The Walnut Kernel:

User Level Programmer’s Guide
Maurice Castro!
TECHNICAL REPORT NO. 95/222

May 1995

revised
November 1995

'Computer Science, Monash University, Clayton, Victoria 3186, AUSTRALTA
maurice@cs.monash.edu.au

Abstract

The Walnut Kernel is a capability-based operating system under development
in the Department of Computer Science at Monash University.

The Walnut Kernel employs 128-bit names - Password-Capabilities - for
views onto persistent objects. The random allocation of names within a sparse
name space provides a known level of statistical security for views and the con-
tents of objects. Associated with each name is a set of rights which entitle the
holder of the capability to access a section of the named object in a specified way.

This document contains a programmer’s manual for the Walnut Kernel. It
provides a brief outline of the basic concepts of the kernel and detailed descrip-
tions of the process environment and system calls provided by the kernel.

Contents

1 Overview

2 Objects
3 Capabilities
3.1 View
3.2 User Rights
3.3 System Rightso
3.4 Deriving Capabilities 0000
4 Process Structure
4.1 Process Address Spaceo
4.2 Parameter Page L
4.2.1 Parameter Block
4.2.2 Message Blocko
4.3 The Wall.
5 Process Structure Conventions
5.1 The Process Object
5.2 The Process

6 Process Creation
6.1 Making Processes
6.2 Initial Process State

7 Subprocess Zero

7.1 Freeze
7.2 Thaw
7.3 Wakeup
T4 Cooee
7.5 Protected Freeze
7.6 Protected Thaw

8 Subprocesses

8.1 Anatomy of a Subprocesso

8.2 Operations on Subprocesses

8.3 Scheduling
9 Messages and Mailboxes

9.1 Sending Messages

9.2 Receiving Messageso

9.3 Mailboxes

17
17
17

20
20
21
21
21
21
22

23
23
23
23

10 Exceptions 27

10.1 Types of Exceptiono 27
10.2 Trap Handling Subprocesses 27
10.3 The Trap Message o 28
11 System calls 30
11.1 Procedure 30
11.2 Available System Calls, 31
11.2.1 Make Object 31
11.2.2 Derive Capability 32
11.2.3 Delete Capability 33
11.2.4 Delete Derived Capabilities 33
11.2.5 Resize Object 34
11.2.6 Shrink Object 34
11.2.7 Wait 0o 35
11.2.8 Load Capability 36
11.2.9 Unload Capability 37
11.2.10Identify Capability 38
11.2.11Make Process 39
11.2.12Send Messageo 42
11.2.13Receive Message 43
11.2.14 External Send Message 43
11.2.15External Read Memory 44
11.2.16 External Write Memory 44
11.217Bank oo 45
11.2.18 Restrict Rights 46
11.2.19Capability Status 47
11.2.20Rename Capability 48
11.2.21 Make Subprocesso 49
11.2.22Delete Subprocess 50
11.2.23Load Register Set oL 50
11.2.245ave Register Set, Lo 50
11.2.25Set Trap o o o o o1
11.2.26 Receive Message and Close Box o1
11.2.27Accept Mailo 52
11.2.28Close Mail Box 52
11.2.29Copy Object o 53
11.2.30Check Process State 54
11.2.31Set Heir of Process 54

1 Overview

The Walnut Kernel is a capability-based operating system under development
in the Department of Computer Science at Monash University. This operat-
ing system draws on the concepts of and experience gained from the Password-
Capability System?.

The Walnut Kernel employs 128-bit names - Password-Capabilities - for
views onto persistent objects. The random allocation of names within a sparse
name space provides a known level of statistical security for views and the con-
tents of objects. Associated with each name is a set of rights which entitle the
holder of the capability to access a section of the named object in a specified way.

The Walnut Kernel was designed as a portable operating system although
it currently runs only on 80486 based PCs. Programs are compiled on a FreeBSD
1.1 system and transferred onto the target machine on floppy disks. Work is con-
tinuing on the development of the kernel as well as the development of interfaces,
shells, and utilities for the system.

This document contains a programmer’s manual for the Walnut Kernel.
The document is subject to revision as the kernel alters and currently describes
only the lowest level of the kernel interface.

Acknowledgments

The author would like to acknowledge the following contributions:
e Prof C.S. Wallace - co-author of the kernel
e Mr Glen Pringle - author of many of systems utility programs
e Mr Carlo Kopp - author of the UNIX compatibility libraries

The ‘Secure RISC Architecture” project is supported by a grant from the
Australian Research Council (A49030623). Maurice Castro is a recipient of an
Australian Postgraduate Research Award.

2M. Anderson, R D. Pose, and C S. Wallace. A Password-Capability system. The Computer
Journal, 29(1):1 8, 1 1986.

2 Objects

All entities controlled by the Walnut Kernel are objects. A Walnut Kernel
object is analogous to a segment in segmented computer architecture. It com-
prises an ordered array of bytes. An individual byte is identified by its ‘offset’. a
number indexing the array. The first byte has offset zero. An object is defined
by the following characteristics:

Maximum Offset The largest addressed offset in the object. (Note: this value
is set on creation and automatically increases. as long as there are pages
available in the allocated space of the object)

Limit The largest addressable offset allowed in the object.

Maximum Size The maximum number of bytes guaranteed to be available to
an object. The number of bytes includes storage for the objects capabilities
and dope vectors. (In practice this value represents the maximum number
of pages and header pages guaranteed to be available to an object. The
number of pages is calculated by dividing the maximum size by the page
size and rounding upwards.)

Maximum Capabilities The maximum number of capabilities that can repre-
sent this object. (Note: this value automatically increases, as long as there
is space available to hold the new derived capabilities)

Money The amount of money the object has available. Sufficient money must
be present in an object to pay for its resource consumption.

Each object has at least one capability that allows access to the object - the
object’s Master Capability. Deletion of the object’s master capability results
in the deletion of the object. Other capabilities for views of the object are derived
from the master capability or its descendants.

3 Capabilities

The Walnut Kernel employs password capabilities to identify access rights to
objects. Each capability (see figure 1) consists of a 128 bit identifier composed of
four 32 bit values: a volume number, a serial number, password 1 and password
2. Associated with each capability is a view which determines the region of an
object a capability applies to, a set of user rights, and a set of system rights which
control how that capability is to be used.

32 bits 32 bits 32 bits 32 bits

Volume Serial Password 1 Password 2

Figure 1: A Password Capability

3.1 View

A view is the attribute of a capability that defines the region of the object that
can be addressed by the possessor of the capability. Views are contiguous regions
and are defined by an offset from the base of the object and an extent. The view
entitles the user to address part of an object, it does not guarantee that pages
are contained in that region nor that the pages are readable by user processes.

3.2 User Rights

User rights consist of a set of 32 bits which are managed by the kernel. The
kernel attaches no meaning to the user rights bits. They are intended to be used
by user processes to implement access to services in a way that is analogous to
the control system rights bits have over access to kernel services.

3.3 System Rights

The system rights associated with a capability are encoded in a 32-bit word,
basically as the OR of bits representing particular rights (the SRSEND field is

an exception). For the numeric value of the system rights symbols see figure 4.

