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Abstract

This thesis describes both a capability based kernel - the Walnut Kernel - and
hardware designed to support that kernel. The kernel provides an environment in
which programs written and operated by mutually antagonistic users can co-exist
securely. A Password-Capability mechanism is used to provide access control to
objects. The hardware is designed to support cost efficient expansion of the number
of processors within a multiprocessor.

The Walnut Kernel was designed to be portable to a wide range of microproces-
sors and memory architectures. The kernel avoids using processor specific features
where there are more widely available mechanisms. Paged memory management
was adopted as the basic access control mechanism because of the large number
of processors which support it. This resulted in a page sized protection granular-
ity. The architecture of the kernel was designed to scale from uniprocessors to large
multiprocessors. To accommodate this design requirement, device drivers on unipro-
cessor systems use a shared memory page to communicate with the kernel. This is
equivalent to special purpose processors sharing memory with a master processor on
a multiprocessor. The efficiency of multiprocessor implementations was increased
by decreasing interprocessor communication. Page tables and other system data are
periodically expired and new tables constructed. This practice of timing out data
ensures that local data is kept up-to-date, and only a minimal amount of local state
is retained. Furthermore this practice eliminates the need to inform other processors
of changes in local information.

Two implementations of the Walnut Kernel are currently in service. One version
operates in an emulated environment under a host operating system. The other
version operates on 1486 based IBM P(CUs. The performance of the latter version
compares well with contemporary operating systems.

The kernel differs from earlier password-capability based systems in that it intro-
duces operators for the selective removal of rights from a capability, and mechanisms
which restrict the use of a capability to a specific process. Message-passing and sub-
process mechanisms have been introduced to enhance the handling of asynchronous

events. The changes were motivated by the requirements of programmers using the



system.

Application programs have been written to demonstrate the features of the ker-
nel. Included among these user level programs are managers for floppy diskette
drives, and, for the screen and keyboard. The programs and the programming
techniques used are described.

The proposed hardware has eliminated centralised switching devices in favor of
distributing the processor interconnection hardware across the nodes of the mul-
tiprocessor. KFach processor node has its own clock which removes the physical
constraints associated with a centralised clock.

The kernel and the proposed hardware are both part of the Secure RISC Archi-

tecture project of the Department of Computer Science, Monash University.
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Chapter 1
Introduction

This thesis describes a capability based operating system developed in the Depart-
ment of Computer Science at Monash University. The operating system is commonly
known as the Walnut Kernel.

In addition to being an independent project to develop a portable capability
based operating system, the Walnut Kernel forms the software basis of a major
project within the Department to develop a scalable multiprocessor system. The
Secure RISC Architecture project builds on work done towards the development
of the Monash Multiprocessor (also known as the Password-Capability System)
[APWS6, And87, Pos91, APWS85, AWS5] which resulted in a shared memory mul-
tiprocessor system with a novel capability based operating system. The Secure
RISC Architecture and the Walnut Kernel were inspired by the concepts behind
the Monash Multiprocessor; however, due to limitations imposed on the original de-
sign, the two new projects started with the successful concepts imparted from their

predecessors.

1.1 Overview

The Password-Capability System - an ancestor of the current project - is discussed
in chapter 2. The kernel and the purpose built hardware used by that system to
support the use of capabilities are discussed.

The survey (chapter 3) is divided into three types of operating system: conven-
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tional, current, and capability based. Conventional operating systems are typified
by UNIX'", employ monolithic kernels and are file based. The current operating
system section describes six recent operating systems. Although these systems may
use capabilities for some parts of their operation, they do not use capabilities as
their only access control mechanism. The operating systems discussed in this sec-
tion include representatives of distributed operation systems and micro-kernel hased
operating systems. The capability based operating system section discusses five
capability based operating systems. The majority of these are based on segregated

architectures; however, two password-capability based systems are discussed.
The Walnut Kernel is introduced in chapter 4.

Chapter 5 describes the Walnut Kernel from both the application programmer
and the user perspectives. The topics covered include: a description of the roles of
volumes, objects and capabilities, the layout of a process’s address space, interpro-
cess communication, and controlling process scheduling. A detailed list of kernel

calls and their parameters is contained in Appendix A.

The design of the kernel is discussed in chapter 6. This chapter identifies the
design principles that motivated design decisions, describes the partitioning of the
kernel into functional components, and identifies key design decisions and their im-
pacts. The architecture of the system is discussed in detail covering both functional
decomposition and data structures. The subprocess mechanism, an innovation not,
present in the Password-Capability System, is described in that chapter and the

motivation for its inclusion identified.

The Walnut Kernel currently exists in two forms. One version of the kernel
is hosted by a conventional operating system, while the second interacts directly
with hardware. Chapter 7 discusses the two versions and mechanisms for loading
programs into a system without a host operating system.

A series of measurements was taken on equivalent hardware platforms for the
Walnut Kernel and a BSD 4.3 based UNTX. These measurements are used to compare
the speed of operations common to both operating systems. Chapter 8 provides a

guide to the performance of the Walnut Kernel compared to a mature operating

TUNTX is a trademark of X/Open
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system. Tt is expected that the relative performance of the Walnut Kernel will
improve after optimisations are investigated and implemented. The control - a BSD
4.3 based UNIX - was optimized by its implementors.

The techniques employed in writing programs for the environment provided by
the kernel are examined in chapter 9. The implementation of shared libraries and
access to legacy code from UNIX systems are also discussed. Four examples of user
level programs are presented to complete the picture of the environment.

A number of features that affect the security of the system has been introduced
into the design of the Walnut Kernel. Examples of departures from the Password-
Capability System introduced into the Walnut Kernel include the ability to derive
capabilities with known passwords and the restrict system call®>. Chapter 10 de-
scribes the features which have the potential to affect the security of the system,
and provides an analysis of the effect of those changes.

The Secure RISC Architecture project involves elements of hardware and soft-
ware. Chapter 11 describes the hardware mechanisms devised by Dr Ronald Pose
and the author. This work forms the basis of a design for a scalable multiprocessor
with a distributed switch. Use of deep FIFO buffers to enhance throughput and
to allow each board in the system to have its own clock generator enhances the
redundancy and reliability of the design.

Chapter 12 describes work being performed by others based on the concepts
outlined in this document. It covers continuing work in the area of software run-
ning under the Walnut Kernel, enhancements to the kernel and the development of
hardware based on the concepts outlined in 11.

In the conclusion, chapter 13, the Walnut Kernel and the hardware proposed to
support it are discussed in the context of the Password-Capability System (chapter
2) and the existing systems described in chapter 3. Arguments are summarised and
conclusions are drawn in relation to the success of the work as a whole.

Appendix A is a copy of The Walnut Kernel: User Level Programmer’s Guide
by Maurice Castro [Cas95]. This document provides a detailed description of the

environment provided by the kernel to programmers.

2This system call allows rights to be removed from a capability after the capability has been

created
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A formal description of the restrict operation is given in appendix B. The
formal description supplements the informal description in chapter 10.

