0x02000000#define SREXECUTE 0x01000000#define SRUSER 0x00800000#define SRPEEK 0x00400000#define SRMULTILOAD 0x00200000#define SRSEND 0x000000FF /* Bits relating to send rights */Figure A.4: System Rights ConstantsMessage BlockThe message area's contents are interpreted di�erently for each class of call. Thereare currently three classes of information stored in the message block:� Messages - Messages to be sent by the send message system call and messagesrecovered by the receive message system call are stored at the front of themessage block.� System states - The save register and load register system calls store the regis-ter set and other state information for a subprocess at the front of the messageblock.� Read/Write Data - Bytes to be transferred by the external read or externalwrite system calls are stored at the front of the message block.� Initialization information - Initial values used to set stack and program coun-ters, the name of an heir and a list of capabilities to be pre-loaded into aprocess are stored at the front of the message block.

242 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDE/* -- *//* Action Codes *//* -- */#define K_MAKEOBJ 1#define K_MAKECAP 2#define K_DEL 3#define K_DELDER 4#define K_RESIZE 5#define K_SHRINK 6#define K_WAIT 7#define K_LOADCAP 8#define K_UNLOADCAP 9#define K_CAPID 10#define K_MAKEPROC 11#define K_SEND 12#define K_RECV 13#define K_EXTSEND 14#define K_EXTREAD 15#define K_EXTWRITE 16#define K_BANK 17#define K_RESTRICT 18#define K_CAPSTAT 19#define K_RENAME 20#define K_MAKESUBP 21#define K_DELSUBP 22#define K_LOADREG 23#define K_SAVEREG 24#define K_SETTRAP 25#define K_RECV_CLOSE 26#define K_ACCEPT_MAIL 27#define K_CLOSE_BOX 28#define K_COPYOBJ 29#define K_PEEK_PROC 30#define K_SET_HEIR 31Figure A.5: De�ned Kernel Call Constants

A.4. PROCESS STRUCTURE 243A.4.3 The WallEvery process has a read-only page mapped into its address space known as theWall. This page contains public information, including the current time, and thecapabilities of public utilities. A wall manager places information in the wall. Thewall currently contains:0xc000 Scheduler Start Variabley0xc004 Physical Object: Volumey0xc008 Physical Object: Serialy0xc00c Physical Object: Password 1y0xc010 Physical Object: Password 2y0xc000 GLui: Magic Number0xc004 GLui: Volume0xc008 GLui: Serial0xc00c GLui: Password 10xc010 GLui: Password 20xc014 Name Server Set: Magic Number0xc018 Name Server Set: Volume0xc01c Name Server Set: Serial0xc020 Name Server Set: Password 10xc024 Name Server Set: Password 20xc028 Name Server Set: O�set0xcfe0 Time in Seconds0xcfe4 Time in Microsecondsy: These locations are used by the initialization process. After initialization thecapability of the physical object is overwritten by the initialization process and thevalue of the scheduler start variable is no longer signi�cant.

244 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.5 Process Structure ConventionsThis section covers the conventional layout of a process (Section A.4 outlined themandatory elements of a process structure).A.5.1 The Process ObjectThe following elements of the process object are visable to the user process and areprovided by the kernel:� The Process Address Map� The Parameter Page� The Message AreaThey form part of the mandatory component of the process structuring conventionused by Walnut Kernel processes.By convention the following items are located within the process objectStartup Code Area (optional) This area may contain a small amount of codeused in starting a process.File Descriptor Table (mandatory) This area contains the �le descriptors for useby the process. Note: The �rst 3 elements of the File Descriptor Table aremandatory to allow for standard output, standard input and standard error.Private Data Pointer Table (mandatory) This area contains pointers to privatedata. The table is indexed by the capability index of the executing code andis used to locate data used by the executing code.Default Heap (optional) The default location for the creation of the heap.Default Stack (optional) The default location for the creation of the stack.The structure of the process object is outlined in �gure A.6.A.5.2 The ProcessConventional processes will be constructed according to the following rules:� The code object will be loaded at address 0x1400000� The data object will be loaded at address 0x5400000� Initialized data will be placed at the front of the data object

A.5. PROCESS STRUCTURE CONVENTIONS 2450x1400000 Default Stack0x1017000 Default Heap0x1016000 Private Data Pointer Table0x1012000 File Descriptor Table0x1011000 Startup Code Area0x1010000 Parameter Page0x100f000 Process Address Map0x1000000Figure A.6: Process Object: This diagram describes the major features of theprocess objectThis design allows multiple instances of a process to be created by sharing thecode objects and using copies of the data objects. In addition by placing the ini-tialized data at the front of the data object it is possible to ensure that the originaldata object is compact and hence easy to copy. The copy of the data object willexpand as required when uninitialized data is accessed.This arrangement of code and data allows up to 64 Mbytes of code to be sup-ported. With the introduction of shared code libraries larger programs can be sup-ported.

246 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.6 Process CreationThis section describes the process of creating a process and the initial state of a newprocess.A.6.1 Making ProcessesA process is created using the Make Process call covered in section A.11.2. Thissection will provide a general introduction to the creation of a process.Creating a process involves:� Creating a new process object� Creating an address space� Loading the new process object into the address space� Creating subprocess 0 and subprocess 1.� Loading pre-loaded capabilities into the address space� Setting initial program counter and stack pointer values for subprocess 1.� Setting the wake up time of subprocess 1.� Loading the new process object into address space of the creating processThis process appears as an atomic operation to the process issuing the MakeProcess system call. If the system call was successful the master capability forthe new process object will be returned and the new process will be loaded at theaddress given in o�set in the parameter block.At the completion of the Make Process system call, the new process object isloaded into the address space of the creating process. If the new process object islarger than 4 megabytes in size, only the �rst 4 megabytes of the new process objectis visable. Thus the process which issued the Make Process system call and thenew process have a region of shared memory.A.6.2 Initial Process StateImmediately after a process has been created:� The parameter block of the new process will contain:

A.6. PROCESS CREATION 247vol Volume of master capability for processserial Serial of master capability for processpass1 Password 1 of master capability for processpass2 Password 2 of master capability for processsrights Encoded process creation parametersurights User rights of process's master capabilitylimit Maximum size of process object (hard limit)money Amount of money in process object / process cashtype Type of processmaxo� Maximum o�set of view on process objectmaxsz Maximum size of process objectmaxcap Maximum number of capabilities� The message area will consist of a table of pre-loaded capabilities with theformat:vol Volumeserial Serialpass1 Password 1pass2 Password 2base Start of the loaded window relative to the capabilitylimit Size of the loaded window. Zero indicates capability limito�set Location of window in the new process's address spacecindex Index in table of loaded capabilities. Zero for automatic allocation� The process object will be loaded at the location PROCHDADDRESS� The address space will contain all pre-loaded capabilities� Only subprocess 0 and subprocess 1 will exist� Subprocess 1 will begin executingThe process creation parameters are encoded in the system rights �eld:8 bitsMax subp 8 bits# message slots 8 bitsMax loaded caps 8 bits# auto load capsmsb lsb� Max subp - The maximum number of subprocesses for the new process includ-ing subprocess 0.� # message slots - The number of message slots for the new process. As amessage slot is reserved for subprocess 0 the number of message slots must be1 or greater.

248 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDE� Max loaded caps - The maximum number of loaded capabilities for the newprocess. This number includes the capability for the process.� # auto load caps - The number of capabilities to be automatically loaded intothe new process's address space including the capability for the new process.When a process is created two equal sums of money are deposited into thenew process. The sums are deposited into the process cash and the process objectrespectively. The size of one of the deposited sums is reported in the money �eld.It is normal practice for the �rst action of a process to be the duplication of theinformation passed in at process creation. It is particularly important to store thecapability for the process as it is not possible to locate the master capability for theprocess subsequently.The creation of subprocesses other than subprocess 0 and subprocess 1 is handledby the application using the Make Subprocess call.

A.7. SUBPROCESS ZERO 249A.7 Subprocess ZeroThe Walnut Kernel implements two direct methods of communication with the ker-nel: system calls and messages to subprocess zero of a process. The system callmechanism (described in the section A.11) allows a process to alter its own state,operate on capabilities and send messages. The subprocess zero mechanism allowsa process to control another process's state.Subprocess zero functions are accessed by sending messages to a process's sub-process zero. The message contains a function identi�er and arguments. On receiptof a message to subprocess zero the kernel interprets the instruction provided andperforms the required action. Subprocess zero operations and messages are thehighest priority function of a process.The currently implemented subprocess zero functions are:Freeze Prevent process from being scheduled.Thaw Allow process to be scheduled.Wakeup Set the wakeup time of the speci�ed subprocess to zeroCooee Request the process to send a status message using a speci�ed capability.Protected Freeze Prevent process from being scheduled until all protected freezeson the process have been thawed.Protected Thaw Allow a process to be scheduled when all other protected freezeshave been thawed.Figure A.7 lists the identi�ers and arguments of the messages.Function Function ID Arg 1 Arg 2 Arg 3 Arg 4Freeze 33330001Thaw 33330002Wakeup 33330003 subp #Cooee 33330004 vol ser pass 1 pass 2Prot Freeze 33330007 magicProt Thaw 33330008 magicFigure A.7: Subprocess Zero Functions and ArgumentsA.7.1 FreezeOn receipt of a freeze message subprocess zero sets the process state to frozen andcauses the process to be removed from the scheduler queue.