SRDERIVE - Allow capabilities to be derived from this capability.
SRSUICIDE - Allow this capability to destroy itself and its children.

SRDEPOSIT - Allow the holder of this capability to deposit money into the
object.

SRWITHDRAW - Allow the holder of this capability to withdraw money from
the object.

SRREAD - Allow the holder of this capability to read from the view.
SRWRITE - Allow the holder of this capability to write to the view.
SREXECUTE - Not used.

SRUSER - Allow user processes to use the view.

SRPEEK - Allow the holder of this capability to perform a peek system call on
the process represented by this capability (see 11.2.30).

SRMULTILOAD - Allow this capability to be loaded by any process. If this
right is absent then only processes with a serial number equivalent to the
capability’s password 2 may load this capability.

SRSEND - an 8-bit field which, if non-zero, specifies the subprocess to which
messages may be sent by using this capability. This field has two special
values: Oxff - allow messages to be sent to any subprocess of the process,
and Oxfe - disallow messages to subprocess zero but allow messages to be
sent to any other subprocess of the process.

3.4 Deriving Capabilities

Derived capabilities have equal or lesser rights than than their parent capability,
at the time of derivation. Suicide right is an exception as this right may be added
to the children of capabilities which do not hold this right.

The rights of a parent capability may be reduced through the use of the
restrict system call after a child capability has been derived. The child capability
is unaffected by the restriction of the parent capabilities rights.

4 Process Structure

A process in the Walnut Kernel is essentially an object which contains state
information relating to the execution of the process. The minimal information
found within a process object is:

e Sub-process table

Message slots

Table of Loaded Capabilities

Process cash

Lock words

e Parameter page
o Address map

Of these only the parameter page and the address map are directly accessible to

the user process. The address map is read-only. The parameter block and the

remainder of process object are both readable and writable by the user process.
The process structure is detailed in diagram figure 2.

4.1 Process Address Space

The address space of a process operating under the Walnut Kernel is composed
of three regions:

Kernel Area is located at the bottom of the address space and is not address-
able by user processes.

Small Window Area is located above the Kernel Area and has a page sized
granularity. Single pages or multiple pages of objects may be mapped into
this region of the address space by a user process. These mapped regions
always begin and end on a page boundary.

Large Window Area islocated above the Small Window Area. It has a coarser
granularity than the Small Window Area. The first large window contains
the Process Object. All other large windows are allocated by the process.

On a system with a 4 kilobyte page size, large windows have a granularity of 4
megabytes and small windows have a granularity of 4 kilobytes.

Two distincet paradigms are used to describe how the address is populated
with objects.

|

Oxffffffff

0xf£fb00000
large windows

0x££700000

|
H+0x400000 .
R
M Message Area _
P Parameter Block ¢ Process object
A Address Map
H

\
| |
| |
small windows
0x401000
0x400000
0xd000 Kernel Area
0xc000 The Wall
0x00000000
Description Constant Name Value

R remainder of process object PARAMADDRESS + 0x1000 0x1011000
M message area EXTRAADDRESS 0x101004c
P parameter page PARAMADDRESS 0x1010000
A address map 0x100£000
H process header PROCHDADDRESS 0x1000000

Figure 2: Process Address Space: This diagram describes the major features
of the address space seen by a process operating on a system with 4 kilobyte
pages. The message area and the parameter block are collectively known as the
parameter page.

The Password-Capability system used the term “Window Registers’” to de-
scribe a set of segment registers. The Password-Capability system used the up-
per bits of the virtual address to indicate which register was in use. We retain
this terminology in the Walnut Kernel. The analogy between the two systems
is imperfect as: the Walnut Kernel supports two classes of window registers;
and although the number of window registers is fixed on the Walnut Kernel
the location of the registers in the virtual address space is not fixed, under the
Password-Capability System both of these parameters were constant.

The second paradigm describes the operation of the system. On a system
with 4 kilobyte pages, it views the address space as two address ranges. The
address range from 0x400000 to Oxffffff can have objects loaded on 4 kilobyte
boundaries. The address range 0x1400000 to Oxffffffff has objects loaded on
4 megabyte boundaries.

4.2 Parameter Page

This page is composed of two parts: the parameter block and the message area.
The parameter block is a structure defined in the file param.h. This block is used
to pass parameters to the kernel when a system call is made. The second area is
used to pass additional information to the kernel and to receive information from
the kernel. The information passed via the message area varies with the type of
call.

4.2.1 Parameter Block

The declaration of the parameter block structure is found in figure 3.
The fields are named after the function they are used for in the majority of
calls. The values contained in the fields are:

error The error field contains an integer error value on returning from a system
call. If the value is zero then the system call completed successfully. If the
value is greater than zero the system call could not be completed success-
fully. If the return value is negative® or greater than 20000000, an internal
kernel error has occurred: contact the system’s maintainer urgently and re-
port the value. The file include/kerror.h contains a translation table which
allows error values to be converted to ascii strings.

vol serial passl pass2 The capability field composed of vol, serial, passl and
pass2, contains either a capability being passed to a system call or a capa-
bility being passed back by a system call.

srights The system rights field contains one of

3Negative error values are used internally by the kernel to indicate partial completion of a
system call which cannot be completed because of a transient problem.

/* Parameter Structure */
JK m e - */
typedef struct Paramst {

Sw error;

Uw vol; /* volume ID */

Uw serial; /* serial in volume */

Uw passi; /* password 1 */

Uw pass2; /* password 2 */

Uw srights; /* System rights */

Uw urights; /* User rights */

Sw base; /* 0ffset of cap from front of object */

Sw limit; /* Max addressing offset from base */

/* Zero means "to end of object" */

Sw money; /* money word */

Uw type; /* Type of object */

Sw maxoff; /* Max addressing offset in whole object */

SW maxsz; /* Max size of defined content */

Sw maxcap; /* Max capabilities now allowed */

Sw offset; /* An offset in a capability window */

Sw subpn; /* A subprocess number */

Sw cindex; /* Index of a capl in a process TLC */

Uw clocktime;

Uw reserve; /* Non-zero shows reserved by sub-process */

} Param;

Figure 3: Parameter Block Declaration

10

e a bitmap indicating the system rights provided by a capability (Figure
4 defines the symbolic and numeric forms of the system rights bits)

e a mask which restricts the system rights provided to a derived capa-
bility

a set of limits used in the creation of a process

an encoded process state when inquiring about a process state
urights The user rights field contains either

e a bitmap indicating the user rights provided by a capability

e a mask which restricts the user rights provided to a derived capability

base The base field contains an offset from the beginning of a view or - on process
creation - the time. in seconds. at which the new process is scheduled to
wake up.

limit The limit field contains one of

o the length of a message
e the maximum addressable offset of an object

e the maximum size of a view

money The money field contains one of

the amount of money in an object

the amount of money to be deposited or withdrawn

the amount of money to be sent with a message

the amount of money received from a message

type The type field contains the object type. The top bit of this field is set if the

object is a process. The following type values are reserved by the kernel:
00000000

00000003 Prototype process
0000ffff Physical memory object
80000000

80000002 Drive process

80000003 Prototype process

maxoff The maximum offset field contains the current maximum offset of an
object.

maxsz The maximum size field contains the current maximum size of an object.