Appendix C is a copy of The Monash Secure RISC Multiprocessor: Multiple
Processors Without a Global Clock by Maurice Castro and Ronald Pose [CP94].
The paper outlines the concepts proposed for the hardware to be used in the Secure
RISC Architecture project.

A glossary of terms used in this work is found in appendix D.

The remainder of this chapter introduces briefly the concept of capabilities and
the implementations available, the concept of a persistent system, and clarifies the

definition of ‘threads’.

1.2 Capabilities

Capabilities provide a uniform mechanism for controlling access to, and the protec-
tion of, resources [DVHG6]. The extension of the capability mechanism to allow the
viewing of a capability as a form of address [Fab74] allows all system resources to
be modeled as memory objects.

There are several major types of capability based systems. These systems are
identified by the mechanisms they employ to prevent forgery of a capability. The

architectures are:

o Tagged Architecture - employs tag bits on memory locations to identify a ca-
pability as a special object within a collection of data. The hardware prevents

unprivileged code from altering the capability.

o Segregated Architecture - separates capabilities from ordinary data. Capabil-
ities are placed in a page or segment that cannot be modified by unprivileged

code. These groups of capabilities are often known as capability lists or C-lists.

e Encrypted Capability Architecture - calculates a form of checksum for the
object identifier and rights conveyed by the capability known as a signature
[GL.79]. The capability and the signature are encrypted with a secret key

known only to the kernel. This is given to the user process as an encrypted
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capability. When an encrypted capability is presented, it is decrypted by the
kernel, and the signature is recalculated. The capability is valid if the recal-
culated signature matches the signature sent in the encrypted capability. The

test allows the system to detect attempts to forge capabilities.

e Password-Capability Architecture - employs a sparse address space. The pass-
word component of the capability makes the number of valid capabilities small
relative to the total number of possible capabilities. By ensuring that the ca-
pabilities are randomly spread throughout the address space a large number of
attempts at guessing a capability is required to ensure that a valid capability

is found. The password-capability mechanism is statistically secure.

The Walnut Kernel implements a password-capability architecture. The archi-
tecture has several major advantages over the alternatives.

The major disadvantage of the tagged architecture is that it requires specialised
hardware with additional memory bits present which cannot be used for the storage
of general data which makes the architecture undesirable for both economic and
portability reasons. The presence of additional specialised memory adds to the cost
of the system. The need for specialised hardware restricts the choice of system.

Segregated architectures can be implemented on conventional hardware but re-
quire every operation on a capability to be mediated by the kernel. Typically,
programs are required to use handles to capabilities to refer to capabilities, and
to call the kernel with the handle as a parameter for all operations relating to a
capability. All operations on capabilities are therefore subject to the overhead of a
switch between user and kernel address space.

The security of an encrypted key system is vested in the security of the encryption
algorithm and the key used by the system. Discovery of both of these items would
allow the user to generate capabilities avoiding the controls imposed by the kernel
and thereby compromising the system’s security.

Password-Capabilities allow the use of conventional hardware without incurring
the overheads present in segregated architectures, and with the flexibility of storing
capabilities as ordinary data. The scheme is immune from the total compromise of

security to which encrypted key systems are subject as there is no algorithm used to
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determine the passwords of capability. Complete compromise of the system would

require each object’s master capability to be guessed.

1.3 Persistent Systems

Conventional computer systems normally have two distinct views of data; short
term data or long term data. Short term data is typically stored in RAM or virtual
memory and exists only for the period of time that a program is active. Long term
data is often stored in the file-system of a conventional machine. Data stored in
a file-system is independent from the program which created it and exists until it
is explicitly destroyed. A persistent system eliminates the distinction between long
term data and short term data. All data persists until it is explicitly destroyed.
Furthermore, the data is manipulated with the tools used to manipulate short term
data on conventional systems. These tools tend to be more flexible than the limited

range of file operations usually available.

Persistent systems are designed to support persistent programming which offers
a number of advantages over conventional programming [ABC*83, CAC84]. Per-
sistent programming allows the elimination of the large component of conventional
programs which is solely concerned with transforming data from file-system repre-
sentation into the volatile representation that is manipulated by the program and
back again. Elimination of this code saves both time and space; furthermore, it elim-
inates the need to perform the transformation which may distract the programmer

from the primary task of the program.

Persistent systems are more attractive than conventional systems in that they
provide a uniform environment for all data. The uniformity of the model simplifies

the programming environment thereby easing understanding.
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1.4 Threads

The thread of control or thread? is a path of execution through an address space. The
majority of traditional operating systems permit only a single thread of control in
the address space of a process. However, having multiple threads sharing an address
space in some cases can be advantageous [Tan92]. If the threads of a process share
the virtual address space of the process, a thread of a process has no protection from
the actions of the other threads of the process.

Threads are typically used in applications with 1O-bound components. The
writer of the application can place the 10-bound operations in a separate thread
which uses blocking 10 operations. The 10-bound threads progress until they block,
then other threads of the process make use of the remainder of the time-slice. Thus
the process can make more efficient use of the allocated time. Without threads, a
single blocked action would halt the progress of the application necessitating the
surrendering of the remainder of the time-slice.

On uniprocessor systems, threads are scheduled in a time sharing manner within
a process’s time-slice. Fach thread of a process is allocated time on the processor.
Ideally, on a multiprocessor system, the threads of a process would execute concur-
rently; however, a number of systems claim to support threads, but support only
the time-slice semantics supported on uniprocessors.

Threads may be implemented at either the user [BS90] or the kernel levels.
User level packages typically make use of kernel upcalls or a yield call built into
the package to allow switches between threads. On systems which support upcalls,
an upcall is made when the kernel detects an event which would cause a process to
block. The upcall invokes a management routine which either selects another thread
of the process to run or surrenders the remainder of the time-slice. The yield call is
used to switch between co-operating threads by indicating that the current thread
is ready to allow another thread to proceed. Kernel level thread packages make use

of primitives that are implemented in the kernel.

3Also referred to as a lightweight process [Mic90], however, this term promotes confusion. The
term lightweight process was originally used to distinguish UNTX style processes from Multics style

processes
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The Walnut Kernel does not provide support for the concurrent execution of
multiple threads of execution within a process on multiprocessors. A mechanism
with time-sliced semantics is provided to let user processes handle asynchronous
events.

The absence of concurrently executing threads is not regarded as a disadvantage.
Walnut Kernel processes can share address spaces in a more flexible and controlled
manner than concurrently executing threads, and hence they provide similar func-
tionality to concurrently executing threads, but with the advantage of greater control
of access to memory.

The design of the Walnut Kernel recognised that the need for threads is driven by
two factors: the high cost of creating a process and the difficulty of sharing address
space between processes. The first motivation for the use of threads is dealt with in
two ways by the design of the Walnut Kernel. The design of the kernel endeavors
to keep the cost of generating a new process to a minimum, and also, as processes
are persistent it is practical to maintain processes as servers which perform tasks
on demand avoiding the cost of generating a new process each time a function is
required. The second motivation for threads is addressed by observing that the
basic model of the system (capabilities allowing access to ohjects) is based on the
interprocess sharing of code and data through memory objects. The shared memory
model contrasts with file based systems which share information through files and
pipes necessitating the use of file protocols. File protocols perform well for sharing
data between processes when data structures which map well onto streams are used.