250 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.7.2 ThawWhen a process receives a message it is placed into the scheduler queue. If theprocess is frozen the process is typically removed from the queue after the subprocesszero messages are parsed. On receipt of a thaw message, subprocess zero sets theprocess state to normal and process execution resumes.A.7.3 WakeupThe wakeup message sets the wakeup time of the nominated subprocess to thecurrent time. This allows a process to start a process that has suspended activityand has closed mail boxes as the mail box allocated to subprocess zero cannot beclosed.One application of this function is to allow the initialization of data structureswithin a process object. The process is created with a wakeup time of never prevent-ing the scheduling of the process. The creating process initializes the required datastructures before waking the created process up. At that stage the created processmay elect to open its mail boxes as processes are created with all but subprocesszero's mail boxes closed.A.7.4 CooeeOn receiving a cooee message subprocess zero attempts to send a message usingthe capability found in the cooee message. If the capability in the cooee messageallows transmission to any subprocess of a process then the message will be sent tosubprocess one of the nominated process, otherwise, the message will be sent to thesubprocess represented by the capability.The reply message is of the form:33330005 volume serial statusThe message consists of a set of words which represent the Cooee reply identi�er,the volume and serial number of the current process and a process status. Theprocess status is given in �gure A.8.State State ID ValueNormal State PROCSTATENORMAL 1In Kernel Call PROCSTATEKERNEL 2In Read Fault PROCSTATERFAULT 3In Write Fault PROCSTATEWFAULT 4Process Frozen PROCSTATEFROZEN 5Process in Probate PROCSTATEPROBATE 6Process Dead PROCSTATEDEAD 7Figure A.8: Process Status

A.7. SUBPROCESS ZERO 251A.7.5 Protected FreezeOn receipt of a protected freeze message subprocess zero sets the process state tofrozen, XORs the magic word with a key held in the process state, increments a countheld in the process state and causes the process to be removed from the schedulerqueue. This prevents other parties from thawing the process unless they know theset of magic words used in the protected freeze operations applied to the process.A.7.6 Protected ThawOn receipt of a protected thaw message subprocess zero XORs the magic word witha key held in the process state and decrements a count held in the process state. Ifboth the count and key held in the process state are zero then the process is thawed.If the count is zero and the key is non-zero then the process is terminated.

252 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.8 SubprocessesSubprocesses are implemented in the Walnut Kernel as threads of execution whichshare a single address space. This section describes subprocesses and their schedul-ing.A.8.1 Anatomy of a SubprocessWhen a process is created a �xed number of subprocess slots are allocated in theprocess structure. These slots form the subprocess table which is used to store thesubprocess states.When a subprocess is created the creator speci�es a priority which is used todetermine which subprocess should be scheduled, the starting address of the sub-process and the the address of the subprocess's stack pointer. It is the responsibilityof the programmer to ensure that the stacks of subprocesses do not overlap.Subprocesses share the address space of the process and hence have no protectionfrom the actions of other subprocesses of the process.A.8.2 Operations on SubprocessesSubprocesses can be made through the use of the K MAKESUBP system calland they are destroyed by K DELSUBP. Messages are sent to subprocesses usingK SEND and K EXTSEND. There are three types of capabilities which can beused to send messages: capabilities which can send messages to any subprocess of aprocess, capabilities which can send a message to any subprocess of a process otherthan subprocess zero, and capabilities which can only send messages to a particularsubprocess. The type of capability determines if the subprocess parameter of thesend operation is used.A.8.3 SchedulingSubprocesses have the semantics of processes on a time sharing system. That is,when a subprocess of a process is executing no other subprocess of that processcan be executing. On the Walnut Kernel processes are used to support concurrentexecution.The algorithm for determining which subprocess to run at the beginning of atime slice for a process is as follows:1. If a subprocess was executing and there is a non-zero value in the reserve �eldof the parameter block resume execution of that subprocess.2. Execute the subprocess with the highest priority which is not waiting.3. For subprocesses of equal priority select the �rst subprocess encountered inthe subprocess table.

A.8. SUBPROCESSES 253Before performing the algorithm to determine which subprocess to schedule themail boxes are scanned. If a new message has arrived for a subprocess the subprocessis made runnable (not waiting).Subprocesses can ensure that other subprocesses of the current process are ex-cluded from executing by setting the reserve �eld to a non-zero value. It is essentialthat any subprocess attempting to make a system call sets the reserve �eld to theappropriate value for the system call before accessing other elements of the parame-ter block. It is also necessary to test or copy all required values from the parameterblock before zeroing the reserve �eld after returning from a system call.

254 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.9 Messages and MailboxesThis section describes the processes of sending and receiving messages.A.9.1 Sending MessagesMessages are sent using either the K SEND or K EXTSEND system calls. Amessage consists of the contents of the message area. The length of the message isvariable (currently up to 16 words may be sent) and it is speci�ed by setting thelimit �eld to the number of bytes to be transferred.Messages are sent to processes represented by a capability. The capability maybe derived to allow messages to be sent to only one subprocess or to allow messagesto be sent to all subprocesses of the process. If the latter type of capability is usedthen the subpn �eld contains the destination subprocess number.A message will only be sent if there is an empty mailbox available to receive themessage at the destination process. An error is returned if there are no suitablemailboxes at the destination process.A.9.2 Receiving MessagesMessages are retrieved and mailboxes are cleared by issuing a K RECV systemcall. A match string can be speci�ed for the receive system call allowing the userprogram to control the order in which messages are retrieved from mailboxes.When there is a message in a mailbox waiting to be received, the wakeup time ofthe subprocess is set to the current time. This nulli�es the e�ect of any K WAITsystem calls.A.9.3 MailboxesMailboxes have 3 independent parameters which determine whether or not they willaccept a message: state, pre�x, and subprocess.The state of the mailbox:Open - The mailbox is prepared to accept a message that meets the other criteriaClosed - The mailbox will not accept messagesA message pre�x consists of a string of characters:Non-zero length - Only messages starting with the pre�x string are accepted.The length of the pre�x string is speci�ed in bytes.Zero Length - Accept any message meeting the other criteriaMailboxes may accept messages for speci�ed subprocesses:

A.9. MESSAGES AND MAILBOXES 255Subprocess 0 - 250 - Only messages intended for the speci�ed subprocess are ac-ceptedSubprocess 255 - Accept any message meeting the other criteriaIf a message matches the mailbox's criteria and the mailbox is empty then themessage is placed in the mailbox. The criteria are used to ensure that mailboxes areavailable for particular types of messages. The �rst available mailbox that acceptsthe message is used.The K RECV CLOSE, K ACCEPT MAIL and K CLOSE BOX systemcalls are used to manipulate the parameters of the mailbox.Both theK CLOSE BOX and theK RECV CLOSE system calls close mail-boxes. The K RECV CLOSE receives a message from a mailbox and then closesthe mailbox from which the message was extracted. The K ACCEPT MAIL sys-tem call opens a mailbox and speci�es the parameters which determine the messagesthe mailbox will accept.

256 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.10 ExceptionsThis section describes the handling of exceptions by processes under the WalnutKernel. The default behavior of the Walnut Kernel is to terminate any processwhich encounters an exception. This behavior can be modi�ed by using trap handlingsubprocesses.A.10.1 Types of ExceptionThe Walnut Kernel detects the following exceptions:FPFAULT - All exceptions relating to errors in arithmetic. This may include oat-ing point exceptions, integer arithmetic exceptions, dividing by zero, overowand underow. The types of errors detected by this exception are processordependent.OPFAULT - This exception is raised when an invalid instruction is parsed by theprocessor.ADDRSFAULT - This exception is used to catch all errors relating to addresses.It is raised under the following conditions:� An unmapped region of the address space has been accessed� A write has been attempted on a read-only area of memory� A read or write has been attempted on an privileged area of memory� An object could not be automatically expanded to accommodate theattempted access due to the lack of unreserved space on the volumeDBFAULT - This exception is raised whenever a debug exception is raised by theprocessor. This exception is processor dependent.ALIGNFAULT - This exception is raised on unaligned accesses. This exceptionis processor dependent.A.10.2 Trap Handling SubprocessesA trap handler is a normal subprocess which has been nominated to receive trapmessages for a given subprocess. The K SETTRAP system call is used to informthe kernel where trap messages should be sent. The set trap system call takes twoarguments: the subprocess for which traps are to be handled and the subprocesswhich will handle the trap.A subprocess cannot handle its own traps. If a subprocess traps and the trapmessage is to be sent to the same subprocess then the process will be terminated.When an exception occurs in a subprocess, which has a nominated trap handler,the subprocess with the fault is markedDEAD, its wake up time is set to NEVER

A.10. EXCEPTIONS 257and a message is sent to the trap handler. The format of the message is discussedin section A.10.3.The trap handler can examine and alter the state of the dead subprocesses reg-ister sets through the use of the K LOADREG and K SAVEREG system calls.The subprocess can be restored to operation through the use of theK MAKESUBPsystem call.A.10.3 The Trap MessageA �ve word message is sent (see �gure A.9) to the trap handling subprocess. Thewords of the message are:1. Message Type - this word indicates that the message is the result of an excep-tion. The failure message identi�er is 0x3333ffff.2. Subprocess Number - the subprocess number of the subprocess in which theexception occured.3. Fault Identi�er - a code which identi�es the type of exception which occured(see table A.1).4. Processor Error Code - a processor dependent error code for non-oating pointoperations.5. Floating Point Error Code - a processor dependent error code for oating pointoperations.The error codes are processor dependent and are only returned where relevant tothe cause of the exception.0x3333ffff Subprocess Fault Processor FPNumber Identi�er Err Code Err CodeFigure A.9: Structure of the Failure MessageMnemonic Description ValueFPFAULT Floating Point Fault 101OPFAULT Opcode Fault 102ADDRSFAULT Address Fault 103DBFAULT Debug Fault 104ALIGNFAULT Alignment Fault 105Table A.1: Error Identi�er Values

258 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEA.11 System callsAll system calls implemented within the Walnut Kernel use the parameter block tocontain all the parameters of the call. There is only one parameter block per process.To prevent subprocesses from altering the parameter block while another subprocessis setting up or receiving the results of a system call it is essential that the reserve�eld be set to a non-zero value while a subprocess manipulates the parameter block.Setting the reserve �eld to a value prevents any other subprocess of a process beingrun until the reserve �eld is cleared.A.11.1 ProcedureHow to make a system call:� Put the call number in the parameter block's reserve �eld� Fill in necessary parameters� Call system call()After a successful system call has been completed:� Copy any desired information out of the parameter block� Set the reserve �eld to zeroAfter an unsuccessful system call (error > 0)� Copy the error code and any other desired information out of the parameterblock� Set the reserve �eld to zero

A.11. SYSTEM CALLS 259A.11.2 Available System CallsThis section describes the currently available system calls on the Walnut Kernel andthe parameters required for those calls.Make ObjectName Symbol ValueMake Object K MAKEOBJ 1Input Parameters:vol -Volume on which to create objectsrights -System rightsurights -User rightslimit -Highest byte o�set of object (hard limit)money -Initial moneytype -Object typemaxo� -Highest byte o�set of object (soft limit)maxsz -Maximum size of objectmaxcap -Maximum number of capabilities including masterOutput Parameters:vol -Master capability (volume)serial -Master capability (serial)pass1 -Master capability (password 1)pass2 -Master capability (password 2)srights -Master capability (system rights)urights -Master capability (user rights)limit -Highest byte o�set of object (hard limit)money -Initial moneytype -Object typemaxo� -Highest byte o�set of object (soft limit)maxsz -Maximum size of objectmaxcap -Maximum number of capabilities including masterDescription:This call creates an object of the size speci�ed on the volume speci�ed. Theobject will have the rights dictated by the srights & urights �eld.Before using the limit value, it is transformed:limit = (BIGLIMIT if limit = 0limit otherwiseTo create a new object the following preconditions must be met limit&0x3ff = 0,maxoff � limit, limit � BIGLIMIT , and maxsz � BIGLIMIT .