11

maxcap The maximum capability field contains the current maximum number
of capabilities for a process

offset The offset field contains an offset into a process’s address space.

subpn The subprocess number field contains the destination subprocess number
for a message.

cindex The capability index field contains the index into the table of loaded
capabilities that a capability occupies.

clocktime The clocktime field, after returning from a system call, contains the
current time in seconds. The clocktime field is set to the wakeup time for
a process when a wait system call is made.

reserve The reserve field provides both a locking function which prevents other
subprocesses accessing the parameter block and indicates the type of kernel
call being made. The currently available kernel call constants are listed in
figure 5.

#define SRDERIVE 0x40000000 /* System rights bits */
#tdefine SRSUICIDE 0x20000000
#tdefine SRDEPOSIT 0x10000000
#tdefine SRWITHDRAW 0x08000000

#define SRREAD 0x04000000
#define SRWRITE 0x02000000
#define SREXECUTE 0x01000000
#define SRUSER 0x00800000
#define SRPEEK 0x00400000
#define SRMULTILOAD 0x00200000
#define SRSEND 0x000000FF /% Bits relating to send rights */

Figure 4: System Rights Constants

4.2.2 Message Block

The message area’s contents are interpreted differently for each class of call.
There are currently three classes of information stored in the message block:

o Messages - Messages to be sent by the send message system call and mes-
sages recovered by the receive message system call are stored at the front
of the message block.

12

#define
#define
#define
#define
#define
#define
#define
#tdefine
#tdefine
#tdefine
#tdefine
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#define

K_MAKEOBJ 1
K_MAKECAP 2
K_DEL 3
K_DELDER 4
K_RESIZE 5
K_SHRINK 6
K_WAIT 7
K_LOADCAP 8
K_UNLOADCAP 9
K_CAPID 10
K_MAKEPROC 11
K_SEND 12
K_RECV 13
K_EXTSEND 14
K_EXTREAD 15
K_EXTWRITE 16
K_BANK 17
K_RESTRICT 18
K_CAPSTAT 19
K_RENAME 20
K_MAKESUBP 21
K_DELSUBP 22
K_LOADREG 23
K_SAVEREG 24
K_SETTRAP 25
K_RECV_CLOSE 26
K_ACCEPT_MAIL 27
K_CLOSE_BOX 28
K_COPYOBJ 29
K_PEEK_PROC 30
K_SET_HEIR 31

Figure 5: Defined Kernel Call Constants

13

e System states - The save register and load register system calls store the
register set and other state information for a subprocess at the front of the
message block.

e Read/Write Data - Bytes to be transferred by the external read or external
write system calls are stored at the front of the message block.

e Initialization information - Initial values used to set stack and program
counters, the name of an heir and a list of capabilities to be pre-loaded into
a process are stored at the front of the message block.

4.3 The Wall

Every process has a read-only page mapped into its address space known as the
Wall. This page contains public information, including the current time, and the
capabilities of public utilities. A wall manager places information in the wall.
The wall currently contains:

0xc000 Scheduler Start Variablef

0xc004 Physical Object: Volume!

0xc008 Physical Ohject: Serialf

0xc00c Physical Object: Password 17

0xc010 Physical Object: Password 27

0xc000 GLui: Magic Number

0xc004 GLui: Volume

0xc008 GLui: Serial

0xc00c GLui: Password 1

0xc010 GLui: Password 2

0xc014 Name Server Set: Magic Number

0xc018 Name Server Set: Volume

0xcOlc Name Server Set: Serial

0xc020 Name Server Set: Password 1

0xc024 Name Server Set: Password 2

0xc028 Name Server Set: Offset

Oxcfe0 Time in Seconds

Oxcfe4 Time in Microseconds

T: These locations are used by the initialization process. After initialization

the capability of the physical object is overwritten by the initialization process
and the value of the scheduler start variable is no longer significant.

14

5 Process Structure Conventions

This section covers the conventional layout of a process (Section 4 outlined the
mandatory elements of a process structure).

5.1 The Process Object

The following elements of the process object are visable to the user process and
are provided by the kernel:

e The Process Address Map
e The Parameter Page
e The Message Area

They form part of the mandatory component of the process structuring conven-
tion used by Walnut Kernel processes.
By convention the following items are located within the process object

Startup Code Area (optional) This area may contain a small amount of code
used in starting a process.

File Descriptor Table (mandatory) This area contains the file descriptors for
use by the process. Note: The first 3 elements of the File Descriptor Table
are mandatory to allow for standard output, standard input and standard
error.

Private Data Pointer Table (mandatory) This area contains pointers to pri-
vate data. The table is indexed by the capability index of the executing
code and is used to locate data used by the executing code.

Default Heap (optional) The default location for the creation of the heap.
Default Stack (optional) The default location for the creation of the stack.

The structure of the process object is outlined in figure 6.

5.2 The Process

Conventional processes will be constructed according to the following rules:
e The code object will be loaded at address 0x1400000
e The data object will be loaded at address 0x5400000

e Initialized data will be placed at the front of the data object

15

0x1400000

Default Stack

0x1017000 Default Heap

0x1016000 Private Data Pointer Table
0x1012000 File Descriptor Table
0x1011000 Startup Code Area
0x1010000 Parameter Page
0x100£000 Process Address Map
0x1000000

Figure 6: Process Object: This diagram describes the major features of the
process object

This design allows multiple instances of a process to be created by sharing
the code objects and using copies of the data objects. In addition by placing the
initialized data at the front of the data object it is possible to ensure that the
original data object is compact and hence easy to copy. The copy of the data
object will expand as required when uninitialized data is accessed.

This arrangement of code and data allows up to 64 Mbytes of code to be
supported. With the introduction of shared code libraries larger programs can
be supported.

16

6 Process Creation

This section describes the process of creating a process and the initial state of a
New pProcess.

6.1 Making Processes

A process is created using the Make Process call covered in section 11.2.11.
This section will provide a general introduction to the creation of a process.
Creating a process involves:

e Creating a new process object

e Creating an address space

e Loading the new process object into the address space

e Creating subprocess 0 and subprocess 1.

e Loading pre-loaded capabilities into the address space

e Setting initial program counter and stack pointer values for subprocess 1.
e Setting the wake up time of subprocess 1.

e Loading the new process object into address space of the creating process

This process appears as an atomic operation to the process issuing the Make
Process system call. If the system call was successful the master capability for
the new process object will be returned and the new process will be loaded at
the address given in offset in the parameter block.

At the completion of the Make Process system call, the new process object
is loaded into the address space of the creating process. If the new process object
is larger than 4 megabytes in size, only the first 4 megabytes of the new process
object 1s visable. Thus the process which issued the Make Process system call
and the new process have a region of shared memory.

