
The Walnut Kernel:User Level Programmer's GuideMaurice Castro1TECHNICAL REPORT NO. 95/222May 1995revisedNovember 1995

1Computer Science, Monash University, Clayton, Victoria 3186, AUSTRALIAmaurice@cs.monash.edu.au

AbstractThe Walnut Kernel is a capability-based operating system under developmentin the Department of Computer Science at Monash University.The Walnut Kernel employs 128-bit names - Password-Capabilities - forviews onto persistent objects. The random allocation of names within a sparsename space provides a known level of statistical security for views and the con-tents of objects. Associated with each name is a set of rights which entitle theholder of the capability to access a section of the named object in a speci�ed way.This document contains a programmer's manual for the Walnut Kernel. Itprovides a brief outline of the basic concepts of the kernel and detailed descrip-tions of the process environment and system calls provided by the kernel.

Contents1 Overview 32 Objects 43 Capabilities 53.1 View . 53.2 User Rights . 53.3 System Rights . 53.4 Deriving Capabilities . 64 Process Structure 74.1 Process Address Space . 74.2 Parameter Page . 94.2.1 Parameter Block . 94.2.2 Message Block . 124.3 The Wall . 145 Process Structure Conventions 155.1 The Process Object . 155.2 The Process . 156 Process Creation 176.1 Making Processes . 176.2 Initial Process State . 177 Subprocess Zero 207.1 Freeze . 207.2 Thaw . 217.3 Wakeup . 217.4 Cooee . 217.5 Protected Freeze . 217.6 Protected Thaw . 228 Subprocesses 238.1 Anatomy of a Subprocess . 238.2 Operations on Subprocesses . 238.3 Scheduling . 239 Messages and Mailboxes 259.1 Sending Messages . 259.2 Receiving Messages . 259.3 Mailboxes . 251

10 Exceptions 2710.1 Types of Exception . 2710.2 Trap Handling Subprocesses . 2710.3 The Trap Message . 2811 System calls 3011.1 Procedure . 3011.2 Available System Calls . 3111.2.1 Make Object . 3111.2.2 Derive Capability . 3211.2.3 Delete Capability . 3311.2.4 Delete Derived Capabilities 3311.2.5 Resize Object . 3411.2.6 Shrink Object . 3411.2.7 Wait . 3511.2.8 Load Capability . 3611.2.9 Unload Capability . 3711.2.10Identify Capability . 3811.2.11Make Process . 3911.2.12Send Message . 4211.2.13Receive Message . 4311.2.14External Send Message . 4311.2.15External Read Memory . 4411.2.16External Write Memory 4411.2.17Bank . 4511.2.18Restrict Rights . 4611.2.19Capability Status . 4711.2.20Rename Capability . 4811.2.21Make Subprocess . 4911.2.22Delete Subprocess . 5011.2.23Load Register Set . 5011.2.24Save Register Set . 5011.2.25Set Trap . 5111.2.26Receive Message and Close Box 5111.2.27Accept Mail . 5211.2.28Close Mail Box . 5211.2.29Copy Object . 5311.2.30Check Process State . 5411.2.31Set Heir of Process . 54
2

1 OverviewThe Walnut Kernel is a capability-based operating system under developmentin the Department of Computer Science at Monash University. This operat-ing system draws on the concepts of and experience gained from the Password-Capability System2.The Walnut Kernel employs 128-bit names - Password-Capabilities - forviews onto persistent objects. The random allocation of names within a sparsename space provides a known level of statistical security for views and the con-tents of objects. Associated with each name is a set of rights which entitle theholder of the capability to access a section of the named object in a speci�ed way.The Walnut Kernel was designed as a portable operating system althoughit currently runs only on 80486 based PCs. Programs are compiled on a FreeBSD1.1 system and transferred onto the target machine on oppy disks. Work is con-tinuing on the development of the kernel as well as the development of interfaces,shells, and utilities for the system.This document contains a programmer's manual for the Walnut Kernel.The document is subject to revision as the kernel alters and currently describesonly the lowest level of the kernel interface.AcknowledgmentsThe author would like to acknowledge the following contributions:� Prof C.S. Wallace - co-author of the kernel� Mr Glen Pringle - author of many of systems utility programs� Mr Carlo Kopp - author of the UNIX compatibility librariesThe `Secure RISC Architecture' project is supported by a grant from theAustralian Research Council (A49030623). Maurice Castro is a recipient of anAustralian Postgraduate Research Award.
2M. Anderson, R D. Pose, and C S. Wallace. A Password-Capability system. The ComputerJournal, 29(1):1{8, 1 1986. 3

2 ObjectsAll entities controlled by the Walnut Kernel are objects. A Walnut Kernelobject is analogous to a segment in segmented computer architecture. It com-prises an ordered array of bytes. An individual byte is identi�ed by its `o�set', anumber indexing the array. The �rst byte has o�set zero. An object is de�nedby the following characteristics:Maximum O�set The largest addressed o�set in the object. (Note: this valueis set on creation and automatically increases, as long as there are pagesavailable in the allocated space of the object)Limit The largest addressable o�set allowed in the object.Maximum Size The maximum number of bytes guaranteed to be available toan object. The number of bytes includes storage for the objects capabilitiesand dope vectors. (In practice this value represents the maximum numberof pages and header pages guaranteed to be available to an object. Thenumber of pages is calculated by dividing the maximum size by the pagesize and rounding upwards.)Maximum Capabilities The maximum number of capabilities that can repre-sent this object. (Note: this value automatically increases, as long as thereis space available to hold the new derived capabilities)Money The amount of money the object has available. Su�cient money mustbe present in an object to pay for its resource consumption.Each object has at least one capability that allows access to the object - theobject's Master Capability. Deletion of the object's master capability resultsin the deletion of the object. Other capabilities for views of the object are derivedfrom the master capability or its descendants.
4

3 CapabilitiesThe Walnut Kernel employs password capabilities to identify access rights toobjects. Each capability (see �gure 1) consists of a 128 bit identi�er composed offour 32 bit values: a volume number, a serial number, password 1 and password2. Associated with each capability is a view which determines the region of anobject a capability applies to, a set of user rights, and a set of system rights whichcontrol how that capability is to be used.32 bitsVolume 32 bitsSerial 32 bitsPassword 1 32 bitsPassword 2Figure 1: A Password Capability3.1 ViewA view is the attribute of a capability that de�nes the region of the object thatcan be addressed by the possessor of the capability. Views are contiguous regionsand are de�ned by an o�set from the base of the object and an extent. The viewentitles the user to address part of an object, it does not guarantee that pagesare contained in that region nor that the pages are readable by user processes.3.2 User RightsUser rights consist of a set of 32 bits which are managed by the kernel. Thekernel attaches no meaning to the user rights bits. They are intended to be usedby user processes to implement access to services in a way that is analogous tothe control system rights bits have over access to kernel services.3.3 System RightsThe system rights associated with a capability are encoded in a 32-bit word,basically as the OR of bits representing particular rights (the SRSEND �eld isan exception). For the numeric value of the system rights symbols see �gure 4.SRDERIVE - Allow capabilities to be derived from this capability.SRSUICIDE - Allow this capability to destroy itself and its children.SRDEPOSIT - Allow the holder of this capability to deposit money into theobject. 5