However, more complex data structures (such as trees and graphs) are generally less

well handled.



Chapter 2
A Password-Capability System

This chapter describes the ‘Password-Capability System’ developed in the Depart-
ment of Computer Science, Monash University, circa 1985 [APW&6, And87, Pos91,
APWR5, AWS85], which represents the historical background of the current project.

The ‘Monash Multiprocessor Project’” had both hardware and software compo-
nents. The hardware developed for the project consisted of a collection of processor
and memory boards on a shared high speed bus. The processor hoards provided a
set of capability registers to implement the address transformations required. To the
best of our knowledge this system [APWRS5] introduced the concepts of password-
capabilities and money based garbage collection. Subsequently a number of systems

adopted the password-capability mechanism (see chapter 3).

2.1 The Kernel

User processes operated in a uniform virtual memory. The address space was di-
vided into volumes each of which contained a number of objects. Volumes were
permanently associated with pieces of hardware. The majority of volumes were as-
sociated with storage media, such as disk packs. Some volumes were associated with
a particular multiprocessor. Typically, the latter type of volume was used to access
physical devices attached to that multiprocessor. When an object was created it
was permanently associated with a single volume and allocated a serial number on

that volume. Serial numbers were required to identify uniquely a given object on a
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Volume Serial Password 1 Password 2

Figure 2.1: A Capability in the Password-Capability System

volume for all time and were never reused. Serial numbers were allocated consecu-
tively on a volume. The volume and serial numbers of objects were defined as 32-bit
quantities.

All objects in the system were composed of contiguous sections of the virtual
memory. Processes gained access to the contents of an object by ‘mapping in’ part
of the memory object into the address space of the process. After mapping bytes X
to Y of an object into addresses A to B of a process’s address space, reference to
address A+ ¢ will reference byte X + ¢ of the object, or a word of bytes starting with
this byte. ‘Mapping in’ is not copying; If a process writes to address A + ¢, byte
X + e is altered, and the byte will seen to be altered by any other process which has
the byte mapped in.

The Monash Multiprocessor Project introduced a mechanism for providing non-
segregated capabilities employing probable security. This mechanism differed from
the alternatives of tagged architectures and segregated architectures which both
distinguished capabilities from other forms of data. Capabilities were 128-bits in
length and had 4 components (see figure 2.1). The volume and serial number formed
the name of the object. Password 1 and Password 2 uniquely identified a capability
for the named object. Passwords were allocated purely randomly; there was no
encoding of access rights in the password. The security of the mechanism was
derived from the small number of valid passwords in comparison to the total number
of passwords. The password-capability acted as an identifier for a set of access rights
to an object. Many capabilities could convey the same access rights to an object but
with differing passwords. A table of valid capabilities and their associated rights was
stored on the volume containing the object to which the capabilities referred. This
table was known as the ‘catalog’ and was accessible only to the kernel. Capabilities
were revoked by deleting the entry for the set of rights associated with the capability.

The password-capability scheme had a number of advantages over the alterna-

tives of tagged architectures and segregated architectures. Tt was not subject to the
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major disadvantages of tagged architectures. The first disadvantage was economic as
tagged architectures must supply physical memory for tag bits, which contribute to
the cost of the memory but are unavailable as general purpose memory. The second
problem was that the processor must support tags. Special instructions must be used
to access capabilities safely within a tagged architecture requiring hardware support,
and hence limiting the choice of processor. In addition, as password-capabilities were
stored as ordinary data, the mechanism was not subject to the limitations of seg-
regated systems. Segregated systems required the kernel to provide mechanisms
to move, copy and communicate capabilities, preventing capabilities being treated
as ordinary data which made it difficult to pass capabilities to processes or users
outside the computer system.

When an object was created the kernel returned a single capability to the creator.
This capability was known as the master capability. Tt described the complete
object and held all possible access rights to the object. Other capabilities, with
restricted rights, could be derived from the master capability or from its children.
The capabilities for an object were logically organised in a tree structure. The
master capability was the root with derived capabilities being the other nodes of
the tree. Each internal node of the tree is the root of a subtree which has rights
equal to or weaker than the root of the subtree. Deletion of any capability results
in the deletion of its descendants. Deletion of the master capability results in the
destruction of the object as no further access to the object is possible.

Any process that held a capability was capable of using it to access the object
referred to by the capability reducing the need to create many capabilities with
equivalent rights.

The Password-Capability system did not support the concepts of ownership or
dependency between objects. Once an object was brought into existence any process
knowing a capability could make use of it. Capabilities were copied, passed between
processes and stored by processes as ordinary data'. In addition, capabilities could
be held outside the system, by a peripheral or a user, and still refer to a valid object

making it impossible to determine if there were any entities which knew a valid

"The system allowed capabilities to be stored using any representation. Thus an encrypted

capability was as valid as a plain text capability
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capability for an object. These properties prevented the use of existing mechanisms
for garbage collection which depended on ownership, reference counts, or reference
tracing. Two mechanisms were used to implement garbage collection. An object
was destroyed when no valid capabilities for that object could exist, that is, when
the master capability for the object was deleted. The second mechanism relied on a
simple charging scheme. Each object had associated with it a store of money from
which it periodically paid rent. Bankrupt objects were deemed to he garbage, and

were destroyed.

The money mechanism was generalized to form an economy within the Password-
Capability System. Both ordinary objects and processes had quantities of money
associated with them. Money was managed directly by the kernel and was distinct
from normal data items. Money could be transferred between objects and was con-
sumed when services were provided by the kernel. Each capability had a monetary
value associated with it. The money associated with the master capability repre-
sented the total store of money held by the object. Derived capabilities were asso-
ciated with a value that represented the amount of money that could be withdrawn
through that capability. A withdrawal or deposit caused the values held by each of
the ancestors of the capability to be updated by the amount of the withdrawal or
deposit. A withdrawal would occur only if all the values held by the capability and
its ancestors would be non-negative after the operation was performed. The money
mechanism allowed processes to charge for services to cover the costs of performing
work and allowed for the possibility of charging for the use of a program unlike the
conventional scheme of paying a license fee for access to a program which may or

may not be used.

Processes had no internal parallelism and hence could run, at most, on one
processor at a time. However, processes could be moved hetween processors. This
allowed the Password-Capability System to schedule processes on the first suitable

processor that became available.

Lockwords were used in the Password-Capability System to prevent non-trusted
code from distributing information shared by that code. The confinement mech-

anism identified two classes of capabilities: alter capabilities which could be used
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to convey information to third parties and non-alter capabilities which were strictly
read-only. The top bit of the password field was set to indicate that a capability was
an alter capability. The remaining 63-bits of the password were chosen randomly.
Fach process had a 63-bit lockword associated with it. The lockword could not be
read. Locking the process caused the lockword (1)) to be set to the exclusive-or of
the original lockword (1.) and the argument of the operation which sets the lockword
(V):
S =LaV

Passwords were not encrypted in processes with a zero lockword. To execute an
untrusted package, another process (P) was created with a non-zero lockword (1.2).
This lockword is generated from the creating process’s (P) lockword (14) and an

arbitrary value (V7,) selected by the creating process.
Lay=T11 V)

The passwords of alter capabilities (C,4s5) in the new process (FP) are encrypted

using the process’s lockword before being used by the kernel.