6.2 Initial Process State

Immediately after a process has been created:

e The parameter block of the new process will contain:

17

vol Volume of master capability for process

serial Serial of master capability for process
passl Password 1 of master capability for process
pass2 Password 2 of master capability for process

srights Encoded process creation parameters
urights User rights of process’s master capability

limit Maximum size of process object (hard limit)
money Amount of money in process object / process cash
type Type of process

maxoff Maximum offset of view on process object
maxsz Maximum size of process object
maxcap Maximum number of capabilities

e The message area will consist of a table of pre-loaded capabilities with the
format:

vol Volume

serial Serial

passl Password 1

pass2 Password 2

base Start of the loaded window relative to the capability

limit Size of the loaded window. Zero indicates capability limit

offset Location of window in the new process’s address space

cindex Index in table of loaded capabilities. Zero for automatic allocation

The process object will be loaded at the location PROCHDADDRESS

The address space will contain all pre-loaded capabilities

Only subprocess 0 and subprocess 1 will exist

Subprocess 1 will begin executing

The process creation parameters are encoded in the system rights field:

8 bits 8 bits 8 bits 8 bits
Max subp | # message slots | Max loaded caps | # auto load caps

msb Isb

e Max subp - The maximum number of subprocesses for the new process
including subprocess 0.

e # message slots - The number of message slots for the new process. As a
message slot is reserved for subprocess (0 the number of message slots must
be 1 or greater.

18

e Max loaded caps - The maximum number of loaded capabilities for the new
process. This number includes the capability for the process.

e # auto load caps - The number of capabilities to be automatically loaded
into the new process’s address space including the capability for the new
process.

When a process is created two equal sums of money are deposited into the
new process. The sums are deposited into the process cash and the process object
respectively. The size of one of the deposited sums is reported in the money field.

It is normal practice for the first action of a process to be the duplication of
the information passed in at process creation. It is particularly important to store
the capability for the process as it is not possible to locate the master capability
for the process subsequently.

The creation of subprocesses other than subprocess (0 and subprocess 1 is
handled by the application using the Make Subprocess call.

19

7 Subprocess Zero

The Walnut Kernel implements two direct methods of communication with the
kernel: system calls and messages to subprocess zero of a process. The system call
mechanism (described in the section 11) allows a process to alter its own state,
operate on capabilities and send messages. The subprocess zero mechanism allows
a process to control another process’s state.

Subprocess zero functions are accessed by sending messages to a process’s
subprocess zero. The message contains a function identifier and arguments. On
receipt of a message to subprocess zero the kernel interprets the instruction pro-
vided and performs the required action. Subprocess zero operations and messages
are the highest priority function of a process.

The currently implemented subprocess zero functions are:

Freeze Prevent process from being scheduled.

Thaw Allow process to be scheduled.

Wakeup Set the wakeup time of the specified subprocess to zero

Cooee Request the process to send a status message using a specified capability.

Protected Freeze Prevent process from being scheduled until all protected
freezes on the process have been thawed.

Protected Thaw Allow a process to be scheduled when all other protected
freezes have been thawed.

Figure 7 lists the identifiers and arguments of the messages.

Function Function ID | Arg 1 Arg 2 Arg3 Arg4
Freeze 33330001

Thaw 33330002
Wakeup 33330003 subp #
Cooee 33330004 vol ser pass 1 pass 2

Prot Freeze | 33330007 magic
Prot Thaw | 33330008 magic

Figure 7: Subprocess Zero Functions and Arguments

7.1 Freeze

On receipt of a freeze message subprocess zero sets the process state to frozen
and causes the process to be removed from the scheduler queue.

20

7.2 Thaw

When a process receives a message it is placed into the scheduler queue. If
the process is frozen the process is typically removed from the queue after the
subprocess zero messages are parsed. On receipt of a thaw message, subprocess
zero sets the process state to normal and process execution resumes.

7.3 Wakeup

The wakeup message sets the wakeup time of the nominated subprocess to the
current time. This allows a process to start a process that has suspended activity
and has closed mail boxes as the mail box allocated to subprocess zero cannot be
closed.

One application of this function is to allow the initialization of data structures
within a process object. The process is created with a wakeup time of never
preventing the scheduling of the process. The creating process initializes the
required data structures before waking the created process up. At that stage the
created process may elect to open its mail boxes as processes are created with all
but subprocess zero’s mail boxes closed.

7.4 Cooee

On receiving a cooee message subprocess zero attempts to send a message using
the capability found in the cooee message. If the capability in the cooee message
allows transmission to any subprocess of a process then the message will be sent
to subprocess one of the nominated process, otherwise, the message will be sent
to the subprocess represented by the capability.

The reply message is of the form:

‘ 33330005 ‘ ‘ volume ‘ ‘ serial ‘ ‘ status ‘

The message consists of a set of words which represent the Cooee reply iden-
tifier, the volume and serial number of the current process and a process status.
The process status is given in figure 8.

7.5 Protected Freeze

On receipt of a protected freeze message subprocess zero sets the process state
to frozen, XORs the magic word with a key held in the process state, increments
a count held in the process state and causes the process to be removed from the
scheduler queue. This prevents other parties from thawing the process unless
they know the set of magic words used in the protected freeze operations applied
to the process.

State State 1D Value
Normal State PROCSTATENORMAL 1
In Kernel Call PROCSTATEKERNEL 2
In Read Fault PROCSTATERFAULT 3
In Write Fault PROCSTATEWFAULT 4
Process Frozen PROCSTATEFROZEN)
Process in Probate | PROCSTATEPROBATE 6
Process Dead PROCSTATEDEAD 7

Figure 8: Process Status

7.6 Protected Thaw

On receipt of a protected thaw message subprocess zero XORs the magic word
with a key held in the process state and decrements a count held in the process
state. If both the count and key held in the process state are zero then the
process is thawed. If the count is zero and the key is non-zero then the process
is terminated.

8 Subprocesses

Subprocesses are implemented in the Walnut Kernel as threads of execution
which share a single address space. This section describes subprocesses and their
scheduling.

8.1 Anatomy of a Subprocess

When a process is created a fixed number of subprocess slots are allocated in the
process structure. These slots form the subprocess table which is used to store
the subprocess states.

When a subprocess is created the creator specifies a priority which is used
to determine which subprocess should be scheduled, the starting address of the
subprocess and the the address of the subprocess’s stack pointer. It is the re-
sponsibility of the programmer to ensure that the stacks of subprocesses do not
overlap.

Subprocesses share the address space of the process and hence have no pro-
tection from the actions of other subprocesses of the process.

8.2 Operations on Subprocesses

Subprocesses can be made through the use of the K_LMAKESUBP system call
and they are destroyed by K_LIDELSUBP. Messages are sent to subprocesses
using K_.SEND and K_LEXTSEND. There are three types of capabilities which
can be used to send messages: capabilities which can send messages to any sub-
process of a process, capabilities which can send a message to any subprocess
of a process other than subprocess zero. and capabilities which can only send
messages to a particular subprocess. The type of capability determines if the
subprocess parameter of the send operation is used.