260 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEDerive CapabilityName Symbol ValueDerive Capability K MAKECAP 2Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights maskurights -User rights maskbase -O�set from the beginning of existing viewlimit -Size of derived viewmoney -Drawing limit of capabilitysubpn -New password 1 (if subpn >= 1024)cindex -New password 2 (if subpn >= 1024)Output Parameters:vol -Volumeserial -Serialpass1 -Derived capabilities password 1pass2 -Derived capabilities password 2srights -Derived capabilities system rightsurights -Derived capabilities user rightsbase -Cleared by calllimit -Maximum size of derived viewmoney -Drawing limit of capabilitytype -Drawing limit of derived capabilityDescription:This capability derives a capability from a given capability. The new capabilitymay have weaker rights and/or a smaller view of an object. Note that the suicideright may be added to a derived capability.Attempts to derive capabilities from a capability without the SRMUTLILOADright always have the same pass2 as the original capability.If limit is set to 0 then the view of the derived capability will extend from thebase to the end of the view provided by the original capability.The following pre-conditions must be met view:limit� base and limit � 0.

A.11. SYSTEM CALLS 261Delete CapabilityName Symbol ValueDelete Capability K DEL 3Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Deletes the capability speci�ed (if the capability has suicide right) and all of itsderivatives (if the capability has derive right).Delete Derived CapabilitiesName Symbol ValueDelete Derived Capabilities K DELDER 4Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Deletes all of the derivatives of the speci�ed capability (if the capability hasderive right).

262 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEResize ObjectName Symbol ValueResize Object K RESIZE 5Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -New limitmaxo� -New maximum o�setmaxsz -New maximum sizemaxcap -New maximum number of capabilitiesOutput Parameters:Description:Resizes an object to the values given in limit,maxo� and maxsz. If maxcapis greater than the current number of permitted capabilities then the number ofcapabilities is increased, otherwise, maxcap is ignored.Preconditions: to be speci�edShrink ObjectName Symbol ValueShrink Object K SHRINK 6Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Shrinks the object to a size just su�cient to contain its current contents andsets the limits to make this the maximum size of the object. The object's limit,maximum o�set,maximum size and maximum number of capabilities arealtered.Preconditions: to be speci�ed

A.11. SYSTEM CALLS 263WaitName Symbol ValueWait K WAIT 7Input Parameters:clocktime -Wakeup timeOutput Parameters:Description:Provided there are no outstanding messages this call puts the subprocess to sleepuntil either a message arrives or the wakeup time has been reached. The wakeuptimes of 0 and -1 have special meanings:0 Surrender the remainder of time slice-1 Set no wakeup time. Awake only when sent a messageWakeup times are in seconds and are absolute. Relative wakeup times can becreated by adding a value to the time found in clocktime.

264 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDELoad CapabilityName Symbol ValueLoad Capability K LOADCAP 8Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2base -O�set from start of viewlimit -Size of window to be loadedo�set -Logical address of load locationcindex -Capability indexOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitybase -O�set from start of viewlimit -Size of window loadedmoney -Drawing right or money provided by capabilityo�set -Logical address of load locationcindex -Capability indexDescription:Loads a view or part of view provided by a capability into the processes addressspace.To nominate the capability index of the loaded capability a non-zero cindexshould be provided to an empty slot in the table of loaded capabilities. If cindexis zero then a value will be automatically allocated.The kernel can be requested to load a capability at a suitable address to containthe view of the object. The following table gives the values of o�set and theirmeanings.0 load anywhere, preferably a large window1 load anywhere, preferably a small window2 load as a large window3 load as a small windowAll other values of o�set are interpreted as speci�c addresses. The value of o�setis truncated to give a page boundary for small windows or a segment boundary forlarge windows.Limit gives the size of the window to be loaded. A limit of zero speci�es thatthe limit speci�ed by the capability should be used.

A.11. SYSTEM CALLS 265Unload CapabilityName Symbol ValueUnload Capability K UNLOADCAP 9Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2o�set -O�set of window to be unloadedcindex -Index in table of load capabilities of capability to be unloadedOutput Parameters:limit -Limit of freed windowo�set -O�set of freed windowcindex -Index of freed windowDescription:Unloads a capability from address space of the process. If o�set = 0 then thecapability vol serial pass1 pass2 will be unloaded. If o�set = 1 then the capa-bility located at index cindex in the table of loaded capabilities will be unloaded.Otherwise the capability at the location o�set will be unloaded.

266 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEIdentify CapabilityName Symbol ValueIdentify Capability K CAPID 10Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2o�set -O�setcindex -Index in table of load capabilitiesOutput Parameters:vol -Volume of loaded capabilityserial -Serial of loaded capabilitypass1 -Password 1 of loaded capabilitypass2 -Password 2 of loaded capabilitysrights -System rights of loaded capabilityurights -User rights of loaded capabilitylimit -Limit of loaded capabilityo�set -O�set of loaded capabilitycindex -Index of loaded capabilityDescription:Fills in the rights, limit, o�set and cindex for a loaded capability. If o�set= 0 then information for the capability vol serial pass1 pass2 will be returned.If o�set = 1 then the information for the capability located at index cindex inthe table of loaded capabilities will be returned. Otherwise information for thecapability loaded at location o�set will be returned.

A.11. SYSTEM CALLS 267Make ProcessName Symbol ValueMake Process K MAKEPROC 11Input Parameters:vol -Volume to create new process onsrights -Encoded process parametersurights -User rights of new processbase -Start up time for new processlimit -Highest byte o�set of object (hard limit)money -Money to be transferred to new processtype -Type of new processmaxo� -Maximum o�set of new process object (soft limit)maxsz -Maximum size of new process object (soft limit)maxcap -Maximum number of capabilities for new process (soft limit)o�set -O�set at which to load new process objectcindex -Index in table of loaded capabilities for new process objectOutput Parameters:vol -Master capability (volume)serial -Master capability (serial)pass1 -Master capability (password 1)pass2 -Master capability (password 2)urights -User rights of new processlimit -Limit of new process objectmoney -Money deposited in new processtype -Type of new processmaxo� -Maximum o�set of new process objectmaxsz -Maximum size of new process objectmaxcap -Maximum number of capabilities for new processo�set -O�set of new process objectcindex -Index of new process object in table of loaded capabilitiesDescription:Make Process creates an object, loads the object into the current process's ad-dress space and �lls in the process state information for the new process.Initially this call creates an object of the size speci�ed on the volume speci�edwith user rights dictated by the urights �eld and system rights set to SRPRO-CESSMASTER.Before using the limit value, it is transformed:limit = (BIGLIMIT if limit = 0limit otherwiseThe new object is created if the following preconditions are met limit&0x3ff 6= 0,maxoff � limit, limit � BIGLIMIT , and maxsz � BIGLIMIT .The object is then loaded into the process's address space at either a nominatedlocation or an automatically allocated location. The location is determined by the

268 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEvalue of o�set. If o�set is either 0 or 2 then the kernel will allocate a suitable largewindow automatically and load the object at that location, otherwise the object willbe loaded at the segment boundary speci�ed in o�set.The capability index of the loaded capability may be nominated by specifying acindex for to an empty slot in the table of loaded capabilities. If cindex is zerothen a value will be automatically allocated.A process is then created with the parameters dictated by the srights �eld. Thesrights �eld is interpreted as four �elds of 8 bits:8 bitsMax subp 8 bits# message slots 8 bitsMax loaded caps 8 bits# auto load capsmsb lsb� Max subp - The maximumnumber of subprocesses for the new process includ-ing subprocess 0.� # message slots - The number of message slots for the new process. As amessage slot is reserved for subprocess 0 the number of message slots must be1 or greater.� Max loaded caps - The maximum number of loaded capabilities for the newprocess. This number includes the capability for the process.� # auto load caps - The number of capabilities to be automatically loaded intothe new process's address space including the capability for the new process.The �rst four words of the message area contain the initial values of the programcounter and stack pointer for subprocess 1. The values are encoded:message area index for PCinitial PCmessage area + 2 index for SPinitial SPThe index is the index of a capability in the table of loaded capabilities. If anindex value of zero is supplied the initial values are treated as logical addressesinstead of as a byte o�set from the start of a capability.The next four words contain the capability of the new process's `heir'. The heir isnoti�ed in case of the death of the process. The message sent contains the remainingcash. If this �eld contains zero then the master capability for the creating processis used as the heir.The remainder of the parameter page contains a list of capabilities to be pre-loaded into the new process's address space. The list is composed of records of theform:

A.11. SYSTEM CALLS 269vol Volumeserial Serialpass1 Password 1pass2 Password 2base Start of the loaded window relative to the capabilitylimit Size of the loaded window. Zero indicates capability limito�set Location of window in the new process's address spacecindex Index in table of loaded capabilities. Zero for automatic allocationThe creating process will have twice the value indicated in money deductedfrom its cash. This money will be transferred equally to the new process's cash andnew process's process object.The process is scheduled to wake up at the time given in base with the wakeuptimes of 0 and -1 having the special meanings:0 Wake up immediately-1 Set no wakeup time. Awake only when sent a messageInformation relating to the new process object is returned to the creating pro-cess.