/
‘pass — ‘/pass @ [/2

Non-alter capabilities are not affected by the value of the lockword. Provided process
Py was not locked (ie. had a zero lockword) this mechanism allowed process Py to
pass capabilities to process P, by encrypting the capabilities passed using V. The
mechanism, however, prevented P, from passing on those capabilities as the value
of Iy was unknown to P,. Any capability created by a process was encrypted using
the process’s lockword. Process Py could create objects for its own use or for the use
of any process which knew 5. Program code and data was made available without
the risk of data leakage by using non-alter capabilities to map in read-only code and
data. Groups of locked cooperating processes could be created by using the same
lockword for each of the processes when they were created.

The Password-Capability System allowed capabilities to confer the following
rights:

Money Rights - Three separate rights were supported to allow access to infor-

mation on money. The drawing right determined the maximum amount of
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money that could be withdrawn through the capability. This value was re-
duced by withdrawals and increased by deposits. Possession of a balance right
was necessary to determine the amount of money that could be withdrawn
via a capability. The result returned was the minimum of the drawing right
of the capability and its ancestors’ drawing rights. A deposit right allowed
money to be added to the drawing right. A separate right was required to
provide control over a potential covert channel which functioned by varying

the drawing right.

Window Rights - These rights allowed the visible region of the capability to be
specified. A window consisted of a set of consecutive words within an object
starting on a word boundary (offset) and extending an integral number of
words (size). Derived capabilities were required to have windows which were
ranges of the capability from which they were derived. Associated with each

window were the access rights: read, write, and execute.

Process Rights - Processes had four additional rights in addition to the rights
held by other objects. A message right allowed the holder to send a 16-word
message of arbitrary content to a process. If the process was waiting on a
message, the process was awakened. The suspend right allowed the holder
to suspend and resume the process. The internal state of the process could
be determined by holders of a capability with a status right. Holders of a
capability with a condition right could initialize a suspended process. This

allowed the partial modification of the state of a process.

Suicide Right - Possession of a suicide right allowed a capability to be used to
destroy itself. This allowed the distribution of the same capability to antag-
onistic processes but prevented one party depriving the others of the use of
the capability. Suicide right was unique in that capabilities with suicide right

could be derived from capabilities without suicide right.
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2.2 The Hardware

The kernel of the Password-Capability System relied heavily on many of the features
of the hardware designed to support the system. Most notable of these features is the
presence of segment registers which map capabilities onto a paged virtual memory.
The presence of specialised hardware resulted in significant simplifications in the
design of the operating system.

The prototype hardware was based on the NS32032 processors operating aft
10MHz. The NS32081 was used to provide floating point support. Memory man-
agement was provided through the custom hardware described in this section. The
bus connecting the processor boards operated at 40MHz.

Figure 2.2 illustrates the overall structure of the hardware. The system employed
a number of processor boards which communicated with a number of shared memory
boards over a single high speed bus. FEach processor board supported a set of
capability registers (also known as window registers) which were used to transform
the addresses generated by the processor into addresses in the Intermediate Address
Space (TAS). The TAS addresses were then used to access data via the bus. Fach
memory board performed a check to determine if the address required was present
in the pages stored on the board and allowed access if the page was present.

The hardware on each processor board provided logical address to TAS address
translation (see figure 2.3). The logical address of the processor was composed of 3
parts: a window register identifier, an offset into the window and a byte offset into
a word. The top 5 bits of the logical address were used to identify the appropriate
window register from the 32 supported. The offset and access mode were checked
against the window size and window rights respectively. If the access was legal, the
sum of the TAS Base Address and the offset into the window was calculated and
used as the TAS Address of the access.

The hardware supported checking of read, write and execute access rights and
limit checking to word granularity.

On receiving an TAS address, a memory board checked its hash table to determine
if the page required was stored on it (see figure 2.4). The check was performed by
using the middle 12 bits of the TAS address as an index into the hash table. If the
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10 bits stored in the hash table matched with the 10 high order bits from the TAS
address and the page was marked valid then the page was stored on the memory
board. Tf a match occurred, then the required physical address was generated by
concatenating the physical page number and the offset into the TAS page. The
physical address was used to gain access to the appropriate item in memory.

Multiple memory modules which recognized the addresses of TAS pages stored
within them allowed the near arbitrary? allocation of pages to memory modules.
This property allowed the distribution of pages across memory modules to equalize
the load across the modules.

As the physical memory of the machine was limited, objects could not be retained
in the TAS indefinitely. The large size of the TAS allowed a simple management
strategy to be employed: Objects were retained in the TAS until the space became
exhausted. At that point all objects were flushed from the TAS, window registers
were marked invalid and caches were flushed. Subsequent accesses bring objects
back into the TAS.

The Password-Capability System’s operating system was strongly supported by
the system hardware which provided direct support for capabilities through purpose
built capability registers and a number of intelligent peripherals. The peripherals
included shared memory with VAX 11/750 and purpose built 10 controllers.

2The use of a hash table instead of a content addressable memory required that two pages which

hashed to the same value cannot be stored on the same memory module



Chapter 3

Survey

This chapter surveys a number of operating systems to provide a historical con-
text for the work on the Walnut Kernel discussed in later chapters. The chapter
comprises several sections. The first section (section 3.1) provides an overview of a
conventional system. UNIX is selected for its ubiquity among current commercial
systems. The second section (section 3.2) examines several current operating sys-
tems which display either a distributed or micro-kernel architecture. Micro-kernel
architectures are significant in that they bring software engineering practices to
the kernel level while distributed architectures aim to provide scalable mechanisms
for implementing operating systems on systems with more than one processor. A
notable absence from this section is Microsoft’s Windows N'T' operating system.
Although the system is likely to be of great commercial importance, the informa-
tion available [Cus93] indicates that from the perspective of innovation within the
kernel, the operating system is similar to the other micro-kernel based architectures
surveyed. The third section (section 3.3) covers a number of capability based op-
erating systems. The operating systems covered in earlier sections may make use
of capabilities in a limited role, however, those in this section use capabilities for
all access and naming functions. The final section (section 3.4) draws conclusions
about trends in the development of operating systems.

The survey uses Tanenbaum’s [Tan87] four major components of an operating

system (process management, input/output, memory management and file system)

"Windows NT is a trademark of Microsoft Corporation

19
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to provide a basis for comparing the systems presented.

3.1 Conventional Operating Systems

The UNIX family of operating systems is based on the work of Ritchie and Thomp-
son [RT74]. This brief overview covers the gross features of UNIX and some of
their implications. UNIX has been widely used in both commercial and research
environments. The interest of the research community has prompted many detailed
studies of the characteristics of the operating system. This survey identifies some
key features of the operating system that are either typical of conventional operat-
ing systems or have had significant influence on the development of other operating
systems. The features discussed are: the style of processes provided, protection and
the implementation of the kernel.