SRWITHDRAW - Allow the holder of this capability to withdraw money fromthe object.SRREAD - Allow the holder of this capability to read from the view.SRWRITE - Allow the holder of this capability to write to the view.SREXECUTE - Not used.SRUSER - Allow user processes to use the view.SRPEEK - Allow the holder of this capability to perform a peek system call onthe process represented by this capability (see 11.2.30).SRMULTILOAD - Allow this capability to be loaded by any process. If thisright is absent then only processes with a serial number equivalent to thecapability's password 2 may load this capability.SRSEND - an 8-bit �eld which, if non-zero, speci�es the subprocess to whichmessages may be sent by using this capability. This �eld has two specialvalues: 0xff - allow messages to be sent to any subprocess of the process,and 0xfe - disallow messages to subprocess zero but allow messages to besent to any other subprocess of the process.3.4 Deriving CapabilitiesDerived capabilities have equal or lesser rights than than their parent capability,at the time of derivation. Suicide right is an exception as this right may be addedto the children of capabilities which do not hold this right.The rights of a parent capability may be reduced through the use of therestrict system call after a child capability has been derived. The child capabilityis una�ected by the restriction of the parent capabilities rights.
6

4 Process StructureA process in the Walnut Kernel is essentially an object which contains stateinformation relating to the execution of the process. The minimal informationfound within a process object is:� Sub-process table� Message slots� Table of Loaded Capabilities� Process cash� Lock words� Parameter page� Address mapOf these only the parameter page and the address map are directly accessible tothe user process. The address map is read-only. The parameter block and theremainder of process object are both readable and writable by the user process.The process structure is detailed in diagram �gure 2.4.1 Process Address SpaceThe address space of a process operating under theWalnut Kernel is composedof three regions:Kernel Area is located at the bottom of the address space and is not address-able by user processes.Small Window Area is located above the Kernel Area and has a page sizedgranularity. Single pages or multiple pages of objects may be mapped intothis region of the address space by a user process. These mapped regionsalways begin and end on a page boundary.Large Window Area is located above the SmallWindow Area. It has a coarsergranularity than the Small Window Area. The �rst large window containsthe Process Object. All other large windows are allocated by the process.On a system with a 4 kilobyte page size, large windows have a granularity of 4megabytes and small windows have a granularity of 4 kilobytes.Two distinct paradigms are used to describe how the address is populatedwith objects. 7

0xffffffff0xffb000000xff700000H+0x400000
9>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>; large windows

RM Message AreaP Parameter BlockA Address MapH 9>>>>>>>>=>>>>>>>>; Process object
0x4010000x400000

9>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>; small windows
0xd0000xc000 The Wall0x00000000 9>>>>=>>>>; Kernel AreaDescription Constant Name ValueR remainder of process object PARAMADDRESS + 0x1000 0x1011000M message area EXTRAADDRESS 0x101004cP parameter page PARAMADDRESS 0x1010000A address map 0x100f000H process header PROCHDADDRESS 0x1000000Figure 2: Process Address Space: This diagram describes the major featuresof the address space seen by a process operating on a system with 4 kilobytepages. The message area and the parameter block are collectively known as theparameter page. 8

The Password-Capability system used the term `Window Registers' to de-scribe a set of segment registers. The Password-Capability system used the up-per bits of the virtual address to indicate which register was in use. We retainthis terminology in the Walnut Kernel. The analogy between the two systemsis imperfect as: the Walnut Kernel supports two classes of window registers;and although the number of window registers is �xed on the Walnut Kernelthe location of the registers in the virtual address space is not �xed, under thePassword-Capability System both of these parameters were constant.The second paradigm describes the operation of the system. On a systemwith 4 kilobyte pages, it views the address space as two address ranges. Theaddress range from 0x400000 to 0xffffff can have objects loaded on 4 kilobyteboundaries. The address range 0x1400000 to 0xffffffff has objects loaded on4 megabyte boundaries.4.2 Parameter PageThis page is composed of two parts: the parameter block and the message area.The parameter block is a structure de�ned in the �le param.h. This block is usedto pass parameters to the kernel when a system call is made. The second area isused to pass additional information to the kernel and to receive information fromthe kernel. The information passed via the message area varies with the type ofcall.4.2.1 Parameter BlockThe declaration of the parameter block structure is found in �gure 3.The �elds are named after the function they are used for in the majority ofcalls. The values contained in the �elds are:error The error �eld contains an integer error value on returning from a systemcall. If the value is zero then the system call completed successfully. If thevalue is greater than zero the system call could not be completed success-fully. If the return value is negative3 or greater than 2000000010 an internalkernel error has occurred: contact the system's maintainer urgently and re-port the value. The �le include/kerror.h contains a translation table whichallows error values to be converted to ascii strings.vol serial pass1 pass2 The capability �eld composed of vol, serial, pass1 andpass2, contains either a capability being passed to a system call or a capa-bility being passed back by a system call.srights The system rights �eld contains one of3Negative error values are used internally by the kernel to indicate partial completion of asystem call which cannot be completed because of a transient problem.9

/* -- *//* Parameter Structure *//* -- */typedef struct Paramst {Sw error;Uw vol; /* volume ID */Uw serial; /* serial in volume */Uw pass1; /* password 1 */Uw pass2; /* password 2 */Uw srights; /* System rights */Uw urights; /* User rights */Sw base; /* Offset of cap from front of object */Sw limit; /* Max addressing offset from base *//* Zero means "to end of object" */Sw money; /* money word */Uw type; /* Type of object */Sw maxoff; /* Max addressing offset in whole object */Sw maxsz; /* Max size of defined content */Sw maxcap; /* Max capabilities now allowed */Sw offset; /* An offset in a capability window */Sw subpn; /* A subprocess number */Sw cindex; /* Index of a capl in a process TLC */Uw clocktime;Uw reserve; /* Non-zero shows reserved by sub-process */} Param; Figure 3: Parameter Block Declaration
10