8.3 Scheduling

Subprocesses have the semantics of processes on a time sharing system. That
is, when a subprocess of a process is executing no other subprocess of that pro-
cess can be executing. On the Walnut Kernel processes are used to support
concurrent execution.

The algorithm for determining which subprocess to run at the beginning of a
time slice for a process is as follows:

1. If a subprocess was executing and there is a non-zero value in the reserve
field of the parameter block resume execution of that subprocess.

2. Execute the subprocess with the highest priority which is not waiting.

23

3. For subprocesses of equal priority select the first subprocess encountered in
the subprocess table.

Before performing the algorithm to determine which subprocess to schedule
the mail boxes are scanned. If a new message has arrived for a subprocess the
subprocess is made runnable (not waiting).

Subprocesses can ensure that other subprocesses of the current process are
excluded from executing by setting the reserve field to a non-zero value. It is
essential that any subprocess attempting to make a system call sets the reserve
field to the appropriate value for the system call before accessing other elements
of the parameter block. It is also necessary to test or copy all required values
from the parameter block before zeroing the reserve field after returning from a
system call.

24

9 Messages and Mailboxes

This section describes the processes of sending and receiving messages.

9.1 Sending Messages

Messages are sent using either the K_SEND or K. EXTSEND system calls. A
message consists of the contents of the message area. The length of the message
is variable (currently up to 16 words may be sent) and it is specified by setting
the ltmit field to the number of bytes to be transferred.

Messages are sent to processes represented by a capability. The capability
may be derived to allow messages to be sent to only one subprocess or to allow
messages to be sent to all subprocesses of the process. If the latter type of
capability is used then the subpn field contains the destination subprocess number.

A message will only be sent if there is an empty mailbox available to receive
the message at the destination process. An error is returned if there are no
suitable mailboxes at the destination process.

9.2 Receiving Messages

Messages are retrieved and mailboxes are cleared by issuing a K_IRECYV system
call. A match string can be specified for the receive system call allowing the user
program to control the order in which messages are retrieved from mailboxes.
When there is a message in a mailbox waiting to be received, the wakeup
time of the subprocess is set to the current time. This nullifies the effect of any

K_WAIT system calls.

9.3 Mailboxes

Mailboxes have 3 independent parameters which determine whether or not they
will accept a message: state, prefix, and subprocess.
The state of the mailbox:

Open - The mailboxis prepared to accept a message that meets the other criteria
Closed - The mailbox will not accept messages
A message prefix consists of a string of characters:

Non-zero length - Only messages starting with the prefix string are accepted.
The length of the prefix string is specified in bytes.

Zero Length - Accept any message meeting the other criteria

Mailboxes may accept messages for specified subprocesses:

25

Subprocess 0 - 250 - Only messages intended for the specified subprocess are
accepted

Subprocess 255 - Accept any message meeting the other criteria

If a message matches the mailbox’s criteria and the mailbox is empty then the
message is placed in the mailbox. The criteria are used to ensure that mailboxes
are available for particular types of messages. The first available mailbox that
accepts the message is used.

The K. RECV_CLOSE, K_ ACCEPT_MAIL and K_CLOSE_BOX sys-
tem calls are used to manipulate the parameters of the mailbox.

Both the K_.CLOSE_BOX and the K. RECV_CLOSE system calls close
mailboxes. The K_LRECV_CLOSE receives a message from a mailbox and then
closes the mailbox from which the message was extracted. The K_ACCEPT_MAIL
system call opens a mailbox and specifies the parameters which determine the
messages the mailbox will accept.

10 Exceptions

This section describes the handling of exceptions by processes under the Walnut
Kernel. The default behavior of the Walnut Kernel is to terminate any process
which encounters an exception. This behavior can be modified by using trap
handling subprocesses.

10.1 Types of Exception

The Walnut Kernel detects the following exceptions:

FPFAULT - All exceptions relating to errors in arithmetic. This may include
floating point exceptions, integer arithmetic exceptions, dividing by zero,
overflow and underflow. The types of errors detected by this exception are
processor dependent.

OPFAULT - This exception is raised when an invalid instruction is parsed by
the processor.

ADDRSFAULT - This exception is used to catch all errors relating to ad-
dresses. It is raised under the following conditions:

e An unmapped region of the address space has been accessed
e A write has been attempted on a read-only area of memory
o A read or write has been attempted on an privileged area of memory

e An object could not be automatically expanded to accommodate the
attempted access due to the lack of unreserved space on the volume

DBFAULT - This exception is raised whenever a debug exception is raised by
the processor. This exception is processor dependent.

ALIGNFAULT - This exception is raised on unaligned accesses. This exception
is processor dependent.

10.2 Trap Handling Subprocesses

A trap handler is a normal subprocess which has been nominated to receive trap
messages for a given subprocess. The K_SETTRAP system call is used to
inform the kernel where trap messages should be sent. The set trap system call
takes two arguments: the subprocess for which traps are to be handled and the
subprocess which will handle the trap.

A subprocess cannot handle its own traps. If a subprocess traps and the trap
message is to be sent to the same subprocess then the process will be terminated.

(N]
=~

When an exception occurs in a subprocess, which has a nominated trap han-
dler, the subprocess with the fault is marked DEAD, its wake up time is set to

NEVER and a message is sent to the trap handler. The format of the message
is discussed in section 10.3.

The trap handler can examine and alter the state of the dead subprocesses
register sets through the use of the K. LOADREG and K_.SAVEREG sys-
tem calls. The subprocess can be restored to operation through the use of the
K_MAKESUBP system call.

10.3 The Trap Message

A five word message is sent (see figure 9) to the trap handling subprocess. The
words of the message are:

1.

Message Type - this word indicates that the message is the result of an
exception. The failure message identifier is 0x3333ffff.

Subprocess Number - the subprocess number of the subprocess in which
the exception occured.

Fault Identifier - a code which identifies the type of exception which occured
(see table 1).

Processor Error Code - a processor dependent error code for non-floating
point operations.

Floating Point Error Code - a processor dependent error code for floating
point operations.

The error codes are processor dependent and are only returned where relevant to
the cause of the exception.

0x3333ffff | Subprocess Fault Processor FP

Number Identifier Err Code Err Code

Figure 9: Structure of the Failure Message

Mnemonic Description Value
FPFAULT Floating Point Fault | 101
OPFAULT Opcode Fault 102
ADDRSFAULT | Address Fault 103
DBFAULT Debug Fault 104
ALIGNFAULT | Alignment Fault 105

Table 1: Error Identifier Values

11 System calls

All system calls implemented within the Walnut Kernel use the parameter
block to contain all the parameters of the call. There is only one parameter
block per process. To prevent subprocesses from altering the parameter block
while another subprocess is setting up or receiving the results of a system call it
is essential that the reserve field be set to a non-zero value while a subprocess
manipulates the parameter block. Setting the reserve field to a value prevents
any other subprocess of a process being run until the reserve field is cleared.