270 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDESend MessageName Symbol ValueSend Message K SEND 12Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be sent to processlimit -Size of message in byteso�set -O�setsubpn -Subprocess number to send message tocindex -Index in table of load capabilitiesOutput Parameters:srights -System rights of loaded capabilityurights -User rights of loaded capabilitymoney -Amount of money sent to processlimit -Size of message in byteso�set -O�set of loaded capabilitycindex -Index of loaded capabilityDescription:Sends a message to a process which is loaded into the address space of the sender.If o�set = 0 then the message will be sent to vol serial pass1 pass2 providedprocess object is loaded into the sender's address space. If o�set = 1 then themessage will be sent to the process with its process object loaded at index cindexin the table of loaded capabilities. Otherwise the message will be sent to the processwith its process object loaded at location o�set. The message length is speci�ed inlimit in bytes. The message to be sent is located at the beginning of the messagearea. A positive amount of money - money - is removed from sender's cash andsent with the message.

A.11. SYSTEM CALLS 271Receive MessageName Symbol ValueReceive Message K RECV 13Input Parameters:limit -Size of match stringOutput Parameters:money -Amount of money received with messagelimit -Size of messageDescription:Recovers message from a subprocess's message queue. If limit is non-zero thenonly a message which matches the �rst limit characters found in the match stringwill be recovered. The match string is found at the beginning of the message area.The message received is placed into the message area.If no message is present an error code is returnedExternal Send MessageName Symbol ValueExternal Send Message K EXTSEND 14Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be sent to processlimit -Size of message in bytessubpn -Subprocess number to send message toOutput Parameters:money -Amount of money sent to processlimit -Size of message in bytesDescription:Sends a message to the process vol serial pass1 pass2. The message lengthis speci�ed in limit in bytes. The message to be sent is located at the beginningof the message area. A positive amount of money - money - is removed from thesender's cash and sent with the message.

272 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEExternal Read MemoryName Symbol ValueExternal Read Memory K EXTREAD 15Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes to be reado�set -O�set in bytes from start of capabilityOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes reado�set -O�set in bytes from start of capabilityDescription:Reads limit bytes from o�set o�set in capability vol serial pass1 pass2. Thebytes read are stored at the start of the message area.External Write MemoryName Symbol ValueExternal Write Memory K EXTWRITE 16Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes to be writteno�set -O�set in bytes from start of capabilityOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes writteno�set -O�set in bytes from start of capabilityDescription:Writes limit bytes from o�set o�set in capability vol serial pass1 pass2. Thebytes to be written are stored at the start of the message area.

A.11. SYSTEM CALLS 273BankName Symbol ValueBank K BANK 17Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be transferred from capability to cashOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitylimit -Size of view in bytesmoney -Drawing limit available to capabilityDescription:Transfers money from cash from the calling process to the capability vol serialpass1 pass2. Both positive and negative amounts of cash may be transferred.If money is positive then the capability must have deposit right to perform thetransfer. If money is negative then the capability must have withdraw right toperform the transfer.

274 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDERestrict RightsName Symbol ValueRestrict Rights K RESTRICT 18Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights maskurights -User rights maskOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilityDescription:Reduces the rights of a capability by performing a bitwise and of the rights maskssupplied with the rights bitmaps of the capability vol serial pass1 pass2.The capability named must have suicide right for restrict to operate.

A.11. SYSTEM CALLS 275Capability StatusName Symbol ValueCapability Status K CAPSTAT 19Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitybase -Cleared by calllimit -Limit of view of capabilitymoney -Withdrawal right of capabilitytype -Type of objectmaxo� -Maximum o�set of objectmaxsz -Maximum size of objectmaxcap -Maximum number of capabilities for objectDescription:Returns details of capability vol serial pass1 pass2 and associated object.

276 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDERename CapabilityName Symbol ValueRename Capability K RENAME 20Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2base -Cleared by callDescription:Changes the passwords of capability vol serial pass1 pass2 to a new pair ofrandom values.A precondition to this call is that the capability has suicide right. In additionthe master capability of a process cannot be renamed.

A.11. SYSTEM CALLS 277Make SubprocessName Symbol ValueMake Subprocess K MAKESUBP 21Input Parameters:base -Start up time for new subprocesslimit -Priority of new subprocesssubpn -Subprocess numberOutput Parameters:base -Start up time for new subprocesslimit -Priority of new subprocesssubpn -Subprocess number of new subprocessDescription:Creates a new subprocess of the current process. If subpn is not zero and nosubprocess of the current process has been allocated that number then the subpro-cess's number will be subpn. The priority is set to the least 8 bits of limit. Thesubprocess is scheduled to wake up at the time given in base with the wakeup timesof 0 and -1 having the special meanings:0 Wake up immediately-1 Set no wakeup time. Awake only when sent a messageThe �rst four words of the message area contain the initial values of the programcounter and stack pointer for the new subprocess. The values are encoded:message area index for PCinitial PCmessage area + 2 index for SPinitial SPThe index is the index of a capability in the table of loaded capabilities. If anindex value of zero is supplied the initial values are treated as logical addressesinstead of as a byte o�set from the start of a capability.

278 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEDelete SubprocessName Symbol ValueDelete Subprocess K DELSUBP 22Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess number of deleted subprocessDescription:Deletes subprocess subpn. Note that neither subprocess 0 nor 1 can be deleted.Load Register SetName Symbol ValueLoad Register Set K LOADREG 23Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess numberDescription:Copies the structure sysstate at the start of the message area into subprocesstable entry subpn.Save Register SetName Symbol ValueSave Register Set K SAVEREG 24Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess numberDescription:Copies the structure sysstate from subprocess table entry subpn into the startof the message area.

A.11. SYSTEM CALLS 279Set TrapName Symbol ValueSet Trap K SETTRAP 25Input Parameters:o�set -Subprocess number to send trap message tosubpn -Subprocess number whose trap is being setOutput Parameters:o�set -Subprocess number to send trap message tosubpn -Subprocess number whose trap is being setDescription:Sets the destination subprocess for trap messages. Subprocess o�set is noti�edof faults in subprocess subpn.Receive Message and Close BoxName Symbol ValueReceive Message Close K RECV CLOSE 26Input Parameters:limit -Size of match stringOutput Parameters:money -Amount of money received with messagelimit -Size of messageDescription:Recovers message from a subprocess's message queue and closes the mail box themessage is recovered from. If limit is non-zero then only a message which matchesthe �rst limit characters found in the match string will be recovered. The matchstring is found at the beginning of the message area. The message received is placedinto the message area.If no message is present an error code is returned.

280 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDEAccept MailName Symbol ValueAccept Mail K ACCEPT MAIL 27Input Parameters:limit -Size of match stringsubpn -subprocess for which mail box is reservedOutput Parameters:Description:Opens a mail box for a subprocess and sets the acceptance string for the mailbox. The mail box is taken from the pool of closed mail boxes and set to receivemessages for a speci�c subprocess subpn or if subpn is 0xFF the mail box can beused for any subprocess.If limit is non-zero then the mail box created will only accept messages whichmatch the �rst limit characters found in the match string when the mail box isopened. The match string is found at the beginning of the message area.Close Mail BoxName Symbol ValueClose Matching Mail Boxes K CLOSE BOX 28Input Parameters:limit -Size of match stringsubpn -subprocess for which mail box is reservedOutput Parameters:base -Number of mail boxes closed by operationDescription:Closes mail boxes which match the closing criteria. If subpn equals 0xFF andlimit is zero then all user mail boxes will be closed. If limit is non-zero then onlyuser mail boxes with match strings matching the �rst limit characters of the matchstring found at the beginning of the message area will be closed. If subpn is non-zerothen only user mail boxes for subprocess subpn are closed.

A.11. SYSTEM CALLS 281Copy ObjectName Symbol ValueCopy Object K COPYOBJ 29Input Parameters:vol -Volume (original)serial -Serial (original)pass1 -Password 1 (original)pass2 -Password 2 (original)srights -System rights maskurights -User rights maskbase -Start of copy relative to beginning of originallimit -End of copy relative to basemoney -Money to be transferred to copytype -Type of copymaxsz -Maximum size of copymaxcap -Maximum number of capabilities of copyOutput Parameters:vol -Volume (copy)serial -Serial (copy)pass1 -Password 1 (copy)pass2 -Password 2 (copy)srights -System rights of copymaxo� -Maximum o�set of copymaxcap -Maximum number of capabilities of copyDescription:Duplicates an object by creating a new object and copying the contents of theoriginal object to the new object. This call copies only the de�ned pages of an objectand hence produces an exact duplicate of the contents of the section of the objectreferred to by the capability for the original object. The rights �elds allow the rightsof the copy to be reduced as the rights mask and the rights �elds are combined bya bitwise AND to produce the copy's rights �eld. The money �eld indicates theamount of money to be transferred from the process cash to the new object. Themaxsz �eld speci�es the maximum size of the new object. The type �eld speci�esthe type of the copy. The base �eld speci�es the start of the the copy region whichextends through to limit. If the limit and base �elds are zero then the completeobject is copied.NOTE:� This call will not duplicate processes� This call corrupts the �rst four words of the message area

282 APPENDIX A. USER LEVEL PROGRAMMER'S GUIDECheck Process StateName Symbol ValuePeek Process K PEEK PROC 30Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:srights -State of processbase -Wakeup timeDescription:Returns the state and wakeup time of a process given a suitable capability (ca-pability must have SRPEEK right). for the process. The wakeup time is returnedin base and the process state in srights. The process state is encoded:Value State-2 No such process-3 No right to inquire1 Process normal2 Process in kernel3 Process in read fault4 Process in write fault5 Process frozen6 Process in probate7 Process deadSet Heir of ProcessName Symbol ValueSet Heir K SET HEIR 31Input Parameters:vol -Volume of heirserial -Serial of heirpass1 -Password 1 of heirpass2 -Password 2 of heirOutput Parameters:Description:Set the heir of a process to the capability vol serial pass1 pass2. The heir ofa process receives a process's death message and any remaining cash.