� a bitmap indicating the system rights provided by a capability (Figure4 de�nes the symbolic and numeric forms of the system rights bits)� a mask which restricts the system rights provided to a derived capa-bility� a set of limits used in the creation of a process� an encoded process state when inquiring about a process stateurights The user rights �eld contains either� a bitmap indicating the user rights provided by a capability� a mask which restricts the user rights provided to a derived capabilitybase The base �eld contains an o�set from the beginning of a view or - on processcreation - the time, in seconds, at which the new process is scheduled towake up.limit The limit �eld contains one of� the length of a message� the maximum addressable o�set of an object� the maximum size of a viewmoney The money �eld contains one of� the amount of money in an object� the amount of money to be deposited or withdrawn� the amount of money to be sent with a message� the amount of money received from a messagetype The type �eld contains the object type. The top bit of this �eld is set if theobject is a process. The following type values are reserved by the kernel:0000000000000003 Prototype process0000ffff Physical memory object8000000080000002 Drive process80000003 Prototype processmaxo� The maximum o�set �eld contains the current maximum o�set of anobject.maxsz The maximum size �eld contains the current maximum size of an object.11

maxcap The maximum capability �eld contains the current maximum numberof capabilities for a processo�set The o�set �eld contains an o�set into a process's address space.subpn The subprocess number �eld contains the destination subprocess numberfor a message.cindex The capability index �eld contains the index into the table of loadedcapabilities that a capability occupies.clocktime The clocktime �eld, after returning from a system call, contains thecurrent time in seconds. The clocktime �eld is set to the wakeup time fora process when a wait system call is made.reserve The reserve �eld provides both a locking function which prevents othersubprocesses accessing the parameter block and indicates the type of kernelcall being made. The currently available kernel call constants are listed in�gure 5.#define SRDERIVE 0x40000000 /* System rights bits */#define SRSUICIDE 0x20000000#define SRDEPOSIT 0x10000000#define SRWITHDRAW 0x08000000#define SRREAD 0x04000000#define SRWRITE 0x02000000#define SREXECUTE 0x01000000#define SRUSER 0x00800000#define SRPEEK 0x00400000#define SRMULTILOAD 0x00200000#define SRSEND 0x000000FF /* Bits relating to send rights */Figure 4: System Rights Constants4.2.2 Message BlockThe message area's contents are interpreted di�erently for each class of call.There are currently three classes of information stored in the message block:� Messages - Messages to be sent by the send message system call and mes-sages recovered by the receive message system call are stored at the frontof the message block. 12

/* -- *//* Action Codes *//* -- */#define K_MAKEOBJ 1#define K_MAKECAP 2#define K_DEL 3#define K_DELDER 4#define K_RESIZE 5#define K_SHRINK 6#define K_WAIT 7#define K_LOADCAP 8#define K_UNLOADCAP 9#define K_CAPID 10#define K_MAKEPROC 11#define K_SEND 12#define K_RECV 13#define K_EXTSEND 14#define K_EXTREAD 15#define K_EXTWRITE 16#define K_BANK 17#define K_RESTRICT 18#define K_CAPSTAT 19#define K_RENAME 20#define K_MAKESUBP 21#define K_DELSUBP 22#define K_LOADREG 23#define K_SAVEREG 24#define K_SETTRAP 25#define K_RECV_CLOSE 26#define K_ACCEPT_MAIL 27#define K_CLOSE_BOX 28#define K_COPYOBJ 29#define K_PEEK_PROC 30#define K_SET_HEIR 31Figure 5: De�ned Kernel Call Constants13

� System states - The save register and load register system calls store theregister set and other state information for a subprocess at the front of themessage block.� Read/Write Data - Bytes to be transferred by the external read or externalwrite system calls are stored at the front of the message block.� Initialization information - Initial values used to set stack and programcounters, the name of an heir and a list of capabilities to be pre-loaded intoa process are stored at the front of the message block.4.3 The WallEvery process has a read-only page mapped into its address space known as theWall. This page contains public information, including the current time, and thecapabilities of public utilities. A wall manager places information in the wall.The wall currently contains:0xc000 Scheduler Start Variabley0xc004 Physical Object: Volumey0xc008 Physical Object: Serialy0xc00c Physical Object: Password 1y0xc010 Physical Object: Password 2y0xc000 GLui: Magic Number0xc004 GLui: Volume0xc008 GLui: Serial0xc00c GLui: Password 10xc010 GLui: Password 20xc014 Name Server Set: Magic Number0xc018 Name Server Set: Volume0xc01c Name Server Set: Serial0xc020 Name Server Set: Password 10xc024 Name Server Set: Password 20xc028 Name Server Set: O�set0xcfe0 Time in Seconds0xcfe4 Time in Microsecondsy: These locations are used by the initialization process. After initializationthe capability of the physical object is overwritten by the initialization processand the value of the scheduler start variable is no longer signi�cant.
14

5 Process Structure ConventionsThis section covers the conventional layout of a process (Section 4 outlined themandatory elements of a process structure).5.1 The Process ObjectThe following elements of the process object are visable to the user process andare provided by the kernel:� The Process Address Map� The Parameter Page� The Message AreaThey form part of the mandatory component of the process structuring conven-tion used by Walnut Kernel processes.By convention the following items are located within the process objectStartup Code Area (optional) This area may contain a small amount of codeused in starting a process.File Descriptor Table (mandatory) This area contains the �le descriptors foruse by the process. Note: The �rst 3 elements of the File Descriptor Tableare mandatory to allow for standard output, standard input and standarderror.Private Data Pointer Table (mandatory) This area contains pointers to pri-vate data. The table is indexed by the capability index of the executingcode and is used to locate data used by the executing code.Default Heap (optional) The default location for the creation of the heap.Default Stack (optional) The default location for the creation of the stack.The structure of the process object is outlined in �gure 6.5.2 The ProcessConventional processes will be constructed according to the following rules:� The code object will be loaded at address 0x1400000� The data object will be loaded at address 0x5400000� Initialized data will be placed at the front of the data object15

0x1400000 Default Stack0x1017000 Default Heap0x1016000 Private Data Pointer Table0x1012000 File Descriptor Table0x1011000 Startup Code Area0x1010000 Parameter Page0x100f000 Process Address Map0x1000000Figure 6: Process Object: This diagram describes the major features of theprocess objectThis design allows multiple instances of a process to be created by sharingthe code objects and using copies of the data objects. In addition by placing theinitialized data at the front of the data object it is possible to ensure that theoriginal data object is compact and hence easy to copy. The copy of the dataobject will expand as required when uninitialized data is accessed.This arrangement of code and data allows up to 64 Mbytes of code to besupported. With the introduction of shared code libraries larger programs canbe supported.