11.1 Procedure

How to make a system call:
e Put the call number in the parameter block’s reserve field
o Fill in necessary parameters
e Call system_call()
After a successful system call has been completed:
e Copy any desired information out of the parameter block
e Set the reserve field to zero
After an unsuccessful system call (error > 0)

e Copy the error code and any other desired information out of the parameter

block

e Set the reserve field to zero

30

11.2 Available System Calls

This section describes the currently available system calls on the Walnut Kernel
and the parameters required for those calls.

11.2.1 Make Object

Name Symbol Value
Make Object K_MAKEOBJ 1

Input Parameters:

vol -Volume on which to create object

srights -System rights

urights -User rights

limit -Highest byte offset of object (hard limit)

money -Initial money

type -Object type

maxoff -Highest byte offset of object (soft limit)

maxsy -Maximum size of object

maxcap -Maximum number of capabilities including master
Output Parameters:

vol -Master capability (volume)

serial -Master capability (serial)

passl -Master capability (password 1)

pass2 -Master capability (password 2)

srights -Master capability (system rights)

urights ~ -Master capability (user rights)

limit -Highest byte offset of object (hard limit)

money -Initial money

type -Object type

maxoff -Highest byte offset of object (soft limit)

maxsy -Maximum size of object

maxcap -Maximum number of capabilities including master
Description:

This call creates an object of the size specified on the volume specified. The
object will have the rights dictated by the srights & urights field.
Before using the limit value, it is transformed:

limit otherwise

o { BIGLIMIT iflimit =0
limit =

To create a new object the following preconditions must be met limit&0z3f f = 0,
maxof f < limit, imit < BIGLIMIT. and maxsz < BIGLIMIT.

31

11.2.2 Derive Capability

Name Symbol Value
Derive Capability K_MAKECAP 2

Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights mask

urights -User rights mask

base -Offset from the beginning of existing view

limit -Size of derived view

money -Drawing limit of capability

subpn -New password 1 (if subpn >= 1024)

cindex -New password 2 (if subpn >= 1024)
Output Parameters:

vol -Volume

serial -Serial

passl -Derived capabilities password 1

pass2 -Derived capabilities password 2

srights -Derived capabilities system rights

urights -Derived capabilities user rights

base -Cleared by call

limit -Maximum size of derived view

money -Drawing limit of capability

type -Drawing limit of derived capability
Description:

This capability derives a capability from a given capability. The new capa-
bility may have weaker rights and/or a smaller view of an object. Note that the
suicide right may be added to a derived capability.

Attempts to derive capabilities from a capability without the SRMUTLILOAD
right always have the same pass2 as the original capability.

If limit is set to 0 then the view of the derived capability will extend from
the base to the end of the view provided by the original capability.

The following pre-conditions must be met view.limit > base and limit > ().

32

11.2.3 Delete Capability

Name Symbol Value
Delete Capability K_DEL 3
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

Output Parameters:
Description:
Deletes the capability specified (if the capability has suicide right) and all of

its derivatives (if the capability has derive right).

11.2.4 Delete Derived Capabilities

Name Symbol Value
Delete Derived Capabilities K_DELDER 4
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

Output Parameters:
Description:

Deletes all of the derivatives of the specified capability (if the capability has
derive right).

33

11.2.5 Resize Object

Name Symbol Value
Resize Object K_RESIZE 5
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

limit -New limit

maxoff -New maximum offset

maxsy, -New maximum size

maxcap -New maximum number of capabilities

Output Parameters:

Description:

Resizes an object to the values given in limit, maxoff and maxsz. If maxcap
is greater than the current number of permitted capabilities then the number of
capabilities is increased, otherwise, maxcap is ignored.

Preconditions: to be specified

11.2.6 Shrink Object

Name Symbol Value
Shrink Object K_SHRINK 6
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

Output Parameters:

Description:

Shrinks the object to a size just sufficient to contain its current contents and
sets the limits to make this the maximum size of the object. The object’s limit,
maximum offset, maximum size and maximum number of capabilities
are altered.

Preconditions: to be specified

34

11.2.7 Wait

Name Symbol Value
Wait K_WAIT 7
Input Parameters:
clocktime -Wakeup time
Output Parameters:

Description:

Provided there are no outstanding messages this call puts the subprocess to
sleep until either a message arrives or the wakeup time has been reached. The
wakeup times of 0 and -1 have special meanings:

0 Surrender the remainder of time slice
-1 Set no wakeup time. Awake only when sent a message

Wakeup times are in seconds and are absolute. Relative wakeup times can be

created by adding a value to the time found in clocktime.

35

11.2.8 Load Capability

Name Symbol Value
Load Capability K_LOADCAP 8
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
base -Offset from start of view
limit -Size of window to be loaded
offset -Logical address of load location
cindex -Capability index
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
srights -System rights of capability
urights -User rights of capability
hase -Offset from start of view
limit -Size of window loaded
money -Drawing right or money provided by capability
offset -Logical address of load location
cindex -Capability index
Description:

Loads a view or part of view provided by a capability into the processes
address space.

To nominate the capability index of the loaded capability a non-zero cindex
should be provided to an empty slot in the table of loaded capabilities. If cindex
is zero then a value will be automatically allocated.

The kernel can be requested to load a capability at a suitable address to
contain the view of the object. The following table gives the values of offset and
their meanings.

0 load anywhere, preferably a large window
1 load anywhere, preferably a small window
2 load as a large window
3 load as a small window

All other values of offset are interpreted as specific addresses. The value
of offset is truncated to give a page boundary for small windows or a segment
boundary for large windows.

Limit gives the size of the window to be loaded. A limit of zero specifies that
the limit specified by the capability should be used.

36

11.2.9 Unload Capability

Name Symbol Value
Unload Capability K_UNLOADCAP 9
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
offset -Offset of window to be unloaded
cindex -Index in table of load capabilities of capability to be unloaded
Output Parameters:
limit -Limit of freed window
offset -Offset of freed window
cindex -Index of freed window
Description:
Unloads a capability from address space of the process. If offset = 0 then

the capability vol serial passl pass2 will be unloaded. If offset = 1 then
the capability located at index cindex in the table of loaded capabilities will be
unloaded. Otherwise the capability at the location offset will be unloaded.

37

11.2.10 Identify Capability

Name Symbol Value
Identify Capability K_CAPID 10
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
offset -Offset
cindex -Index in table of load capabilities
Output Parameters:
vol -Volume of loaded capability
serial -Serial of loaded capability
passl -Password 1 of loaded capability
pass2 -Password 2 of loaded capability
srights -System rights of loaded capability
urights -User rights of loaded capability
limit -Limit of loaded capability
offset -Offset of loaded capability
cindex -Index of loaded capability
Description:

Fills in the rights, limit, offset and cindex for a loaded capability. If offset
= 0 then information for the capahility vol serial passl pass2 will be returned.
If offset = 1 then the information for the capability located at index cindex in
the table of loaded capabilities will be returned. Otherwise information for the
capability loaded at location offset will be returned.