In direct contrast to Multics and VMS where, due to the significant costs in-
volved in creation and destruction, processes are reused, the UNIX system employs
inexpensive processes[JJ91¢]. Low cost processes? allow the application of more than
one process to the task of solving a problem. A problem can therefore be decom-
posed into a number of smaller tasks, with the possibility of using utilities for some
of those tasks. The use of small utilities confers the software engineering advantages
of encouraging both the reuse of code and providing encapsulation of code. Mech-
anisms which allow the easy reuse of code make it desirable to invest time in the
demonstration of correctness and optimisation. The high cost of Multics processes
encourages the use of an in-process model of protection[Kee79, Tan92, Sal74]. Under
the in-process model, encapsulation occurred at the subroutine or module level. The
low cost of UNIX processes and the absence of hardware support for more than two
privilege levels favors the out-of-process protection mechanism adopted by UNITX.

Protection on UNIX systems is a combination of two mechanisms. The primary
mechanism provides two classes of user: ordinary users who have access to a lim-
ited selection of kernel operations, and super users, who have access to all functions

provided by the kernel. The functions of the file system comprise the second mech-

2The term ‘lightweight process’ has not, been employed to avoid confusion as the term has been

more recently acquired by SUN and other vendors to describe their thread implementations



3.1. CONVENTIONAL OPERATING SYSTEMS 21

anism. The UNIX file system associates with each file an owner, a group, and a set
of permission bits. The permission bits determine the level of access to the file that
the owner, the group and all other users are allowed to have. In addition to this,
executable files have the ability to inherit the powers of the owner (setuid) or group
(setgid) of the file for the duration of the execution of the program. The presence
of an omnipotent user - the super user - and the ability to inherit the powers of
the owner of a process, allow privileged functions to be made available to users in a
controlled way.

There are two major families of the UNIX kernels in current use: those derived
from the commercial System V[GC94] and those derived from the research operating
system created by the CSRG at Berkeley[LMKQ90, JJ91a]. Although there are
major differences between the systems - for example BSD) places the kernel address
space at the top of the process address space[JJ91b] in contrast to System V which
places it at the bottom of the address space - the systems are sufficiently similar at
the conceptual level that no further distinction will be made between these versions
of the operating system in this chapter®.

The UNIX kernel is monolithic in that it is constructed as a single program
existing in a single address space. The kernel contains code to support virtual
memory, user requested system functions, devices and the file system. A number of
consequences flow from this method of organising the kernel, the most significant of
these is the absence of protection of the kernel from the actions of device drivers,
and the requirement that the system needs to be rebuilt and restarted to incorporate
a new device driver or an alteration to an existing device driver.

The kernel manages access to the hardware through the device abstraction. A
device appears as a special file within the file system. File operations and 1/0
control operations (ioctls) are applied to the special file and translated by the kernel
into operations on the device.

The UNIX system introduced a number of significant features to mainstream
operating systems while retaining the common monolithic implementation of the

kernel. Development has continued. The most significant change has occurred with

3The various ‘kernelized’ and ‘emulated’ versions supported over micro-kernels are excluded

from this discussion
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the introduction of ‘threads’ by a number of vendors.

UNIX displays the conventional operating system characteristics of transitory
processes which use the file system to provide persistent storage. The use of special-
files as interfaces to input/output devices provides greater uniformity* within the
system than in other conventional systems which have separate mechanisms for
dealing with devices. Finally, in a feature typical of the majority of conventional
systems, most versions of UNIX currently provide only limited support for memory

to be shared between processes.

3.2 Current Operating Systems

This section describes a number of recently developed operating systems which ex-
hibit the features of either distributed operating systems or a micro-kernel architec-
fure.

The advent of powerful low cost microprocessors has altered the economics of
the provision of computer resources. In general, it is now more cost efficient to use
a large number of processors than to use a single large processor to provide a given
amount of computational power. The shift in the cost of provision of service has
been the major motive for the development of distributed operating systems.

Distributed operating systems allow many users to work on a collection of pro-
cessors linked by a high speed network. Tanenbaum [Tan92] identifies the following
advantages and disadvantages of distributed systems:

Advantages:

e Fconomics - Microprocessors offer a better price/performance ratio than main-

frames

e Speed - Distributed systems are not subject to the fabrication and construc-
tion requirements of single processor systems. Distributed systems can be
constructed with more total computing power than a mainframe constructed

with similar technology.

*The Input Qutput Control (ioctl) mechanism which allows operations which are not. defined

for files to be performed on devices partly negates this advantage
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e Inherent distribution - Some applications involve spatially separated devices.
This class of problems has a natural or inherent decomposition onto a dis-

tributed architecture.

e Reliability - The loss of a single CPU or group of CPUs reduces the total
performance of the system but should not prevent the system from operating.
In a centralized system the loss of a single component, typically, results in the

failure of the complete system.

e Incremental growth - As distributed systems are composed of computational
units on a high speed network, computing power can be added in these units or

multiples of them allowing the power of the system to be scaled up gradually.
Disadvantages:

o Software - The design and implementation of distributed programs is signif-
icantly different from sequential programs. As a result, little software exists

for distributed systems

e Networking - Distributed systems rely on networks between processors to allow
for the transfer of information, and the co-ordination of operations between
processors operating on a problem. These networks can saturate or suffer from

other problems.

e Security - It is necessary for a distributed system to promote easy sharing
and access to data among the processors of the system to allow the processors
to work co-operatively on that data. Fasy access to data applies to secret

information as well.

Traditional monolithic kernels provide a large number of system functions which
are used directly by user programs. This contrasts with the micro-kernel approach
of providing a small number of essential services from within the kernel, and employ-
ing user-level servers to provide the bulk of the services expected by user processes.
Micro-kernels make for greater flexibility in the services provided, and in the im-

plementation of those services, than do monolithic kernels. Tanenbaum [Tan92]
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identifies the four minimal services® implemented within a micro kernel as:

—_

. An interprocess communication mechanism.

2. Some memory management.

[UN]

. A limited amount of low-level process management and scheduling.
4. TLow-level input/output

Micro-kernels also offer advantages to the implementor of an operating system. Be-
cause of the limited functionality required from a micro-kernel, the complexity of
the micro-kernel is considerably less than that of a monolithic kernel. In addition,
micro-kernels allow software engineering techniques to be applied to operating sys-
tems. By dividing operating system services into a number of user-level servers,
services can be encapsulated into logical units, reducing design and maintenance
difficulties.

A number of operating systems introduced in this section make some use of
capabilities. However, none of these operating systems is capability based as they
do not use capabilities as the sole mechanism for determining access to each object

and process under the control of the system.

3.2.1 Amoeba

Amoeba [Tan92, vRT92, MvRT*90] is a micro-kernel based distributed operating
system supporting multiple users in a transparent environment. It was initially de-
signed by Andrew S. Tanenbaum, Frans Kaashoek, Sape J. Mullender and Robbert
van Renesse in 1981 at Vrije University in Amsterdam.