16

6 Process CreationThis section describes the process of creating a process and the initial state of anew process.6.1 Making ProcessesA process is created using the Make Process call covered in section 11.2.11.This section will provide a general introduction to the creation of a process.Creating a process involves:� Creating a new process object� Creating an address space� Loading the new process object into the address space� Creating subprocess 0 and subprocess 1.� Loading pre-loaded capabilities into the address space� Setting initial program counter and stack pointer values for subprocess 1.� Setting the wake up time of subprocess 1.� Loading the new process object into address space of the creating processThis process appears as an atomic operation to the process issuing theMakeProcess system call. If the system call was successful the master capability forthe new process object will be returned and the new process will be loaded atthe address given in o�set in the parameter block.At the completion of the Make Process system call, the new process objectis loaded into the address space of the creating process. If the new process objectis larger than 4 megabytes in size, only the �rst 4 megabytes of the new processobject is visable. Thus the process which issued the Make Process system calland the new process have a region of shared memory.6.2 Initial Process StateImmediately after a process has been created:� The parameter block of the new process will contain:
17

vol Volume of master capability for processserial Serial of master capability for processpass1 Password 1 of master capability for processpass2 Password 2 of master capability for processsrights Encoded process creation parametersurights User rights of process's master capabilitylimit Maximum size of process object (hard limit)money Amount of money in process object / process cashtype Type of processmaxo� Maximum o�set of view on process objectmaxsz Maximum size of process objectmaxcap Maximum number of capabilities� The message area will consist of a table of pre-loaded capabilities with theformat:vol Volumeserial Serialpass1 Password 1pass2 Password 2base Start of the loaded window relative to the capabilitylimit Size of the loaded window. Zero indicates capability limito�set Location of window in the new process's address spacecindex Index in table of loaded capabilities. Zero for automatic allocation� The process object will be loaded at the location PROCHDADDRESS� The address space will contain all pre-loaded capabilities� Only subprocess 0 and subprocess 1 will exist� Subprocess 1 will begin executingThe process creation parameters are encoded in the system rights �eld:8 bitsMax subp 8 bits# message slots 8 bitsMax loaded caps 8 bits# auto load capsmsb lsb� Max subp - The maximum number of subprocesses for the new processincluding subprocess 0.� # message slots - The number of message slots for the new process. As amessage slot is reserved for subprocess 0 the number of message slots mustbe 1 or greater. 18

� Max loaded caps - The maximum number of loaded capabilities for the newprocess. This number includes the capability for the process.� # auto load caps - The number of capabilities to be automatically loadedinto the new process's address space including the capability for the newprocess.When a process is created two equal sums of money are deposited into thenew process. The sums are deposited into the process cash and the process objectrespectively. The size of one of the deposited sums is reported in the money �eld.It is normal practice for the �rst action of a process to be the duplication ofthe information passed in at process creation. It is particularly important to storethe capability for the process as it is not possible to locate the master capabilityfor the process subsequently.The creation of subprocesses other than subprocess 0 and subprocess 1 ishandled by the application using the Make Subprocess call.

19

7 Subprocess ZeroTheWalnut Kernel implements two direct methods of communication with thekernel: system calls and messages to subprocess zero of a process. The system callmechanism (described in the section 11) allows a process to alter its own state,operate on capabilities and send messages. The subprocess zero mechanism allowsa process to control another process's state.Subprocess zero functions are accessed by sending messages to a process'ssubprocess zero. The message contains a function identi�er and arguments. Onreceipt of a message to subprocess zero the kernel interprets the instruction pro-vided and performs the required action. Subprocess zero operations and messagesare the highest priority function of a process.The currently implemented subprocess zero functions are:Freeze Prevent process from being scheduled.Thaw Allow process to be scheduled.Wakeup Set the wakeup time of the speci�ed subprocess to zeroCooee Request the process to send a status message using a speci�ed capability.Protected Freeze Prevent process from being scheduled until all protectedfreezes on the process have been thawed.Protected Thaw Allow a process to be scheduled when all other protectedfreezes have been thawed.Figure 7 lists the identi�ers and arguments of the messages.Function Function ID Arg 1 Arg 2 Arg 3 Arg 4Freeze 33330001Thaw 33330002Wakeup 33330003 subp #Cooee 33330004 vol ser pass 1 pass 2Prot Freeze 33330007 magicProt Thaw 33330008 magicFigure 7: Subprocess Zero Functions and Arguments7.1 FreezeOn receipt of a freeze message subprocess zero sets the process state to frozenand causes the process to be removed from the scheduler queue.20

7.2 ThawWhen a process receives a message it is placed into the scheduler queue. Ifthe process is frozen the process is typically removed from the queue after thesubprocess zero messages are parsed. On receipt of a thaw message, subprocesszero sets the process state to normal and process execution resumes.7.3 WakeupThe wakeup message sets the wakeup time of the nominated subprocess to thecurrent time. This allows a process to start a process that has suspended activityand has closed mail boxes as the mail box allocated to subprocess zero cannot beclosed.One application of this function is to allow the initialization of data structureswithin a process object. The process is created with a wakeup time of neverpreventing the scheduling of the process. The creating process initializes therequired data structures before waking the created process up. At that stage thecreated process may elect to open its mail boxes as processes are created with allbut subprocess zero's mail boxes closed.7.4 CooeeOn receiving a cooee message subprocess zero attempts to send a message usingthe capability found in the cooee message. If the capability in the cooee messageallows transmission to any subprocess of a process then the message will be sentto subprocess one of the nominated process, otherwise, the message will be sentto the subprocess represented by the capability.The reply message is of the form:33330005 volume serial statusThe message consists of a set of words which represent the Cooee reply iden-ti�er, the volume and serial number of the current process and a process status.The process status is given in �gure 8.7.5 Protected FreezeOn receipt of a protected freeze message subprocess zero sets the process stateto frozen, XORs the magic word with a key held in the process state, incrementsa count held in the process state and causes the process to be removed from thescheduler queue. This prevents other parties from thawing the process unlessthey know the set of magic words used in the protected freeze operations appliedto the process. 21

State State ID ValueNormal State PROCSTATENORMAL 1In Kernel Call PROCSTATEKERNEL 2In Read Fault PROCSTATERFAULT 3In Write Fault PROCSTATEWFAULT 4Process Frozen PROCSTATEFROZEN 5Process in Probate PROCSTATEPROBATE 6Process Dead PROCSTATEDEAD 7Figure 8: Process Status7.6 Protected ThawOn receipt of a protected thaw message subprocess zero XORs the magic wordwith a key held in the process state and decrements a count held in the processstate. If both the count and key held in the process state are zero then theprocess is thawed. If the count is zero and the key is non-zero then the processis terminated.

22

8 SubprocessesSubprocesses are implemented in the Walnut Kernel as threads of executionwhich share a single address space. This section describes subprocesses and theirscheduling.8.1 Anatomy of a SubprocessWhen a process is created a �xed number of subprocess slots are allocated in theprocess structure. These slots form the subprocess table which is used to storethe subprocess states.When a subprocess is created the creator speci�es a priority which is usedto determine which subprocess should be scheduled, the starting address of thesubprocess and the the address of the subprocess's stack pointer. It is the re-sponsibility of the programmer to ensure that the stacks of subprocesses do notoverlap.Subprocesses share the address space of the process and hence have no pro-tection from the actions of other subprocesses of the process.8.2 Operations on SubprocessesSubprocesses can be made through the use of the K MAKESUBP system calland they are destroyed by K DELSUBP. Messages are sent to subprocessesusingK SEND and K EXTSEND. There are three types of capabilities whichcan be used to send messages: capabilities which can send messages to any sub-process of a process, capabilities which can send a message to any subprocessof a process other than subprocess zero, and capabilities which can only sendmessages to a particular subprocess. The type of capability determines if thesubprocess parameter of the send operation is used.8.3 SchedulingSubprocesses have the semantics of processes on a time sharing system. Thatis, when a subprocess of a process is executing no other subprocess of that pro-cess can be executing. On the Walnut Kernel processes are used to supportconcurrent execution.The algorithm for determining which subprocess to run at the beginning of atime slice for a process is as follows:1. If a subprocess was executing and there is a non-zero value in the reserve�eld of the parameter block resume execution of that subprocess.2. Execute the subprocess with the highest priority which is not waiting.23

3. For subprocesses of equal priority select the �rst subprocess encountered inthe subprocess table.Before performing the algorithm to determine which subprocess to schedulethe mail boxes are scanned. If a new message has arrived for a subprocess thesubprocess is made runnable (not waiting).Subprocesses can ensure that other subprocesses of the current process areexcluded from executing by setting the reserve �eld to a non-zero value. It isessential that any subprocess attempting to make a system call sets the reserve�eld to the appropriate value for the system call before accessing other elementsof the parameter block. It is also necessary to test or copy all required valuesfrom the parameter block before zeroing the reserve �eld after returning from asystem call.