Appendix BFormal Description of RestrictThe e�ect of the restrict function on the ability to provide data con�nement isformally expressed in this appendix. The following notation will be used:C - CapabilityR - Rights Set of a CapabilityM - Rights MaskO - Origin of the subtreeSuperscripts identify the location of an element (relative to the origin of thesubtree O) in the subtree. For example CO;3;2 is the second child of the third childof the capability at the origin of the subtree. Figure B.1 illustrates a subtree of thecapability tree using the notation.The notion of the depth of a node is used in the discussion. The formal de�nitionof the depth of a node relative to the origin of the subtree is provided in equationsB.1 and B.2.The depth of the origin is de�ned to be zero:depth(CO) 0 (B.1)The depth of other elements is found using the recurrent relationship:depth(CO;:::;m;n) depth(CO;:::;m) + 1 (B.2)The rights used in this analysis consist of the union of system and user rights(excluding suicide right - see sections 5.1 and 2.1 for the rational of the suicide283

284 APPENDIX B. FORMAL DESCRIPTION OF RESTRICTMO;1 CO;3RO;3;1CO;3;1MO;3;1 RO;3;2CO;3;2MO;3;2MO;3RO;1CO;1 RO;2CO;2R0C0MO;2 RO;3
Figure B.1: A Subtree of a Capability Treeright's exceptional behavior) and the ability to access a range of the contents of theobject. Derived capabilities have a subset of the parent capabilities rights and haveaccess to a subrange of the object's address space. Neither of these criteria is strict,so derived capabilities may have equivalent rights and ranges to their parents.In practice, the selection of pages for a derived capability is performed by using ano�set from the base of the parent capability and an extent. The extent is restrictedto be less than or equal to the top of the range of the parent's entitlements. Fornotational convenience the accessible pages of an object will be considered to bea set of access rights, and the rights mask will be extended to represent access toregions of the object. The restriction that the set be contiguous will be implicitthroughout this discussion.When a capability is derived its rights are determined by applying the logical-and operator to the rights of the parent capability and the mask:RO;:::;m&MO;:::;m;n ! RO;:::;m;nthis is equivalent to the set operation:RO;:::;m \MO;:::;m;n ! RO;:::;m;n

285Thus the following property is true at the time of derivation of a capability:RO;:::;m;n � RO;:::;mIn the Password-Capability System the relationship is static and hence remains true.The relationship between the rights of a capability (CO;:::;m) and the rights of itsdescendents CO;:::;m;:::;n can be stated:RO;:::;m;:::;n � RO;:::;m (B.3)The rights of capabilities display the properties of a heap, in that, capabilities ata greater depth than their ancestors are guaranteed to be no more powerful thantheir ancestors. This property is used to assure users that in giving a capability toanother user, the other user cannot use that capability to generate a capability oruse the capability in a way which allows the other user to gain access to rights notexplicitly conveyed by the capability.The introduction of the restrict operator to the Walnut Kernel invalidates theproperty de�ned in equation B.3. To show that the restrict operator does not makethe system less able to protect users' interests in restricting information ow it isnecessary to prove that a new criterion exists of equal or greater strength than theheap criterion of equation B.3.An enhanced notation is required to handle the description of the restrict op-eration. This notation introduces a subscript to the string used to describe theposition of a capability in the subtree of capabilities. The new subscript denotesthe number of restrict operations that have been applied to a node. Figure B.2illustrates a subtree of capabilities where the restrict operation has been appliedto a number of the nodes. The application of the restrict operation generates anew tree subtree of the original subtree. The origin of the new subtree overlaps therestricted node. No new nodes can be generated from the restricted node, however,its children are una�ected.When a capability is restricted its rights are determined by applying the logical-and operator to the rights of the original capability and the restrict mask. Therestrict mask is designated by the letterM.ROi;:::;mj&MOi;:::;mj+1 ! ROi;:::;mj+1

286 APPENDIX B. FORMAL DESCRIPTION OF RESTRICT
MO0;22CO0;20RO0;20RO0;10CO0;10 MO0 ;20MO0;10 R00C00

CO0;10;10RO0;10;10 CO0;10;20RO0;10;20MO0;10;10 MO0;10;20 CO0;21RO0;21MO0 ;21;10CO0;21;10RO0;21;10 CO0;22RO0 ;22
CO1RO1MO1;10 MO1;20CO1;10RO1 ;10 CO1;20RO1;20MO1MO0;21

Figure B.2: A Subtree of a Capability Tree - Enhanced Notationthis is equivalent to the set operation:ROi;:::;mj \MOi;:::;mj+1 ! ROi;:::;mj+1 (B.4)As restrict may only be applied to the last version of a capability's set of rights,and there is no inverse operation, the following property is true:ROi ;:::;mj+n � ROi ;:::;mjFurthermore, the property ROi;:::;mj ;:::;nk � ROi;:::;mj (B.5)is true, as a tree - with the heap property - can be constructed that extends fromthe origin down to the leaf, by selecting subtrees with origins listed in the path asmembers of the of the tree, instead of the nodes that represent the latest revisionsof the restricted capabilities. Figure B.3 illustrates such a tree derived from �gureB.2 for the node CO0;21;10.

287MO0;20CO0;21RO0;21MO0 ;21;10CO0;21;10RO0;21;10RO0 ;10CO0;10MO0;10 R00C00
CO0;10;10RO0;10;10 CO0;10;20RO0;10;20MO0;10;10 MO0;10;20Figure B.3: A Tree with the Heap Property for CO0;21;10The presence of such a tree assures users that there has been no loss of securitythrough the introduction of the restrict operator. Composing equations B.4 andB.5 provides ROi ;:::;mj+1 ;nk � ROi ;:::;mj;nlwhere MOi;:::;nk =MOi;:::;nlIf the restriction at mj results in a less powerful capability, that is if ROi;:::;mj+1 �ROi;:::;mj , then the operation may be viewed as a way of trimming the tree of potentialbranches. The branches eliminated could have held rights in ROi ;:::;mj \MOi;:::;mj+1 0.The ability to trim the tree of potential capabilities enhances the ability of theWalnut Kernel to control access to objects and services.

288 APPENDIX B. FORMAL DESCRIPTION OF RESTRICT

Appendix CHardware DescriptionThis appendix is drawn from a paper presented at ACSC-17 The Monash SecureRISC Multiprocessor: Multiple Processors Without a Global Clock. This paper ap-pears as:Title: Monash secure RISC multiprocessor:Multiple processors without a global clockAuthor: Maurice D. Castro and Ronald D PoseJournal: Australian Computer Science Communications,Proceedings of the Seventeenth Annual Computer ScienceConference (ACSC-17) Christchurch, New ZealandDate: 19-21 January 1994Editor: Gupta GPages: 453-459I present it in support of my thesis.
289

290 APPENDIX C. HARDWARE DESCRIPTIONThe Monash Secure RISC Multiprocessor:Multiple Processors Without a Global ClockMaurice Castro� and Ronald PoseyDepartment of Computer ScienceMonash UniversityClayton, Vic 3168, AustraliaPhone: +61 03 565 5203Fax: +61 03 565 5146AbstractThe goal of the Secure Monash RISC Multiprocessor Project is to pro-duce a powerful general purpose scalable multiuser multiprocessor com-puter. The requirement for synchronous clocks can be a major limita-tion on both physical layout and electrical design. Instead of attempt-ing to provide a global clock over all processors, we are developing anovel design which has clocks local to each processor and a self clockedbus with asynchronous arbitration. The overall system architecturestresses the ease of scalability by integrating a small switch into thebasic processor-memory module, e�ectively distributing the intercon-nection network hardware across all nodes.1 IntroductionDuring the initial stages of the designof the Monash Secure RISC Multipro-cessor it became clear that the exist-ing interconnection networks and bus ar-chitectures for multiprocessing comput-ers could not satisfy a number of thedesign goals of the project adequately.The design required an interconnectionstructure that was easily scalable, suf-�ciently versatile to solve general prob-lems, yielded high performance for alarge class of problems, and a high de-gree of fault tolerance.A novel mesh based interconnectionscheme was developed for the bus struc-ture1. A consequence of this scheme wasa major clock distribution problem: thereare multiple paths of di�ering lengths
which must be clocked synchronously.After calculating an approximate size fora processor node board and hence the sizeof a small, medium and large system, itwas apparent that it would be extremelydi�cult to provide a clock of the requiredfrequency that would be su�ciently wellaligned at the processors' bus interfacesto be useful for transferring data acrossthe interprocessor buses.To overcome these problems a selfclocking bus structure was proposed withasynchronous arbitration. This systemallows the retention of the design goalof easy scalability and avoids the re-quirement that the system have a globalclock[1]. This permits the construction ofa fully distributed system with a passiveinterconnection scheme.The use of FIFOs to decouple a bus�maurice@bruce.cs.monash.edu.auyrdp@bruce.cs.monash.edu.au1The scheme used for this bus structure will be the subject of a future paper

2. DESIGN GOALS 291clock from a processor clock is not un-usual2, however, the use of a deep FIFOcapable of holding a number of completetransactions with the aim of preventingthe bus being locked by a partially com-plete transfer is a notable design feature.2 Design GoalsThe design goals of the Monash SecureRISC Multiprocessor project are:� Scalability - The system will beconstructed from modular compo-nents enabling the construction ofsingle processor workstations, mul-tiprocessor workstations, mediumsize multiprocessors and large clus-tered multiprocessors.� High Performance - The design willminimize the potential for perfor-mance limiting bottlenecks in thebus structure.� Flexibility - The architectureshould be su�ciently exible tosupport a variety of algorithms,rather than being tuned to a spe-ci�c class of algorithms.� Fault Tolerance - The systemshould provide for the failureof processors or communicationspaths in a multiprocessor and pro-vide some means of isolating thefaulty component and continuingoperation.3 Design DecisionsTwo key design decisions were made atthe beginning of the project which havestrongly inuenced the design:� Passive interconnection