38

11.2.11 Make Process

Name Symbol Value
Make Process K_MAKEPROC 11

Input Parameters:

vol -Volume to create new process on

srights -Encoded process parameters

urights -User rights of new process

base -Start up time for new process

limit -Highest byte offset of object (hard limit)

money -Money to be transferred to new process

type -Type of new process

maxoff -Maximum offset of new process object (soft limit)

maxsy, -Maximum size of new process ohject (soft limit)

maxcap -Maximum number of capabilities for new process (soft limit)

offset -Offset at which to load new process object

cindex -Index in table of loaded capabilities for new process object
Output Parameters:

vol -Master capability (volume)

serial -Master capability (serial)

passl -Master capability (password 1)

pass2 -Master capability (password 2)

urights -User rights of new process

limit -Limit of new process object

money -Money deposited in new process

type -Type of new process

maxoff -Maximum offset of new process object

maxsy, -Maximum size of new process ohject

maxcap -Maximum number of capabilities for new process

offset -Offset of new process object

cindex -Index of new process object in table of loaded capabilities
Description:

Make Process creates an object, loads the object into the current process’s
address space and fills in the process state information for the new process.

Initially this call creates an object of the size specified on the volume specified
with user rights dictated by the urights field and system rights set to SRPRO-
CESSMASTER.

Before using the limit value, it is transformed:

limit otherwise

o { BIGLIMIT iflimit =0
limit =

The new object is created if the following preconditions are met limit&Qx3f f # 0,
mazoff <limit, imit < BIGLIMIT, and maxrsz: < BIGLIMIT.

39

The object is then loaded into the process’s address space at either a nomi-
nated location or an automatically allocated location. The location is determined
by the value of offset. If offset is either 0 or 2 then the kernel will allocate a suit-
able large window automatically and load the object at that location, otherwise
the object will be loaded at the segment boundary specified in offset.

The capability index of the loaded capability may be nominated by specifying
a cindex for to an empty slot in the table of loaded capabilities. If cindex is
zero then a value will be automatically allocated.

A process is then created with the parameters dictated by the srights field.
The srights field is interpreted as four fields of 8 bits:

8 bits R bits R bits 8 bits
Max subp # message slots [Max loaded caps | # auto load caps

msb Isb

e Max subp - The maximum number of subprocesses for the new process
including subprocess 0.

o # message slots - The number of message slots for the new process. As a
message slot is reserved for subprocess 0 the number of message slots must
be 1 or greater.

o Max loaded caps - The maximum number of loaded capabilities for the new
process. This number includes the capability for the process.

e # auto load caps - The number of capabilities to be automatically loaded
into the new process’s address space including the capability for the new
process.

The first four words of the message area contain the initial values of the
program counter and stack pointer for subprocess 1. The values are encoded:
message area index for PC
initial PC
message area + 2 | index for SP
initial SP

The ndex is the index of a capability in the table of loaded capabilities. If an
index value of zero is supplied the initial values are treated as logical addresses
instead of as a byte offset from the start of a capability.

The next four words contain the capability of the new process’s ‘heir’. The
heir is notified in case of the death of the process. The message sent contains
the remaining cash. If this field contains zero then the master capability for the
creating process is used as the heir.

40

The remainder of the parameter page contains a list of capabilities to be pre-
loaded into the new process’s address space. The list is composed of records of

the form:
vol Volume

serial ~ Serial
passl Password 1
pass2 Password 2
base Start of the loaded window relative to the capability
limit Size of the loaded window. Zero indicates capability limit
offset Location of window in the new process’s address space
cindex Index in table of loaded capabilities. Zero for automatic allocation
The creating process will have twice the value indicated in money deducted
from its cash. This money will be transferred equally to the new process’s cash
and new process’s process object.
The process is scheduled to wake up at the time given in base with the wakeup
times of 0 and -1 having the special meanings:
0 Wake up immediately
-1 Set no wakeup time. Awake only when sent a message
Information relating to the new process object is returned to the creating
process.

41

11.2.12 Send Message

Name Symbol Value
Send Message K_SEND 12
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
money -Amount of money to be sent to process
limit -Size of message in bytes
offset -Offset
subpn -Subprocess number to send message to
cindex -Index in table of load capabilities
Output Parameters:
srights -System rights of loaded capability
urights -User rights of loaded capability
money -Amount of money sent to process
limit -Size of message in bytes
offset -Offset of loaded capability
cindex -Index of loaded capability
Description:

Sends a message to a process which is loaded into the address space of the
sender. If offset = 0 then the message will be sent to vol serial passl pass2
provided process object is loaded into the sender’s address space. If offset =
1 then the message will be sent to the process with its process object loaded
at index cindex in the table of loaded capabilities. Otherwise the message will
be sent to the process with its process object loaded at location offset. The
message length is specified in limit in bytes. The message to be sent is located
at the beginning of the message area. A positive amount of money - money - is
removed from sender’s cash and sent with the message.

42

11.2.13 Receive Message

Name Symbol Value
Receive Message K_RECV 13
Input Parameters:
limit -Size of match string
Output Parameters:
money -Amount of money received with message
limit -Size of message
Description:

Recovers message from a subprocess’s message queue. If limit is non-zero
then only a message which matches the first limit characters found in the match
string will be recovered. The match string is found at the beginning of the
message area. The message received is placed into the message area.

If no message is present an error code is returned

11.2.14 External Send Message

Name Symbol Value
External Send Message K_EXTSEND 14
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
money -Amount of money to be sent to process
limit -Size of message in bytes
subpn -Subprocess number to send message to
Output Parameters:
money -Amount of money sent to process
limit -Size of message in bytes
Description:

Sends a message to the process vol serial passl pass2. The message length
is specified in limit in bytes. The message to be sent is located at the beginning
of the message area. A positive amount of money - money - is removed from
the sender’s cash and sent with the message.

43

11.2.15 External Read Memory

Name Symbol Value
External Read Memory K_EXTREAD 15
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit -Number of bytes to be read
offset -Offset in bytes from start of capability
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit -Number of bytes read
offset -Offset in bytes from start of capability
Description:

Reads limit bytes from offset offset in capability vol serial passl pass2.
The bytes read are stored at the start of the message area.

11.2.16 External Write Memory

Name Symbol Value
External Write Memory K_EXTWRITE 16
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit -Number of bytes to be written
offset -Offset in bytes from start of capability
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit -Number of bytes written
offset -Offset in bytes from start of capability
Description:

Writes limit bytes from offset offset in capability vol serial passl pass2.
The bytes to be written are stored at the start of the message area.

44

11.2.17 Bank

Name Symbol Value
Bank K_BANK 17
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
money -Amount of money to be transferred from capability to cash
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
srights -System rights of capability
urights -User rights of capability
limit -Size of view in bytes
money -Drawing limit available to capability
Description:

Transfers money from cash from the calling process to the capability vol
serial passl pass2. Both positive and negative amounts of cash may be trans-
ferred.

If money is positive then the capability must have deposit right to perform
the transfer. If money is negative then the capability must have withdraw right
to perform the transfer.

45

11.2.18 Restrict Rights

Name Symbol Value
Restrict Rights K_RESTRICT 18
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights mask

urights -User rights mask
Output Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights of capability

urights -User rights of capability
Description:

Reduces the rights of a capability by performing a bitwise and of the rights
masks supplied with the rights bitmaps of the capability vol serial passl pass2.
The capability named must have suicide right for restrict to operate.