This distributed operating system runs on a network of dissimilar workstations
and servers. The network is intended to contain a large number of CPUs with tens of

megabytes of memory available to each CPU. Shared memory, if present, is exploited

"Tanenbaum identifies the provision of low-level input/output as a necessary service of a micro-
kernel. As there are a number of micro-kernels which delegate TO operations to user level servers
it is clear that this statement requires modification. A more appropriate statement would be

‘Management of access to low-level TO’
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to improve message passing performance. The network has four classes of nodes:
workstations, pool processors, specialised servers, and wide area gateways. There is
one workstation allocated to each interactive user and it runs tasks which require
fast interactive response. These tasks include the window manager and text editors.
Pool processors consist of one or more CPUs which are allocated, as required, to a
task. At the completion of the task the processor is returned to the pool for others
to use. A number of specialised servers is present to perform functions which either
need to run on a separate processor or need to be in continuous operation to provide
greater efficiency. Typical specialised servers would include: directory, file and block
servers, and data-base servers. Finally, wide area gateways link Amoeba sites into
a seamless system.

Fach machine in an Amoeba system runs a functionally identical micro-kernel.
The Amoeba micro-kernel manages processes and threads, supports low-level mem-
ory management, provides transparent communication between threads, and handles
1/0.

Processes define an address space which may be shared by a number of threads
of execution. Fach thread has its own register set, stack and program counter. To
simplify the provision of blocking 1/0O the threads are scheduled by the micro-kernel.

The micro-kernel provides memory management services which allocate and deal-
locate blocks of memory, known as segments. No limitations are placed on how a
process uses a segment, and segments may be mapped into and out of a process’s
address space, as necessary. When a segment is mapped out of a process’s address
space a capability for that segment is returned. This capability may be passed to
other processes to allow them to load the segment into their address space. A seg-
ment remains in the system memory even when it is not mapped into a process’s
address space.

A client server model of distributed processing is implemented through the use
of Remote Procedure Calls (RPCs). This mechanism is used to provide transparent

communication between threads. The Amoeba RPC mechanism consists of 3 phases:

e do_operation- send a message to the server and block this thread of execution

until a reply has been received. This call is issued by a client requesting a
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service. The destination thread is identified by a 48 bit number known as a

port.

® get request - announce that the current thread is willing to receive a message
sent to a nominated port. This call is used by a server to advertise the server

procedure attached to a specified port.

e send reply - send reply back. This call is used by the server to reply to the
client requesting the service. On receipt of this message the client thread is

unblocked.

Server Port | Object Number|Rights|Check Field

—————
48 bits 24 bits 8 bhits 48 bits

Server Port - identifies thread that manages object
Object Number - uniquely identifies object managed by server
Rights - identifies operations permitted by holder of capability

Check Field - protects capability against forging or tampering

Figure 3.1: Components of an Amoeba Capability

Although Amoeba uses capabilities (figure 3.1) with cryptographic check fields
to identify objects within the system, Tanenbaum el al do not identify Amoeba as
a capability based operating system. The use of capabilities within the Amoeba
system is not uniform in that all the fields of a capability are used and validated to
load or access an object, but only the server port field of the capability is validated
for RPC operations. The other fields are passed to the server. The server may
interpret the other fields without restriction.

A sparse port name space (a 48 bit port number is required to access a port)
partly protects servers from unwanted access attempts. Only clients of a server are
informed of the server’s port numbers, and hence only valid clients of a server should

be able to access the server. If the port number is leaked, additional mechanisms
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are required to ensure that a server is not abused. This protection may be provided
within the server as it may reject messages which are not of the correct form.

To protect against intruders emulating servers, Amoeba uses a one-way function
to encrypt port names. Clients of a service are given the port name P which is
derived from (7, the secret port name known to the server using the one-way function.
Servers use their secret port name to advertise their service, (7 is transformed by
either hardware or software (an F-box) into P, and the service is made available
from a host to the network. Clients request a service using the publicly known port
name P, and are connected with the server. All port names advertised by servers are
transformed by an F-box, and as (¢ is not publicly known, intruders cannot emulate
a server.

Other services provided on Amoeba systems are not supplied by the micro-kernel;
instead they are made available by user level servers. The most critical of these
services are the directory and file system services.

The basic file system service provided with an Amoeba system is known as the
Bullet service. The Bullet server creates and manages immutable files. As the files
cannot be altered after creation, the size of the file is known at the time of access.
This feature is exploited to allow files to be stored contiguously on disk and in the
main memory cache. As the files are stored in contiguous blocks, only a single
read operation is required to recover the file from disk, and a client can read a file,

completely, in a single RPC operation.

ASCIT string | Group 1 Group 2 Group 3
Mail Cap T.all* | Cap 1.ro” | Null Cap®
GGames Cap 2.all | Cap 2.rw? | Cap 2.ro
Exams Cap 3.all | Null Cap | Null Cap

“capability with all rights
bcapability with only read right
“capability conferring no rights

dcapability with read and write rights

Figure 3.2: Logical Representation of an Amoeba Directory

The directory server provides a mapping between ASCII strings and capabilities.
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The directory server organizes the mappings into collections known as directories
(figure 3.2). Directories can be shared with other users, and grant access to the
capabilities contained within the directory in a controlled way. The directory is
structured as a two dimensional table consisting of a collection of strings naming
the object, and a number of capabilities which grant access to the object. The
capabilities will frequently allow different levels of access to different groups. As a
directory is an object within the Amoeba system, it is represented by a capability
that can be placed within a directory. Directories can be used to represent an
arbitrary graph structure.

User 1

Fnviron

bin

dev

etc

home

public > cap

usr hosts >

pool

User 2

680x0
386
SPARC

Fnviron

bin

dev

etc

home

public

1IsT

Figure 3.3: Basic Amoeba Directory Hierarchy

Fach user is provided with a root directory (see figure 3.3) which contains entries
for the user’s environment, binaries, 1/0 servers, administrative information, home
directory, and the public directory. The public directory contains the root of the
public shared tree. The most significant entries in this area are: the cap directory

which contains capabilities for public servers, the hosts directory which contains
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capabilities for host specific servers, and the pool directory contains capabilities for
pool processors.

In summary, the Amoeba system is a distributed operating system that provides
transparent access to all the facilities, within the system, without the user being
made aware of the location or nature of the resource. Specialised nodes can be
exploited, without distorting the model, as they appear as servers within the system.
Capabilities and sparse address spaces are used within the system to provide a

measure of security, however, they are not exploited to their fullest extent.

3.2.2 Mach

The Mach micro-kernel [BGJ+92, RJO*89, I.oe92, Tan92] forms the basis of a num-
ber of operating systems in current use including OSF/1, many research projects
(including [VSK™90]), and has been suggested as the basis for a portable form of
0S/2. Mach’s direct ancestors were designed to demonstrate that modular operating
systems based on message passing were feasible. The earliest versions of Mach were
monolithic and designed to be compatible with UNIX in order to exploit software
becoming available for UNIX systems. At that stage Mach provided support for
multiple processors, threads and interprocess communication, and although it sup-
ported network operations, it was not envisaged as a distributed operating system.
With the advent of Mach 3.0, the code derived from Berkeley UNTX was removed,
and Mach was transformed into a micro-kernel supporting distributed operations.
The features of the Mach 3.0 micro-kernel are examined below. For convenience,
Mach is used to denote Mach 3.0 in the following text.