� Single active module typeAll the multiprocessor nodes are in-terconnected by passive backplanes. Al-though active interconnections o�er awider scope for avoiding the problemsof clock distribution we chose a passivebackplane because of its inherent advan-tages of simplicity and reliability.A single type of active module o�eredadvantages in the service and design ofthe machine. In case of failure a mod-ule can be unplugged and replaced eas-ily. The design e�ort is reduced as onlya single module needs to be designed.This arrangement also makes the ex-pansion of the system very simple. Extramodules are purchased and plugged to-gether without requiring any active inter-connection components. Unlike currentlyavailable massively parallel machines, allthe required switching logic is integratedinto the basic module. There are nocentralized unscalable resources such asactive interconnection networks used inother massively parallel machines.4 Satisfying the Design Cri-teriaThe design proposed for this project at-tempts to satisfy the project goals byusing an interconnection scheme whichincorporates both the features of a bussharing network and a switched network.4.1 Design CriteriaScalabilityTo achieve scalability in small machinesa classical SMP (Symmetric Multi-Processor) design is used for communica-tion within a processor board. This gives2The FutureBus+ uses this technique[2]

292 APPENDIX C. HARDWARE DESCRIPTIONcost e�ective scaling for a small numberof processors, and allows cache consis-tency to be achieved using bus snooping.To build larger systems the processorboards are linked by a mesh-like network.This network is essentially a store andforward network where data is passedfrom processor board to processor boardover a shared external bus. A two partcommunication protocol is used to ensurethat lost messages are accounted for. Itis not possible to guarantee cache consis-tency with this system as only processorson the path of a memory transaction areable to see the contents of that transac-tion.PerformancePerformance in a multiprocessor systemmay be limited by several factors. Ofmost importance to our design werememory bandwidth and memory latency.The design proposed has high band-width, as all connections are made with64 bit wide buses driven at the proces-sor's external speed. Within processorboards latency is low as the shared inter-nal bus yields a latency proportionate tothe speed of the processors and the mem-ory. The latency of interboard communi-cations is higher as transactions crossingmultiple processor boards are delayed bythe passage through each board.The latency of external transactionswill limit the performance of individualprograms, however, as the target oper-ating system is intended to be multipro-grammed, the performance of the overallsystem will not be limited. By havingmultiple processors within a node the fa-cilities of the node may be utilized whilean individual processor waits for remotememory. When a process is blocked on amemory transaction another process maybe allowed to proceed, maintaining sys-

tem utilization. Furthermore, it is pos-sible for the operating system to relo-cate processes and their memory pagesdynamically so that the path length be-tween processors and data is minimized,hence reducing the overall latency andimproving performance.FlexibilityBy adopting a mesh-like external con-nection it is possible to provide reason-able performance for a variety of algo-rithms. The system, as it is being imple-mented, allows for a variety of intercon-nection topologies with di�erent perfor-mance tradeo�s.Fault ToleranceA dual ported design is employed whichensures that each processor board hasat least two data paths into the exter-nal network permitting redundant accessto the shared resources. If the externalnetwork is su�ciently redundant then itis possible to allow continued operationgiven a single processor failure. A busfailure can also be tolerated.4.2 ConsequencesTo achieve maximum exibility in deter-mining the con�gurations of the externalnetwork it was necessary to abandon aglobally clocked system. This is becausewe have a large number of small bussegments each with multiple processors.Since each processor spans two buses itseemed natural to have a single clock.However the logistics of distributing sucha clock without violating our design aimof a modular system without any criticalcentralized resources made it necessaryto consider alternative arrangements. Aself clocked bus was adopted, allowingwide variations in physical path lengths

5. MULTIPROCESSOR NODE 293of the physical buses and eliminating theclock distribution problem[3].5 Multiprocessor NodeThe Multiprocessor Node board (Figure1) supports a combination of processor ormemory modules on the M-P bus (Mem-ory - Processor Bus). A single Multipro-cessor Node board behaves as a classicSMPmachine. Using the 2 external portsit is possible to connect to an externalnetwork of multiprocessor node boardsusing a passive backplane.Each Multiprocessor Node Board hasa local clock pulse generator. This is usedto provide clock signals to the processorand memory daughter boards, the con-trol logic, and the arbiters. This clock isalso gated out through the ports to clockthe external bus when the port becomesa bus master.The requirement for a global clock iseliminated by using the FIFOs to decou-ple the local clocks from the clock foundon the external bus.5.1 Functional DescriptionThe Multiprocessor Node Board consistsof 4 major functional blocks connected bya state machine (the control logic). Theblocks are:� M-P Bus� Bus Switching Unit� 2 Port Interface UnitsM-P BusThe Memory-Processor bus (M-P bus)is a data, address, and control signalbus. The data and address paths are64 bits wide, with the data and addresssignals multiplexed onto the bus. This

bus runs using a split bus protocol pro-vided by the processors[4] on the daugh-ter boards plugged into the Multiproces-sor Node Board.The components on the M-P bus forma classical shared memory, SMPmachine.Bus Switching UnitTo help provide o�-board communica-tions the switching unit provides 4 op-erational states:� Port A connect Port B� M-P Bus connect Port A� M-P Bus connect Port B� No ConnectionPort Interface UnitsEach port has a port interface unit whichperforms the 2 functions of transmittingdata onto a bus and receiving data fromthe bus.To receive data this unit recognizesrelevant information on the bus and ac-cepts it into the input FIFO, otherwisebus tra�c is ignored.To transmit data the port interfaceunit arbitrates for the bus and then out-puts data from the output FIFO.5.2 Operational DescriptionAll addresses in the system are parti-tioned into 2 regions. The most signif-icant bits of the address determine whichMultiprocessor Node Board is to be ac-cessed and the least signi�cant bits de-termine the address of the memory loca-tion on the Multiprocessor Node Board(see Figure 2). Two Multiprocessor Nodeboard numbers are reserved: Node boardnumber zero always refers to memory lo-cal to the node board, and the maximum

294 APPENDIX C. HARDWARE DESCRIPTION
Figure 1: Block Diagram of Multiprocessor Nodenode board number refers to hardwarecontrol memory local to the node board.The Node Number is used to indexinto a routing look-up table held in staticRAM, which is decoded to determinewhere the memory location can be found.There are three types of access avail-able to the processor:� Local Memory - Memory is ad-dressed directly over the M-P bus.� Remote Memory - Discussed inSection 5.2� Hardware Control Memory - Thebus ports are isolated and the rout-ing (look-up) tables are modi�ed bythe processors.In addition a Memory to MemoryDMA transfer facility will be available tofacilitate page sized transfers.RoutingThis section will follow the path of amemory access to illustrate the operation

of routing data betweenmemory and pro-cessor.Transfers between nodes employ apacket structure. A packet comprises aheader, a body containing the data anda packet check sum. The header containsthe source and destination addresses, thepacket size and the packet type. Packettypes include read, write and an indi-cation of whether the destination is aprocessor or memory. Packets are con-structed and interpreted by control logicin the multiprocessor node board.Local memory operations use the in-trinsic addressing mechanism of the pro-cessor.Memory accesses are routed throughthe network in a manner similar to apacket based store and forward network.When a processor utters an o�-boardaddress, the high order bits of the addressare used to index the M-P Bus look-uptable. The look-up table contains bitswhich indicate which port should be usedto attempt the access (Figure 3).

5. MULTIPROCESSOR NODE 295MSB LSBNode Number Memory LocationNode Numbers:0 : : : 0 : Local Memoryf : : : f : Hardware Controlx : : : x : O� Board MemoryFigure 2: Partitioning of AddressesPort A Look-UpRead In M-P Bus Look-UpIn A Out A Out B In B Port B Look-UpRead InFigure 3: Contents of Look-Up TablesIf the output FIFO on the requiredport is below the high water mark (thepoint at which it is guaranteed that thelargest permissible packet will �t in theFIFO) and there is no tra�c currentlypassing through the switch, then theswitch is connected to the appropriateport. A packet header is constructed andtransferred to the FIFO. Data is trans-ferred to the output FIFO. A check sumis added to the FIFO. If the conditionsare not met the processor should reat-tempt the operation later.When there is data in the outputFIFO and there is no bus master an at-tempt is made to arbitrate for the ap-propriate bus (The arbiter is discussed inSection 6). When the port becomes thebus master the packet is broadcast ontothe bus.The high order bits of the destination
address of the packet on the bus index theport look-up tables of all ports attachedto the bus. If the port's `Read In' bit isset and the input FIFO is below the highwater mark then the data on the bus isread into the FIFO, otherwise the data isignored.The node number of the destinationaddress in the header of the �rst packetin the FIFO is used to index the M-P Buslook-up table. If the `In' bit is set theswitch allows the contents of the packetto be directed to the memory on the M-PBus. Otherwise the switch is set to per-mit the ow of data from the input FIFOto the opposite output FIFO.5.3 Design FeaturesThe M-P bus and switched externalmemory packet transfer allows better uti-

296 APPENDIX C. HARDWARE DESCRIPTIONlization of processor memory resources.Both the external and M-P buses maybe loaded to the level providing optimalutilization of the bus capacity.The design introduces a memory hi-erarchy based on the number of hops be-tween nodes. This feature introduces anew degree of exibility in the manage-ment of both memory pages and pro-cesses. The throughput of a processe ismaximized by relocation of the processand/or its data to minimize the memoryaccess time. The optimization of over-all system performance is complicated bymemory being shared by multiple proces-sors. Peak performance is achieved bybalancing processor load, memory load,and process average access time.[5].By employing dual FIFOs on theports this design attempts to reduce therisk of locking a bus due to tra�c fromthe M-P bus to the other bus port. Thisdesign decision adds latency to everytransfer through a multiprocessor node,however it signi�cantly increases the busloading required to cause a bus to bestalled by FIFO being full. This fea-ture is especially valuable where largepacket transfers are expected as it e�ec-tively doubles the depth of the FIFOs forow through tra�c, hence halving therisk that a packet will not be accepteddue to a FIFO being above the high wa-ter mark.6 The ArbiterEach port uses a priority based arbiterto resolve bus master conicts. Prioritiesare rotated to ensure fairness.The arbiter has the properties:� Fairness - by rotating the priori-ties on each attempt to select abus master each board has an equalchance of being the board with the

highest priority in the pool� Guaranteed Result - A bus masteris selected every time an attempt ismade.� Varying Asynchronous Clocks - Ar-biters are synchronous with respectto their local clock.7 ConclusionThe design criteria of easy scalibility andhigh bus utilization are readily satis�edby the design described. In addition, themultiprocessor nodes, through the use ofdistributed asynchronous arbitration anda self clocked bus allow a large number ofnetwork designs to be evaluated withoutthe need to redesign the multiprocessornodes. The use of deep FIFOs increasesexternal and internal bus utilization bypostponing the onset of bus saturation.Although a design lacking globalclocking was initially considered to bea less attractive option than a globallyclocked design we have found that theadvantages of dispensing with the globalclock (greater exibility, easier bus de-sign) have overshadowed the cost (higherlatency in data transfers).AcknowledgmentThe `Secure RISC Architecture' projectis supported by a grant from the Aus-tralian Research Council.Maurice Castro is a recipient ofan Australian Postgraduate ResearchAward.