24

9 Messages and MailboxesThis section describes the processes of sending and receiving messages.9.1 Sending MessagesMessages are sent using either the K SEND or K EXTSEND system calls. Amessage consists of the contents of the message area. The length of the messageis variable (currently up to 16 words may be sent) and it is speci�ed by settingthe limit �eld to the number of bytes to be transferred.Messages are sent to processes represented by a capability. The capabilitymay be derived to allow messages to be sent to only one subprocess or to allowmessages to be sent to all subprocesses of the process. If the latter type ofcapability is used then the subpn �eld contains the destination subprocess number.A message will only be sent if there is an empty mailbox available to receivethe message at the destination process. An error is returned if there are nosuitable mailboxes at the destination process.9.2 Receiving MessagesMessages are retrieved and mailboxes are cleared by issuing a K RECV systemcall. A match string can be speci�ed for the receive system call allowing the userprogram to control the order in which messages are retrieved from mailboxes.When there is a message in a mailbox waiting to be received, the wakeuptime of the subprocess is set to the current time. This nulli�es the e�ect of anyK WAIT system calls.9.3 MailboxesMailboxes have 3 independent parameters which determine whether or not theywill accept a message: state, pre�x, and subprocess.The state of the mailbox:Open - The mailbox is prepared to accept a message that meets the other criteriaClosed - The mailbox will not accept messagesA message pre�x consists of a string of characters:Non-zero length - Only messages starting with the pre�x string are accepted.The length of the pre�x string is speci�ed in bytes.Zero Length - Accept any message meeting the other criteriaMailboxes may accept messages for speci�ed subprocesses:25

Subprocess 0 - 250 - Only messages intended for the speci�ed subprocess areacceptedSubprocess 255 - Accept any message meeting the other criteriaIf a message matches the mailbox's criteria and the mailbox is empty then themessage is placed in the mailbox. The criteria are used to ensure that mailboxesare available for particular types of messages. The �rst available mailbox thataccepts the message is used.The K RECV CLOSE, K ACCEPT MAIL and K CLOSE BOX sys-tem calls are used to manipulate the parameters of the mailbox.Both the K CLOSE BOX and the K RECV CLOSE system calls closemailboxes. The K RECV CLOSE receives a message from a mailbox and thencloses the mailbox from which the message was extracted. TheK ACCEPT MAILsystem call opens a mailbox and speci�es the parameters which determine themessages the mailbox will accept.

26

10 ExceptionsThis section describes the handling of exceptions by processes under theWalnutKernel. The default behavior of theWalnut Kernel is to terminate any processwhich encounters an exception. This behavior can be modi�ed by using traphandling subprocesses.10.1 Types of ExceptionThe Walnut Kernel detects the following exceptions:FPFAULT - All exceptions relating to errors in arithmetic. This may includeoating point exceptions, integer arithmetic exceptions, dividing by zero,overow and underow. The types of errors detected by this exception areprocessor dependent.OPFAULT - This exception is raised when an invalid instruction is parsed bythe processor.ADDRSFAULT - This exception is used to catch all errors relating to ad-dresses. It is raised under the following conditions:� An unmapped region of the address space has been accessed� A write has been attempted on a read-only area of memory� A read or write has been attempted on an privileged area of memory� An object could not be automatically expanded to accommodate theattempted access due to the lack of unreserved space on the volumeDBFAULT - This exception is raised whenever a debug exception is raised bythe processor. This exception is processor dependent.ALIGNFAULT - This exception is raised on unaligned accesses. This exceptionis processor dependent.10.2 Trap Handling SubprocessesA trap handler is a normal subprocess which has been nominated to receive trapmessages for a given subprocess. The K SETTRAP system call is used toinform the kernel where trap messages should be sent. The set trap system calltakes two arguments: the subprocess for which traps are to be handled and thesubprocess which will handle the trap.A subprocess cannot handle its own traps. If a subprocess traps and the trapmessage is to be sent to the same subprocess then the process will be terminated.27

When an exception occurs in a subprocess, which has a nominated trap han-dler, the subprocess with the fault is marked DEAD, its wake up time is set toNEVER and a message is sent to the trap handler. The format of the messageis discussed in section 10.3.The trap handler can examine and alter the state of the dead subprocessesregister sets through the use of the K LOADREG and K SAVEREG sys-tem calls. The subprocess can be restored to operation through the use of theK MAKESUBP system call.10.3 The Trap MessageA �ve word message is sent (see �gure 9) to the trap handling subprocess. Thewords of the message are:1. Message Type - this word indicates that the message is the result of anexception. The failure message identi�er is 0x3333ffff.2. Subprocess Number - the subprocess number of the subprocess in whichthe exception occured.3. Fault Identi�er - a code which identi�es the type of exception which occured(see table 1).4. Processor Error Code - a processor dependent error code for non-oatingpoint operations.5. Floating Point Error Code - a processor dependent error code for oatingpoint operations.The error codes are processor dependent and are only returned where relevant tothe cause of the exception.0x3333ffff Subprocess Fault Processor FPNumber Identi�er Err Code Err CodeFigure 9: Structure of the Failure Message
28

Mnemonic Description ValueFPFAULT Floating Point Fault 101OPFAULT Opcode Fault 102ADDRSFAULT Address Fault 103DBFAULT Debug Fault 104ALIGNFAULT Alignment Fault 105Table 1: Error Identi�er Values

29

11 System callsAll system calls implemented within the Walnut Kernel use the parameterblock to contain all the parameters of the call. There is only one parameterblock per process. To prevent subprocesses from altering the parameter blockwhile another subprocess is setting up or receiving the results of a system call itis essential that the reserve �eld be set to a non-zero value while a subprocessmanipulates the parameter block. Setting the reserve �eld to a value preventsany other subprocess of a process being run until the reserve �eld is cleared.11.1 ProcedureHow to make a system call:� Put the call number in the parameter block's reserve �eld� Fill in necessary parameters� Call system call()After a successful system call has been completed:� Copy any desired information out of the parameter block� Set the reserve �eld to zeroAfter an unsuccessful system call (error > 0)� Copy the error code and any other desired information out of the parameterblock� Set the reserve �eld to zero