Mach provides the minimal services required of a micro-kernel: task manage-
ment, memory management, interprocess communication and device support. In ad-
dition, both multiprocessors and multicomputers are supported in the micro-kernel,
and system call redirection is provided.

Two abstractions are used for task management: tasks and threads. A task
corresponds to a collection of resources, including the task’s address space, and
access to communication facilities to both the kernel and the server. Threads are

paths of execution within a task. More than one thread may be active within a task
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at a given time, and on a multiprocessor, several threads may operate concurrently.
Both the control of tasks and the scheduling of threads can be mediated by user
level programs. User level programs can have complete control over the scheduling

of processes.

Memory management consists of mapping contiguous sections of Mach objects
into the address space of Mach tasks. The micro-kernel manages the main memory
as a cache of sections of Mach objects. A significant feature of Mach’s memory
management is that a user level page fault handler may be specified. User level
code can control the fetching of pages from backing store. This feature has been
exploited in the implementation of persistent systems such as the Napier88 environ-

ment [VSKT90].

Interprocess communication is provided through the use of ports. A port is a data
structure accessible only to the micro-kernel which consists of a fixed length, ordered
list of messages. The port data structure is used to implement all communication
under Mach. When a port is created, capabilities known as port names are created.
Associated with these capabilities are port rights. Three types of port rights exist:
receive right, send right and send-once right. Only one task may hold a receive right
for a port although many tasks may hold a send right. Ports are only destroyed
when the receive right is destroyed. A task gains access to a port by loading the
port name into its port name space. The micro-kernel maintains a count of the
number of tasks that have a port loaded. The port abstraction is used to control
every element of the Mach system. Operations on tasks, threads, and objects, are

all performed by sending messages to the appropriate port.

Low level device 1/0 is modeled using the port mechanism. Messages can be
sent to ports to transfer data and control devices. Mach is capable of supporting
both synchronous and asynchronous devices as it separates read and write messages

from request and reply messages.

To assist in the provision of the binary emulation of operating system environ-
ments, Mach incorporates system call redirection. When one of the redirectable
system calls or a redirectable exception occurs, user mode code, within the calling

task, can be invoked to handle the call. A library of routines emulating the system
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calls of the emulated operating system can be incorporated into a task. The system
calls are activated seamlessly. The redirection need only be set up once as it is
preserved in child tasks after a fork operation.

Mach supports multiple processors through the use of processor sets. The mem-
bers of these sets form a pool of processors which can be used to schedule tasks and
threads assigned to the set. The use of processor sets provides a mechanism for the

control of the scheduling of threads within a multiprocessor or a multicomputer.

User Kernel
Task
Add Process
ress Space ot
Thread
{| Bootstrap
Thread Port
Thread Exception
: Port
Other Task Properties H| Registered
: Port

Figure 3.4: A Mach Task

Figure 3.4 depicts a Mach task. In addition to its address space a Mach task
contains default values for the processor group and scheduler parameters to be used
by threads operating in its address space, and a collection of statistics relevant to the
history of the process. The process port is used to request services from the micro-
kernel. The bootstrap port is read by the first process in the system to determine
the names of kernel ports. The exception port is read to determine the nature of any
errors. A collection of registered ports provide access to standard system services.

Fach Mach thread has a port that can be used to control it. As ports are
accessible to all threads within a task, these ports allow a thread to control itself
and other threads within a task. Using this facility, it is possible to construct user

process managed thread packages.
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Emulation libraries are the key component that allows Mach to support operating
system environments. Emulation libraries translate program requests into Mach
operations. FEfficiency is improved by placing the emulation library into the same
address space as the program expecting the emulated services because this reduces
the cost of communication between the emulation routines and the program. As code
within the emulation library shares the address space of the programs it supports,
it is unable to protect data that it accesses from the program. Thus the emulation
library mechanism cannot be used to protect sensitive data from programs.

The use of emulation libraries allows several ‘personalities’ to exist on a Mach
system at one time, executing in parallel. In addition to using Mach functions to
support operating system functions, it is possible for the emulation library to use
the facilities of other personalities. This feature is most commonly used to allow
operating environments to use files hosted by other operating environments.

The Mach micro-kernel has demonstrated that micro-kernels can support multi-
ple operating system interfaces within a single system. Access to process scheduling
and memory management from user level processes has made Mach a popular tool
for the implementation of experimental operating environments. Mach is not ca-
pability based, as within it, capabilities are used only in a limited way to protect

access to ports.

3.2.3 Plan 9

Plan 9 [PPTT92] is a distributed multi-user operating system which bears a strong
resemblance to UNTX at the user interface level. Plan 9 draws on concepts found in
UNIX, generalized for the new environment, rather than attempting to implement
previously untried concepts. The operating system is aimed at a similar environment
to the Amoeba system (see section 3.2.1), in that it is composed of workstations
(known as terminals), pool processors (known as CPU servers) and file servers.
Resource sharing, and reducing administration were priorities in the design of the
system.

By using a limited number of powerful abstractions it is possible to produce a

small kernel that performs the functions of larger kernels. The micro-kernel philos-
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ophy of minimising functionality of the kernel, and placing maximal functionality
into user processes differs from Plan 9’s philosophy of minimalism and uniformity.
Unlike micro-kernels, Plan 9 incorporates elements of the file system into the kernel.
The file system serves as the major abstraction of the operating system.

Resource sharing is promoted by using identical kernels on each terminal and
CPU server. This allows users to choose whether to run programs on their terminal
or on a CPU server. The distribution of tasks varies with the bandwidth of the link
between the terminal and CPU servers. On slow links users tend to place programs
so as to reduce the communications cost. On faster links users tend to run programs
locally, unless the program is a data or compute intensive job.

All the resources of a Plan 9 system, other than program memory, are repre-
sented as files within the file system. The strict tree structure imposed on the file
system (links are not supported) and the presence of all program accessible resources
makes the file system into a uniform name space. Physical devices, abstractions®
and software concepts” are all representable by file systems. File systems can be
implemented within the kernel as a driver, as a user level process or as a remote
server. Access to file systems outside the kernel is performed through the kernel’s
mount driver. The mount driver converts operations into request messages which
are relayed to either the user program or the remote server which implements the
file system functions.

The uniform name space, and the ability to implement file systems in either the
kernel or user code, provides a uniform mechanism to access either kernel or user
functions. This, combined with the use of a uniform data structure for access to files
and devices, known as a channel, and a uniform set of primitives results in a highly
extensible operating system with a simple interface paradigm. The 9 1/O primitives

are:

Attach - Connect a channel to the root of a file system and notify the file system

SComplex abstractions are represented as directories containing files representing different as-
pects of the abstraction. Tn the case of a process the files present include ones for memory, control

and the text file

7An example of a software concept implemented as a file system would be Plan 9’s representation

of environment variables as files in the kernel resident file system
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of which user is being attached.