REFERENCES 297References[1] Patterson D A., Hennessy J L., Com-puter Architecture A QuantitativeApproach, San Mateo, California,1990, p530[2] Texas Instruments, Futurebus+ In-terface Family Data Manual Prelimi-nary, September 1992
[3] Di Giacomo J., Digital Bus Hand-book, New York, 1990, p7.8[4] MIPS Computer Systems Inc, MIPSR4000 Microprocessor User's Manual,Sunnyvale, California, 1991, p9-3[5] Bolosky J., Fitzgerald R P., ScottM L., Simple but E�ective Tech-niques for NUMA Memory Manage-ment, 12th Symposium on OperatingSystems Principles, pp19-31

298 REFERENCES

Appendix DGlossaryADC Access Control Descriptors.AOT Active Object Table.APD Active Protection Domain.Copy-on-write A technique which delays the copying of a page until a write tothe page occurs. A page is made available to more than one process in a read-only mode, when a process attempts to write to the page the original page isduplicated and the new page is made available to the process to write into.C-list Capability List.Copy-on-write A technique which delays the copying of a page untilCapability A number which uniquely identi�es an object and access rights to theobject or a section of the object.DMA Direct Memory Access.DSM Distributed Shared Memory.FAT File Allocation Table.IAS Intermediate Address Space.IPC Interprocess Communication.LRPC Lightweight Remote Procedure Call.299

300 APPENDIX D. GLOSSARYMail box A section of the process object used to hold messagesMessage area The area of the parameter page that does not contain the parameterblock.Message slot A section of the process object used to hold messagesNUMA Non-Uniform Memory Access. The term is applied to architectures withmemory access times varying according to memory location.OT Object Table.Password capability A capability composed of two components: a unique identi-�er for an object and a randomly allocated password.PDX Protection Domain Extension.Physical Memory Table This table describes the current state of each page ofphysical memory.Physical Object An object on the physical volume which permits access to the�rst 4 megabytes of the physical memory of the system. This object is usedto provide access to bu�ers used by low level device drivers.Physical Volume A dummy volume used to contain the physical object.PMT Physical Memory Table.Private page tables Second level page tables associated with a speci�c process.These page tables are used to provide small windows.Rights A capability has associated with it a set of rights. These rights de�ne thetypes of access to objects that are conferred by the capability.RPC Remote Procedure Call.RPD Regular Protection Domain.TLC Table of Loaded Capabilities.Table of Loaded Capabilities A table associated with each process that containsmappings of capabilities to memory locations.

301SASA Single Address Space Architecture.SASOS Single Address Space Operating System.UI Unique Identi�er.View An attribute of a capability. The region of an object that possession of thecapability makes addressable.Wall A page of memory visible to all Walnut Kernel processes.Window An area of a process's address space where a view of an object can beloaded.

302 APPENDIX D. GLOSSARY

Bibliography[ABC+83] M. P. Atkinson, P. J. Bailey, K. J. Chisholm, P. W. Cockshott, andMorrison R. An approach to persistent programming. The ComputerJournal, 26(4):360{365, 1983.[AMM+95] T. Agerwala, J. L. Martin, J. H. Mirza, D.C. Sadler, D. M. Dias, andM. Snir. SP2 system architecture. IBM Systems Journal, 34(2):152{184, 1995.[And87] Mark Anderson. A Password Capability System. PhD thesis, Depart-ment of Computer Science, Monash University, 1 1987.[APW85] M. Anderson, R D. Pose, and C S. Wallace. A password-capability sys-tem. Technical Report 52, Department of Computer Science, MonashUniversity, 3 1985.[APW86] M. Anderson, R D. Pose, and C S. Wallace. A Password-Capabilitysystem. The Computer Journal, 29(1):1{8, 1 1986.[ARG89] V. Abrossimov, M. Rozier, and M. Gien. Virtual memorymanagementin Chorus. Technical Report CS-TR-89-30, Chorus syst�emes, 4 1989.[AVW93] J. Armstrong, R. Virding, and M. Williams. Concurrent Programmingin Erlang. Prentice-Hall, Hemel Hempstead, Hertfordshire, 1993.[AW85] M. Anderson and C S. Wallace. Security management in a password-capability system. Technical Report 56, Department of Computer Sci-ence, Monash University, 8 1985.[BFF+92] Alan C. Bromberger, A. Peri Frantz, William S. Frantz, Ann C.Hardy, Norman Hardy, Charles R. Landau, and Jonathon S. Schapiro.303

304 BIBLIOGRAPHYThe KeyKOS nanokernel architecture. In Proceedings of the USENIXWorkshop on Micro-Kernels and Other Kernel Architectures, pages95{112. USENIX Association, 4 1992.[BFS89] W J. Bolosky, R P. Fitzgerald, and M L. Scott. Simple but e�ectivetechniques for numa memory management. In PROC of the TwelfthSOSP, pages 19{31, Litch�eld Park, AZ, 12 1989.[BGJ+92] David L. Black, David B. Golub, Daniel P. Julin, Richard F. Rashid,Richard P. Draves, Randal W. Dean, Alessandro Forin, Joseph Bar-rera, Hideyuki Tokuda, Gerald Malan, and David Bohman. Micro-kernel operating system architecture and Mach. In Proceedings of theUSENIX Workshop on Micro-Kernels and Other Kernel Architectures,pages 11{30. USENIX Association, 4 1992.[BS90] Peter A. Buhr and Richard A. Stroobosscher. The �system: Providinglight-weight concurrency on shared-memory multiprocessor computersrunning UNIX. Software-Practice and Experience, 20(9):929{964, 91990.[CAC84] W. P. Cockshott, M. P. Atkinson, and K. J. Chisholm. Persistentobject management system. Software Practice and Experience, 14:49{71, 1984.[Cas95] Maurice Castro. The Walnut Kernel: User level programmer's guide.Technical Report 95/222, Department of Computer Science, MonashUniversity, 5 1995. revised November 1995.[Cat88] David Cathro. An i/o subsystem for a multiprocessor. Master's thesis,Department of Computer Science, Monash University, 1988.[CG87] John Crawford and Patrick Gelsinger. Programming the 80386. Sybex,Alameda, Calafornia, 1987.[Chi90] Vernon L. Chi. Salphastic distribution of clock signals. Technical Re-port 90-026, Microelectronic Systems Laboratory, CB#3175, SittersonHall, Department of Computer Science, University of North Carolina,Chapel Hill, NC 27599-3175, 6 1990.

BIBLIOGRAPHY 305[CLFL94] Je�erey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.Lazowska. Sharing and protection in a single address space operatingsystem. Technical Report Technical Report 93-04-02, Department ofComputer Science and Engineering, University of Washington, Seattle,USA, April 1993 (Revised January 1994).[Cor86] Digital Equipment Corporation. VAX Architecture Handbook. DigitalEquipment Corporation, 1986.[Cor90] Microsoft Corporation. QBasic Nibbles, 1990. Source code in BASIC.[CP94] Maurice D. Castro and Ronald D. Pose. Monash secure risc mul-tiprocessor: Multiple processors without a global clock. In GuptaG, editor, Australian Computer Science Communications, Proceedingsof the Seventeenth Annual Computer Science Conference (ACSC-17)Christchurch, New Zealand, pages 453{459, 1994.[CPW95] Maurice Castro, Glen Pringle, and Chris Wallace. The Walnut Kernel:Program implementation under the Walnut Kernel. Technical Report95/230, Department of Computer Science, Monash University, 8 1995.Also released by SERC, CITRI as Technical Report SERC-0011.[Cus93] Helen Custer. Inside Windows NT. Microsoft Press, Redmond, Wash-ington, 1993.[DdBF+94a] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, DavidHulse, Anders Linstr�om, Stephen Norris, John Rosenberg, and FrancisVaughan. Protection in the Grasshopper operating system. In Proceed-ings of the 6th International Workshop on Persistent Object Systems,9 1994.[DdBF+94b] Alan Dearle, Rex di Bona, James Farrow, Frans Henskens, Anders Lin-str�om, John Rosenberg, and Francis Vaughan. Grasshopper: An or-thogonally persistent operating system. Computing Systems, 7(3):289{312, Summer 1994.[DG90] Joseph. Di Giacomo, editor. Digital Bus Handbook. McGraw-Hill, NewYorK, 1990.