30

11.2 Available System CallsThis section describes the currently available system calls on theWalnut Kerneland the parameters required for those calls.11.2.1 Make ObjectName Symbol ValueMake Object K MAKEOBJ 1Input Parameters:vol -Volume on which to create objectsrights -System rightsurights -User rightslimit -Highest byte o�set of object (hard limit)money -Initial moneytype -Object typemaxo� -Highest byte o�set of object (soft limit)maxsz -Maximum size of objectmaxcap -Maximum number of capabilities including masterOutput Parameters:vol -Master capability (volume)serial -Master capability (serial)pass1 -Master capability (password 1)pass2 -Master capability (password 2)srights -Master capability (system rights)urights -Master capability (user rights)limit -Highest byte o�set of object (hard limit)money -Initial moneytype -Object typemaxo� -Highest byte o�set of object (soft limit)maxsz -Maximum size of objectmaxcap -Maximum number of capabilities including masterDescription:This call creates an object of the size speci�ed on the volume speci�ed. Theobject will have the rights dictated by the srights & urights �eld.Before using the limit value, it is transformed:limit = (BIGLIMIT if limit = 0limit otherwiseTo create a new object the followingpreconditions must be met limit&0x3ff = 0,maxoff � limit, limit � BIGLIMIT , and maxsz � BIGLIMIT .31

11.2.2 Derive CapabilityName Symbol ValueDerive Capability K MAKECAP 2Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights maskurights -User rights maskbase -O�set from the beginning of existing viewlimit -Size of derived viewmoney -Drawing limit of capabilitysubpn -New password 1 (if subpn >= 1024)cindex -New password 2 (if subpn >= 1024)Output Parameters:vol -Volumeserial -Serialpass1 -Derived capabilities password 1pass2 -Derived capabilities password 2srights -Derived capabilities system rightsurights -Derived capabilities user rightsbase -Cleared by calllimit -Maximum size of derived viewmoney -Drawing limit of capabilitytype -Drawing limit of derived capabilityDescription:This capability derives a capability from a given capability. The new capa-bility may have weaker rights and/or a smaller view of an object. Note that thesuicide right may be added to a derived capability.Attempts to derive capabilities from a capability without the SRMUTLILOADright always have the same pass2 as the original capability.If limit is set to 0 then the view of the derived capability will extend fromthe base to the end of the view provided by the original capability.The following pre-conditions must be met view:limit � base and limit � 0.
32

11.2.3 Delete CapabilityName Symbol ValueDelete Capability K DEL 3Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Deletes the capability speci�ed (if the capability has suicide right) and all ofits derivatives (if the capability has derive right).11.2.4 Delete Derived CapabilitiesName Symbol ValueDelete Derived Capabilities K DELDER 4Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Deletes all of the derivatives of the speci�ed capability (if the capability hasderive right).

33

11.2.5 Resize ObjectName Symbol ValueResize Object K RESIZE 5Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -New limitmaxo� -New maximum o�setmaxsz -New maximum sizemaxcap -New maximum number of capabilitiesOutput Parameters:Description:Resizes an object to the values given in limit, maxo� andmaxsz. Ifmaxcapis greater than the current number of permitted capabilities then the number ofcapabilities is increased, otherwise, maxcap is ignored.Preconditions: to be speci�ed11.2.6 Shrink ObjectName Symbol ValueShrink Object K SHRINK 6Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:Description:Shrinks the object to a size just su�cient to contain its current contents andsets the limits to make this the maximum size of the object. The object's limit,maximum o�set, maximum size and maximum number of capabilitiesare altered.Preconditions: to be speci�ed
34

11.2.7 WaitName Symbol ValueWait K WAIT 7Input Parameters:clocktime -Wakeup timeOutput Parameters:Description:Provided there are no outstanding messages this call puts the subprocess tosleep until either a message arrives or the wakeup time has been reached. Thewakeup times of 0 and -1 have special meanings:0 Surrender the remainder of time slice-1 Set no wakeup time. Awake only when sent a messageWakeup times are in seconds and are absolute. Relative wakeup times can becreated by adding a value to the time found in clocktime.

35

11.2.8 Load CapabilityName Symbol ValueLoad Capability K LOADCAP 8Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2base -O�set from start of viewlimit -Size of window to be loadedo�set -Logical address of load locationcindex -Capability indexOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitybase -O�set from start of viewlimit -Size of window loadedmoney -Drawing right or money provided by capabilityo�set -Logical address of load locationcindex -Capability indexDescription:Loads a view or part of view provided by a capability into the processesaddress space.To nominate the capability index of the loaded capability a non-zero cindexshould be provided to an empty slot in the table of loaded capabilities. If cindexis zero then a value will be automatically allocated.The kernel can be requested to load a capability at a suitable address tocontain the view of the object. The following table gives the values of o�set andtheir meanings.0 load anywhere, preferably a large window1 load anywhere, preferably a small window2 load as a large window3 load as a small windowAll other values of o�set are interpreted as speci�c addresses. The valueof o�set is truncated to give a page boundary for small windows or a segmentboundary for large windows.Limit gives the size of the window to be loaded. A limit of zero speci�es thatthe limit speci�ed by the capability should be used.36

11.2.9 Unload CapabilityName Symbol ValueUnload Capability K UNLOADCAP 9Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2o�set -O�set of window to be unloadedcindex -Index in table of load capabilities of capability to be unloadedOutput Parameters:limit -Limit of freed windowo�set -O�set of freed windowcindex -Index of freed windowDescription:Unloads a capability from address space of the process. If o�set = 0 thenthe capability vol serial pass1 pass2 will be unloaded. If o�set = 1 thenthe capability located at index cindex in the table of loaded capabilities will beunloaded. Otherwise the capability at the location o�set will be unloaded.

37

11.2.10 Identify CapabilityName Symbol ValueIdentify Capability K CAPID 10Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2o�set -O�setcindex -Index in table of load capabilitiesOutput Parameters:vol -Volume of loaded capabilityserial -Serial of loaded capabilitypass1 -Password 1 of loaded capabilitypass2 -Password 2 of loaded capabilitysrights -System rights of loaded capabilityurights -User rights of loaded capabilitylimit -Limit of loaded capabilityo�set -O�set of loaded capabilitycindex -Index of loaded capabilityDescription:Fills in the rights, limit, o�set and cindex for a loaded capability. If o�set= 0 then information for the capability vol serial pass1 pass2 will be returned.If o�set = 1 then the information for the capability located at index cindex inthe table of loaded capabilities will be returned. Otherwise information for thecapability loaded at location o�set will be returned.