46

11.2.19 Capability Status

Name Symbol Value
Capability Status K_CAPSTAT 19

Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2
Output Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights of capability

urights -User rights of capability

base -Cleared by call

limit -Limit of view of capability

money -Withdrawal right of capability

type -Type of object

maxoff -Maximum offset of obhject

maxsy, -Maximum size of object

maxcap -Maximum number of capabilities for object
Description:

Returns details of capability vol serial passl pass2 and associated object.

47

11.2.20 Rename Capability

Name Symbol Value
Rename Capability K_RENAME 20
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
base -Cleared by call
Description:

Changes the passwords of capability vol serial passl pass2 to a new pair
of random values.

A precondition to this call is that the capability has suicide right. In addition
the master capability of a process cannot be renamed.

48

11.2.21 Make Subprocess

Name Symbol Value
Make Subprocess K_MAKESUBP 21
Input Parameters:
base -Start up time for new subprocess
limit -Priority of new subprocess
subpn -Subprocess number
Output Parameters:
base -Start up time for new subprocess
limit -Priority of new subprocess
subpn -Subprocess number of new subprocess
Description:

Creates a new subprocess of the current process. If subpn is not zero and
no subprocess of the current process has been allocated that number then the
subprocess’s number will be subpn. The priority is set to the least 8 bits of
limit. The subprocess is scheduled to wake up at the time given in base with
the wakeup times of 0 and -1 having the special meanings:

0 Wake up immediately
-1 Set no wakeup time. Awake only when sent a message
The first four words of the message area contain the initial values of the pro-
gram counter and stack pointer for the new subprocess. The values are encoded:
message area index for PC
initial PC
message area + 2 | index for SP
initial SP
The index is the index of a capability in the table of loaded capabilities. If an

index value of zero is supplied the initial values are treated as logical addresses
instead of as a byte offset from the start of a capability.

49

11.2.22 Delete Subprocess

Name Symbol Value
Delete Subprocess K_DELSUBP 22
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number of deleted subprocess
Description:

Deletes subprocess subpn. Note that neither subprocess 0 nor 1 can be
deleted.

11.2.23 Load Register Set

Name Symbol Value
Load Register Set K_LOADREG 23
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number
Description:

Copies the structure sysstate at the start of the message area into subprocess
table entry subpn.

11.2.24 Save Register Set

Name Symbol Value
Save Register Set K_SAVEREG 24
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number
Description:

Copies the structure sysstate from subprocess table entry subpn into the
start of the message area.

11.2.25 Set Trap

Name Symbol Value
Set Trap K_SETTRAP 25
Input Parameters:
offset -Subprocess number to send trap message to
subpn -Subprocess number whose trap is being set
Output Parameters:
offset -Subprocess number to send trap message to
subpn -Subprocess number whose trap is being set
Description:

Sets the destination subprocess for trap messages. Subprocess offset is noti-
fied of faults in subprocess subpn.

11.2.26 Receive Message and Close Box

Name Symbol Value
Receive Message Close K_RECV_CLOSE 26
Input Parameters:
limit -Size of match string
Output Parameters:
money -Amount of money received with message
limit -Size of message
Description:

Recovers message from a subprocess’s message queue and closes the mail box
the message is recovered from. If limit is non-zero then only a message which
matches the first limit characters found in the match string will be recovered.
The match string is found at the beginning of the message area. The message
received is placed into the message area.

If no message is present an error code is returned.

11.2.27 Accept Mail

Name Symbol Value
Accept Mail K_ACCEPT_MAIL 27
Input Parameters:
limit -Size of match string
subpn -subprocess for which mail box is reserved

Output Parameters:

Description:

Opens a mail box for a subprocess and sets the acceptance string for the mail
box. The mail box is taken from the pool of closed mail boxes and set to receive
messages for a specific subprocess subpn or if subpn is O0xFF the mail box can
be used for any subprocess.

If limit is non-zero then the mail box created will only accept messages which
match the first limit characters found in the match string when the mail box is
opened. The match string is found at the beginning of the message area.

11.2.28 Close Mail Box

Name Symbol Value
Close Matching Mail Boxes K_CLOSE_BOX 28
Input Parameters:
limit -Size of match string
subpn -subprocess for which mail box is reserved
Output Parameters:
base -Number of mail boxes closed by operation
Description:

Closes mail boxes which match the closing criteria. If subpn equals 0xFF and
limit is zero then all user mail boxes will be closed. If limit is non-zero then
only user mail boxes with match strings matching the first limit characters of
the match string found at the beginning of the message area will be closed. If
subpn is non-zero then only user mail boxes for subprocess subpn are closed.

11.2.29 Copy Object

Name

Symbol

Value

Copy Object

K_COPYOBJ

29

Input Parameters:

vol
serial
passl
pass2
srights
urights
hase
limit,
money
type
maxsz
maxcap

-Volume (original)

-Serial (original)

-Password 1 (original)

-Password 2 (original)

-System rights mask

-User rights mask

-Start of copy relative to beginning of original
-End of copy relative to base

-Money to be transferred to copy

-Type of copy

-Maximum size of copy

-Maximum number of capabilities of copy

Output Parameters:

vol
serial
passl
pass?2
srights
maxoff
maxcap
Description:

Duplicates an object by creating a new object and copying the contents of
the original object to the new object. This call copies only the defined pages of
an object and hence produces an exact duplicate of the contents of the section of
the object referred to by the capability for the original object. The rights fields
allow the rights of the copy to be reduced as the rights mask and the rights fields
are combined by a bitwise AND to produce the copy’s rights field. The money
field indicates the amount of money to be transferred from the process cash to
the new object. The maxsz field specifies the maximum size of the new object.
The type field specifies the type of the copy. The base field specifies the start of
the the copy region which extends through to limit. If the limit and base fields

-Volume (copy)

-Serial (copy)

-Password 1 (copy)

-Password 2 (copy)

-System rights of copy

-Maximum offset of copy

-Maximum number of capabilities of copy

are zero then the complete object is copied.

NOTE:

e This call will not duplicate processes

e This call corrupts the first four words of the message area

11.2.30 Check Process State

Name Symbol Value
Peek Process K_PEEK_PROC 30
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
Output Parameters:
srights -State of process
base -Wakeup time
Description:

Returns the state and wakeup time of a process given a suitable capability
(capability must have SRPEEK right). for the process. The wakeup time is
returned in base and the process state in srights. The process state is encoded:

Value State

-2 No such process

No right to inquire
Process normal
Process in kernel
Process in read fault
Process in write fault
Process frozen
Process in probate
Process dead

|
w

=] O Ot = W N —

11.2.31 Set Heir of Process

Name Symbol Value
Set Heir K_SET_HEIR 31
Input Parameters:
vol -Volume of heir
serial -Serial of heir
passl -Password 1 of heir
pass?2 -Password 2 of heir

Output Parameters:

Description:
Set the heir of a process to the capability vol serial passl pass2. The heir
of a process receives a process’s death message and any remaining cash.