306 BIBLIOGRAPHY[DLR95] Alan Dearle, Anders Linstr�om, and John Rosenberg. The grand uni�edtheory of address space. In Proceedings of the Fifth Workshop on HotTopics in Operating Systems, pages 66{71, 5 1995.[DVH66] Jack B. Dennis and Earl C. Van Horn. Programming semantics for mul-tiprogrammed computations. Communications of the ACM, 9(3):143{155, 3 1966.[Fab74] R S. Fabry. Capability-based addressing. Communications of theACM, 17(7):403{412, 7 1974.[FPR95] Vincent J. Fazio, Ronald D. Pose, and Wells John R. Monash se-cure risc multiprocessor: Performance simulation. In Kotagiri R, edi-tor, Australian Computer Science Communications, Proceedings of theEighteenth Annual Computer Science Conference (ACSC'95) Glenelg,South Australia, pages 161{165, 1995.[GC94] Berny Goodheart and James Cox. The magic garden explained : theinternals of UNIX System V release 4, an open-systems design. Pren-tice Hall, New York, 1994.[Geh82] Edward F Gehringer. MONADS: a computer architecture to supportsoftware engineering. Technical Report Monads Report No. 12, De-partment of Computer Science, Monash University, 9 1982.[Gie90] Michel Gien. Micro-kernel architecture - key to modern systems design.Technical Report CS-TR-90-42, Chorus syst�emes, 11 1990.[GL79] Virgil D. Gligor and Bruce G. Lindsay. Object migration and authenti-cation. IEEE Transactions on Software Engineering, SE-5(6):607{611,11 1979.[Har85] Norman Hardy. KeyKOS architecture. Operating Systems Review,19(4):8{25, 10 1985.[HERV94] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and JerryVochteloo. Mungi: A distributed single address-space operating sys-

BIBLIOGRAPHY 307tem. In G. Gupta, editor, Proceedings of the Seventeenth AustralianComputer Science Conference, pages 271{280, 1 1994.[Hil92] Dan Hildebrand. An architectural overview of QNX. In Proceedingsof the USENIX Workshop on Micro-Kernels and Other Kernel Archi-tectures, pages 113{123. USENIX Association, 4 1992.[Int90] Intel. i486 Processor Programmer's Reference Manual. Intel Corpora-tion, Santa Clara, Calafornia, 1990.[JJ91a] William Fredrick Jolitz and Lynne Greer Jolitz. Porting UNIX to the386: A practical approach. Dr. Dobb's Journal of Software Tools,pages 16{46, 1 1991.[JJ91b] William Fredrick Jolitz and Lynne Greer Jolitz. Porting UNIX to the386: A stripped-down kernel. Dr. Dobb's Journal of Software Tools,pages 32{40, 84, 7 1991.[JJ91c] William Fredrick Jolitz and Lynne Greer Jolitz. Porting UNIX to the386: The basic kernel. Dr. Dobb's Journal of Software Tools, pages44{56, 8 1991.[KB] Ted Kehl and Steve Burns. A self-tuned stoppable clock oscillator. De-partment of Computer Science and Engineering, University of Wash-ington, Seattle, Washington 98195.[Kee79] J. L. Keedy. A comparison of two process structuring models. TechnicalReport Monads Report 4, Department of Computer Science, MonashUniversity, 1979.[Kee82] Leslie J. Keedy. The Monads view of software modules. In A J H.Sale and G. Hawthorne, editors, Proceedings of the Ninth AustralianComputer Science Conference, 8 1982.[LDdB+94] Anders Linstr�om, Alan Dearle, Rex di Bona, J. Mathew Farrow, FransHenskens, John Rosenberg, and Francis Vaughan. A model for user-level memorymanagement in a distributed, persistent environment. In

308 BIBLIOGRAPHYG. Gupta, editor, Proceedings of the Seventeenth Australian ComputerScience Conference, 1 1994.[LMKQ90] Samuel J. Le�er, Marshall Kirk McKusick, Michael J. Karels, andJohn S. Quarterman. The Design and Implementation of the 4.3BSDUNIX Operating System. Addison-Wesley, Reading, Massachusetts,1990.[Loe92] Keith Loepere. Mach 3 Kernel Principles. Open Software Foundationand Carnegie Mellon University, 2.2 edition, 6 1992.[Mac84] International Business Machines. Personal Computer Hardware Ref-erence Library: Technical Reference. IBM, Boca Raton, Florida, �rstedition, 1984.[Mic90] Sun Microsystems. System Services Overview, revision a edition, 31990.[MIP91] MIPS Computer Systems Inc, Sunnyvale, California. MIPS R4000Microprocessor User's Manual, 1991.[MSWK93] K. Murray, T. Stiemerling, T. Wilkinson, and P. Kelly. Angel:Resource uni�cation in a 64-bit micro-kernel. Technical ReportTCU/SARC/1993/4, City U CS (London), 1993.[MvRT+90] Sape J. Mullender, Guido van Rossum, Andrew S. Tanenbaum, Rob-bert van Renesse, and Hans van Staveren. Amoeba: A distributedoperating system for the 1990s. IEEE Computer, pages 44{53, 5 1990.[MWO+93] Kevin Murray, Tim Wilkinson, Peter Osmon, Ashley Saulsbury, TomStiemerling, and Paul Kelly. Design and implementation of an object-orientated 64-bit single address space microkernel. In Proceedings ofthe USENIX Symposium on Micro-Kernels and Other Kernel Archi-tectures, pages 31{43. USENIX Association, 9 1993.[Nor85] Peter Norton. The Peter Norton Programmer's Guide to the IBM PC.Microsoft Press, Redmond, Washington, 1985.

BIBLIOGRAPHY 309[OSW+92] P. E. Osmon, T. Stiemerling, A. Whitcroft, A. Valsamidis, T. Wilkin-son, and N. Williams. The Topsy project: a position paper. TechnicalReport TCU/SARC/1992/6, City U CS (London), 1992.[PFR94] Ronald D. Pose, Vincent J. Fazio, and Wells John R. An incrementallyscalable multiprocessor interconnection network with exible topologyand low-cost distributed switching. IEEE Computer Society Techni-cal Committee on Computer Architecture Newsletter, Special Issue onInterconnection Networks for High-Performance Computing Systems,pages 31{36, 1994.[PH90] David A. Patterson and John L. Hennessy. Computer Architecture:A Quantitative Approach. Morgan Kaufmann, San Mateo, California,1990.[Pos91] Ronald David Pose. A Capability-Based Tightly-Coupled Multiproces-sor. PhD thesis, Department of Computer Science, Monash University,1991.[PPTT92] Dave Presotto, Rob Pike, Ken Thompson, and Howard Trickey. Plan9, a distributed system. In Proceedings of the USENIX Workshop onMicro-Kernels and Other Kernel Architectures, pages 31{37. USENIXAssociation, 4 1992.[RA85a] John Rosenberg and David Abramson. The MONADS architecture:Motivation and implementation. In The First Pan Paci�c ComputerConference: Proceedings, volume 1, pages 410{423, 9 1985.[RA85b] John Rosenberg and David Abramson. MONADS-PC - a capability-based workstation to support software engineering. In Proceedingsof the Eighteenth Annual Hawaii International Conference on SystemSciences, volume 1, pages 222{231, 1985.[RAA+91] M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guille-mont, F. Herrmann, C. Kaiser, S. Langlois, P. Leonard, andW. Neuhauser. Overview of the CHORUS distributed operating sys-tems. Technical Report CS-TR-90-25, Chorus syst�emes, 1991.

310 BIBLIOGRAPHY[RD93] Sub Ramakrishnan and Larry Dunning. On the complexity of taskassignment algorithms. In IX International Conference on SystemsEngineering, pages 166{170, Las Vegas, NV, 7 1993.[RJO+89] Richard Rashid, Daniel Julin, Douglas Orr, Richard Sanzi, RobertBaron, Alessandro Forin, David Golub, and Michael Jones. Mach: Asystem software kernel. In Proceedings of the 34th Computer ScienceInternational Conference COMPCON 89, 2 89.[Rod92] Thomas Roden. High-resolution timing: A fast, tight timer for PCs.Dr. Dobb's Journal of Software Tools, pages 42{48, 110, 9 1992.[RT74] D M. Ritchie and K. Thompson. The UNIX time-sharing system.Communications of the ACM, pages 365{375, 7 1974.[Sal74] Jerome H. Saltzer. Protection and the control of information sharingin multics. Communications of the ACM, 17(7):388{402, 7 1974.[SC90] Julio Sanchez and Maria P. Canton. IBM Microcomputers: a Pro-grammer's Handbook. McGraw-Hill, New York, 1990.[SHFG95] M. Snir, P. Hochschild, D. D. Frye, and K. J. Gildea. The communica-tion software and parallel environment of the IBM SP2. IBM SystemsJournal, 34(2):205{221, 1995.[ST89] D. L. Schleicher and R.L. Taylor. System overview of the applicationsystem/400. IBM Systems Journal, 28(3):360{375, 1989.[Tan87] Andrew S. Tanenbaum. Operating Systems: Design and Implementa-tion. Prentice-Hall, Englewood Cli�s, New Jersey, 1987.[Tan92] Andrew S. Tanenbaum. Modern Operating Systems. Prentice-Hall,Englewood Cli�s, New Jersey, 1992.[Tex92] Texas Instruments. Futurebus+ Interface Family Data Manual Pre-liminary, 9 1992.[Toy91] Michael Toy. Worm, 1991. Part of Berkeley Unix Distribution, Sourcecode in C.

BIBLIOGRAPHY 311[Tri92] Walter A. Triebel. The 80386DX Microprocessor: Hardware, Software,and Interfacing. Prentice Hall, Englewood Cli�s, New Jersey, �rstedition, 1992.[Var94] Peter D Varhol. QNX forges ahead. Byte, pages 199{201, 10 1994.[vRT92] Robbert van Renesse and Andrew S. Tanenbaum. Short overview ofamoeba. In Proceedings of the USENIX Workshop on Micro-Kernelsand Other Kernel Architectures, pages 1{10. USENIX Association, 41992.[VSK+90] Francis Vaughan, Tracy Schunke, Bett Koch, Alan Dearle, Chris Mar-lin, and Chris Barter. A persistent distributed architecture supportedby the Mach operating system. In Proceedings of the Mach Workshop,pages 123{139. USENIX Association, 10 1990.[Wal94] Walnut Creek CDROM. Freebsd version 1.1. CD-ROM Rock RidgeFormat, 5 1994. Walnut Creek CDROM, 1547 Palos Verdes Mall, Suite260, Walnut Creek CA 94596, USA.