38

11.2.11 Make ProcessName Symbol ValueMake Process K MAKEPROC 11Input Parameters:vol -Volume to create new process onsrights -Encoded process parametersurights -User rights of new processbase -Start up time for new processlimit -Highest byte o�set of object (hard limit)money -Money to be transferred to new processtype -Type of new processmaxo� -Maximum o�set of new process object (soft limit)maxsz -Maximum size of new process object (soft limit)maxcap -Maximum number of capabilities for new process (soft limit)o�set -O�set at which to load new process objectcindex -Index in table of loaded capabilities for new process objectOutput Parameters:vol -Master capability (volume)serial -Master capability (serial)pass1 -Master capability (password 1)pass2 -Master capability (password 2)urights -User rights of new processlimit -Limit of new process objectmoney -Money deposited in new processtype -Type of new processmaxo� -Maximum o�set of new process objectmaxsz -Maximum size of new process objectmaxcap -Maximum number of capabilities for new processo�set -O�set of new process objectcindex -Index of new process object in table of loaded capabilitiesDescription:Make Process creates an object, loads the object into the current process'saddress space and �lls in the process state information for the new process.Initially this call creates an object of the size speci�ed on the volume speci�edwith user rights dictated by the urights �eld and system rights set to SRPRO-CESSMASTER.Before using the limit value, it is transformed:limit = (BIGLIMIT if limit = 0limit otherwiseThe new object is created if the following preconditions are met limit&0x3ff 6= 0,maxoff � limit, limit � BIGLIMIT , and maxsz � BIGLIMIT .39

The object is then loaded into the process's address space at either a nomi-nated location or an automatically allocated location. The location is determinedby the value of o�set. If o�set is either 0 or 2 then the kernel will allocate a suit-able large window automatically and load the object at that location, otherwisethe object will be loaded at the segment boundary speci�ed in o�set.The capability index of the loaded capability may be nominated by specifyinga cindex for to an empty slot in the table of loaded capabilities. If cindex iszero then a value will be automatically allocated.A process is then created with the parameters dictated by the srights �eld.The srights �eld is interpreted as four �elds of 8 bits:8 bitsMax subp 8 bits# message slots 8 bitsMax loaded caps 8 bits# auto load capsmsb lsb� Max subp - The maximum number of subprocesses for the new processincluding subprocess 0.� # message slots - The number of message slots for the new process. As amessage slot is reserved for subprocess 0 the number of message slots mustbe 1 or greater.� Max loaded caps - The maximum number of loaded capabilities for the newprocess. This number includes the capability for the process.� # auto load caps - The number of capabilities to be automatically loadedinto the new process's address space including the capability for the newprocess.The �rst four words of the message area contain the initial values of theprogram counter and stack pointer for subprocess 1. The values are encoded:message area index for PCinitial PCmessage area + 2 index for SPinitial SPThe index is the index of a capability in the table of loaded capabilities. If anindex value of zero is supplied the initial values are treated as logical addressesinstead of as a byte o�set from the start of a capability.The next four words contain the capability of the new process's `heir'. Theheir is noti�ed in case of the death of the process. The message sent containsthe remaining cash. If this �eld contains zero then the master capability for thecreating process is used as the heir. 40

The remainder of the parameter page contains a list of capabilities to be pre-loaded into the new process's address space. The list is composed of records ofthe form:vol Volumeserial Serialpass1 Password 1pass2 Password 2base Start of the loaded window relative to the capabilitylimit Size of the loaded window. Zero indicates capability limito�set Location of window in the new process's address spacecindex Index in table of loaded capabilities. Zero for automatic allocationThe creating process will have twice the value indicated in money deductedfrom its cash. This money will be transferred equally to the new process's cashand new process's process object.The process is scheduled to wake up at the time given in base with the wakeuptimes of 0 and -1 having the special meanings:0 Wake up immediately-1 Set no wakeup time. Awake only when sent a messageInformation relating to the new process object is returned to the creatingprocess.

41

11.2.12 Send MessageName Symbol ValueSend Message K SEND 12Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be sent to processlimit -Size of message in byteso�set -O�setsubpn -Subprocess number to send message tocindex -Index in table of load capabilitiesOutput Parameters:srights -System rights of loaded capabilityurights -User rights of loaded capabilitymoney -Amount of money sent to processlimit -Size of message in byteso�set -O�set of loaded capabilitycindex -Index of loaded capabilityDescription:Sends a message to a process which is loaded into the address space of thesender. If o�set = 0 then the message will be sent to vol serial pass1 pass2provided process object is loaded into the sender's address space. If o�set =1 then the message will be sent to the process with its process object loadedat index cindex in the table of loaded capabilities. Otherwise the message willbe sent to the process with its process object loaded at location o�set. Themessage length is speci�ed in limit in bytes. The message to be sent is locatedat the beginning of the message area. A positive amount of money - money - isremoved from sender's cash and sent with the message.
42

11.2.13 Receive MessageName Symbol ValueReceive Message K RECV 13Input Parameters:limit -Size of match stringOutput Parameters:money -Amount of money received with messagelimit -Size of messageDescription:Recovers message from a subprocess's message queue. If limit is non-zerothen only a message which matches the �rst limit characters found in the matchstring will be recovered. The match string is found at the beginning of themessage area. The message received is placed into the message area.If no message is present an error code is returned11.2.14 External Send MessageName Symbol ValueExternal Send Message K EXTSEND 14Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be sent to processlimit -Size of message in bytessubpn -Subprocess number to send message toOutput Parameters:money -Amount of money sent to processlimit -Size of message in bytesDescription:Sends a message to the process vol serial pass1 pass2. The message lengthis speci�ed in limit in bytes. The message to be sent is located at the beginningof the message area. A positive amount of money - money - is removed fromthe sender's cash and sent with the message.
43

11.2.15 External Read MemoryName Symbol ValueExternal Read Memory K EXTREAD 15Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes to be reado�set -O�set in bytes from start of capabilityOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes reado�set -O�set in bytes from start of capabilityDescription:Reads limit bytes from o�set o�set in capability vol serial pass1 pass2.The bytes read are stored at the start of the message area.11.2.16 External Write MemoryName Symbol ValueExternal Write Memory K EXTWRITE 16Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes to be writteno�set -O�set in bytes from start of capabilityOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2limit -Number of bytes writteno�set -O�set in bytes from start of capabilityDescription:Writes limit bytes from o�set o�set in capability vol serial pass1 pass2.The bytes to be written are stored at the start of the message area.44

11.2.17 BankName Symbol ValueBank K BANK 17Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2money -Amount of money to be transferred from capability to cashOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitylimit -Size of view in bytesmoney -Drawing limit available to capabilityDescription:Transfers money from cash from the calling process to the capability volserial pass1 pass2. Both positive and negative amounts of cash may be trans-ferred.If money is positive then the capability must have deposit right to performthe transfer. If money is negative then the capability must have withdraw rightto perform the transfer.

45

11.2.18 Restrict RightsName Symbol ValueRestrict Rights K RESTRICT 18Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights maskurights -User rights maskOutput Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilityDescription:Reduces the rights of a capability by performing a bitwise and of the rightsmasks supplied with the rights bitmaps of the capability vol serial pass1 pass2.The capability named must have suicide right for restrict to operate.

46

11.2.19 Capability StatusName Symbol ValueCapability Status K CAPSTAT 19Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2srights -System rights of capabilityurights -User rights of capabilitybase -Cleared by calllimit -Limit of view of capabilitymoney -Withdrawal right of capabilitytype -Type of objectmaxo� -Maximum o�set of objectmaxsz -Maximum size of objectmaxcap -Maximum number of capabilities for objectDescription:Returns details of capability vol serial pass1 pass2 and associated object.

47

11.2.20 Rename CapabilityName Symbol ValueRename Capability K RENAME 20Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2base -Cleared by callDescription:Changes the passwords of capability vol serial pass1 pass2 to a new pairof random values.A precondition to this call is that the capability has suicide right. In additionthe master capability of a process cannot be renamed.

48

11.2.21 Make SubprocessName Symbol ValueMake Subprocess K MAKESUBP 21Input Parameters:base -Start up time for new subprocesslimit -Priority of new subprocesssubpn -Subprocess numberOutput Parameters:base -Start up time for new subprocesslimit -Priority of new subprocesssubpn -Subprocess number of new subprocessDescription:Creates a new subprocess of the current process. If subpn is not zero andno subprocess of the current process has been allocated that number then thesubprocess's number will be subpn. The priority is set to the least 8 bits oflimit. The subprocess is scheduled to wake up at the time given in base withthe wakeup times of 0 and -1 having the special meanings:0 Wake up immediately-1 Set no wakeup time. Awake only when sent a messageThe �rst four words of the message area contain the initial values of the pro-gram counter and stack pointer for the new subprocess. The values are encoded:message area index for PCinitial PCmessage area + 2 index for SPinitial SPThe index is the index of a capability in the table of loaded capabilities. If anindex value of zero is supplied the initial values are treated as logical addressesinstead of as a byte o�set from the start of a capability.

49

11.2.22 Delete SubprocessName Symbol ValueDelete Subprocess K DELSUBP 22Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess number of deleted subprocessDescription:Deletes subprocess subpn. Note that neither subprocess 0 nor 1 can bedeleted.11.2.23 Load Register SetName Symbol ValueLoad Register Set K LOADREG 23Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess numberDescription:Copies the structure sysstate at the start of the message area into subprocesstable entry subpn.11.2.24 Save Register SetName Symbol ValueSave Register Set K SAVEREG 24Input Parameters:subpn -Subprocess numberOutput Parameters:subpn -Subprocess numberDescription:Copies the structure sysstate from subprocess table entry subpn into thestart of the message area.
50

11.2.25 Set TrapName Symbol ValueSet Trap K SETTRAP 25Input Parameters:o�set -Subprocess number to send trap message tosubpn -Subprocess number whose trap is being setOutput Parameters:o�set -Subprocess number to send trap message tosubpn -Subprocess number whose trap is being setDescription:Sets the destination subprocess for trap messages. Subprocess o�set is noti-�ed of faults in subprocess subpn.11.2.26 Receive Message and Close BoxName Symbol ValueReceive Message Close K RECV CLOSE 26Input Parameters:limit -Size of match stringOutput Parameters:money -Amount of money received with messagelimit -Size of messageDescription:Recovers message from a subprocess's message queue and closes the mail boxthe message is recovered from. If limit is non-zero then only a message whichmatches the �rst limit characters found in the match string will be recovered.The match string is found at the beginning of the message area. The messagereceived is placed into the message area.If no message is present an error code is returned.

51

11.2.27 Accept MailName Symbol ValueAccept Mail K ACCEPT MAIL 27Input Parameters:limit -Size of match stringsubpn -subprocess for which mail box is reservedOutput Parameters:Description:Opens a mail box for a subprocess and sets the acceptance string for the mailbox. The mail box is taken from the pool of closed mail boxes and set to receivemessages for a speci�c subprocess subpn or if subpn is 0xFF the mail box canbe used for any subprocess.If limit is non-zero then the mail box created will only accept messages whichmatch the �rst limit characters found in the match string when the mail box isopened. The match string is found at the beginning of the message area.11.2.28 Close Mail BoxName Symbol ValueClose Matching Mail Boxes K CLOSE BOX 28Input Parameters:limit -Size of match stringsubpn -subprocess for which mail box is reservedOutput Parameters:base -Number of mail boxes closed by operationDescription:Closes mail boxes which match the closing criteria. If subpn equals 0xFF andlimit is zero then all user mail boxes will be closed. If limit is non-zero thenonly user mail boxes with match strings matching the �rst limit characters ofthe match string found at the beginning of the message area will be closed. Ifsubpn is non-zero then only user mail boxes for subprocess subpn are closed.
52

11.2.29 Copy ObjectName Symbol ValueCopy Object K COPYOBJ 29Input Parameters:vol -Volume (original)serial -Serial (original)pass1 -Password 1 (original)pass2 -Password 2 (original)srights -System rights maskurights -User rights maskbase -Start of copy relative to beginning of originallimit -End of copy relative to basemoney -Money to be transferred to copytype -Type of copymaxsz -Maximum size of copymaxcap -Maximum number of capabilities of copyOutput Parameters:vol -Volume (copy)serial -Serial (copy)pass1 -Password 1 (copy)pass2 -Password 2 (copy)srights -System rights of copymaxo� -Maximum o�set of copymaxcap -Maximum number of capabilities of copyDescription:Duplicates an object by creating a new object and copying the contents ofthe original object to the new object. This call copies only the de�ned pages ofan object and hence produces an exact duplicate of the contents of the section ofthe object referred to by the capability for the original object. The rights �eldsallow the rights of the copy to be reduced as the rights mask and the rights �eldsare combined by a bitwise AND to produce the copy's rights �eld. The money�eld indicates the amount of money to be transferred from the process cash tothe new object. The maxsz �eld speci�es the maximum size of the new object.The type �eld speci�es the type of the copy. The base �eld speci�es the start ofthe the copy region which extends through to limit. If the limit and base �eldsare zero then the complete object is copied.NOTE:� This call will not duplicate processes� This call corrupts the �rst four words of the message area53

11.2.30 Check Process StateName Symbol ValuePeek Process K PEEK PROC 30Input Parameters:vol -Volumeserial -Serialpass1 -Password 1pass2 -Password 2Output Parameters:srights -State of processbase -Wakeup timeDescription:Returns the state and wakeup time of a process given a suitable capability(capability must have SRPEEK right). for the process. The wakeup time isreturned in base and the process state in srights. The process state is encoded:Value State-2 No such process-3 No right to inquire1 Process normal2 Process in kernel3 Process in read fault4 Process in write fault5 Process frozen6 Process in probate7 Process dead11.2.31 Set Heir of ProcessName Symbol ValueSet Heir K SET HEIR 31Input Parameters:vol -Volume of heirserial -Serial of heirpass1 -Password 1 of heirpass2 -Password 2 of heirOutput Parameters:Description:Set the heir of a process to the capability vol serial pass1 pass2. The heirof a process receives a process's death message and any remaining cash.54