Clone - Duplicate a channel creating a new channel that points to the same file or

file system, as the original.

Walk - Perform a directory lookup on a file, and set the directory pointer to the

next file or directory.
Stat - Get the file attributes of the current file.
Wstat - Alter the file attributes of the current file.

Open - Check permissions before opening file to allow 1/0 to be performed on the

channel.
Read - Read from open file.
Write - Write to open file.
Close - Close open file.

As more than one file may be used to represent a device, it is possible to separate
the control operation from the data transfer. By dividing device information this

way, Plan 9, avoids the need for a call similar in nature to the ioctl found in UNTX.

maries

/hin/ for local
processor

evices

for local

/dev/

processor

Figure 3.5: The Initial Name Space of a Process

Plan 9 creates a process group when a user logs into the system. This minimal
process group (figure 3.5) contains a root directory, some binaries and some local

devices. The system calls mount and bind are used to manipulate the name space.
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The mount call adds new external file systems, and the bind call alters the arrange-
ment of the name space. Directories in the Plan 9 system have the special property
of being mounted behind another directory to yield the union of the two sets of files.
Fach directory in the union is searched, in turn, to find a file with a matching name.
The first file found is returned. This feature replaces the UNIX search path concept
in Plan 9.

The system is virtualized through control of the name space. The ability to
alter any element of the name space, for a process, allows processes and objects to
be moved from server to server within the system. Remote and local resources are
easily interchanged by altering a process’s name space. The virtual machine offered
by Plan 9 is exploited when CPU servers are used as accelerators for processes. A
daemon on the CPU server answers a request for a process to operate on the server
by setting up a process group on the server. This allows resources, local to the CPU
server, to be used by the process to be accelerated, without the process needing to
be aware that it is running on a CPU server. Apart from an increase in speed, the
process’s environment appears identical to the process, regardless of whether it is

operating on a CPU server or a terminal.

Local disk file systems have been avoided in the design of this operating system.
The designers argue that local file systems require significant knowledge to admin-
ister on the part of the workstation user, which is frequently absent. In addition,
as relatively few workstations export their file systems, the use of centralized file
servers promotes file sharing and makes users independent of a specific terminal.
The need for local systems is removed by using a combination of caching and high
speed links, where necessary. By using high speed links between CPU servers and
file servers, and large memory based caches on the file servers, a file access rate of
a similar order of magnitude to the memory access rate has been achieved. Cache
coherence is maintained through the use of a 64 bit file identifier. Half of this value
is used to identify the file on a file server. The other half is a version number which
is incremented each time the file is modified. The file identifier is returned each time
a file is opened. If the version number component does not match, any currently

cached pages are replaced, otherwise the cached pages are used. Where high speed
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links are available, only pages of executable files are cached. On low speed links, a
local disk is used as a large write through cache memory, for both executable and
data pages. As this local disk acts only as a persistent cache of information held
on the file server, it requires only limited maintenance. When the code or the user
detects a problem with the disk, the disk is reformatted.

By using the file system paradigm to generate a uniform name space in which
processes operate, Plan 9, provides a distributed system which uses a single concep-

tual model, allowing access to the full functionality of the system.

3.2.4 QNX

The QNX micro-kernel [Hil92, Var94] originated in 1982. It is currently in use in
a large number of real time and distributed applications. The small code size of
the kernel, and the ability to build systems without a file system, makes QNX well
suited to embedded applications.

The micro-kernel supports 14 system calls. These form the interface to the
functions of the QNX kernel: interprocess communication, process scheduling and
interrupt dispatching. The kernel may optionally contain a network manager which
supports low-level network communication. All system services are accessed through
messages passed by the micro-kernel.

Message passing is implemented using a set of three blocking functions. The
Send() call sends a message to a target process and blocks the current process until
the target process executes a Receive() and a Reply() call for that message. If there
are no pending messages, executing a Receive() call causes a process to block until a
message is sent to it. The message is transmitted by copying between processes. No
queuing is employed by these primitives. Message queues are supported through the
use of TPC servers which are implemented using the three low level communication
primitives. Processes can specify that messages be delivered in priority order rather
than time order, and that the process executes at the priority of the highest-priority
blocked process waiting for service. The use of these facilities prevents lower priority
servers preempting a higher priority process by invoking the services of a process

with even higher priority.
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Figure 3.6: QNX Multi-part Messages

Multi-part messaging is supported by the low level communication primitives.

An MX table (see figure 3.6) indicates where components of a message should he

fetched from in the sending process’s address space, or delivered to in the receiving

process’s address space. Direct support of multi-part messages reduces overheads

encountered in other systems where messages must consist of contiguous memory

locations. Systems which do not support multi-part messages typically use memory

copies to gather elements in the transmitter, and scatter the elements in the receiver.

QNX supports the following scheduling policies®:

Preemptive

e First in first out

o Adaptive scheduling

Prioritized context switching with round robin

Sufficiently privileged user processes can connect an interrupt handler to an

interrupt vector within the kernel. The handler, which runs within the process’s

address space, is called when an interrupt occurs. It has access to all the facilities

of the user process. On completing its response to an interrupt, the handler has

8These policies are implemented in accordance to the draft standard: POSTX 1003.4 (real-time)
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the choice of either returning to the kernel or waking the process which provides its
address space. The ability to selectively start a process allows significant events to
be noted immediately, and buffering to be used to improve efficiency. The micro-
kernel conceals the presence of nested and shared interrupts, and any hardware
dependent details from the user level interrupt handler. This feature provides a

uniform interface thus simplifying the task of the programmer.

When present, the network manager is directly connected into the kernel pro-
viding efficient access to low level communications between QNX kernels. Transfers
between local processes and remote processes are accomplished by issuing a message.
The micro-kernel identifies the message and uses its private interface to the network
manager to queue the message for transmission. After the dispatched message is
received by the appropriate node, the network manager on that node passes the

message to the local micro-kernel.

Multi-processor support is highly transparent as all services are available in re-
sponse to messages, and message passing is handled by a network manager that is

closely bound to the kernel. This simplifies the construction of distributed systems.

The only mandatory resource manager is the process manager - Proc. It supports
process creation, accounting, environment inheritance, memory management and
first level pathname management. Because a file system is optional within a QNX
system, and as there are no other compulsory resource managers, proc initially
owns the entire name space. Proc may delegate part of the name space to other
managers. Name space delegation is conventionally implemented by having proc
maintain a prefix tree of delegated pathnames, and ensuring that library routines
using pathnames send a message to proc, which directs the routine to the manager
corresponding to the entry with the longest matching prefix. File systems and
network elements can easily be incorporated into this structure by delegating part
of the name space to their managers. These managers are responsible for parsing
the non-matching part of a pathname, and providing functions corresponding to

requests directed to them by library routines.

The QNX system exhibits the flexibility typical of micro-kernel based operating

systems. This flexibility is enhanced further by the use of a manager for network
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interfaces and shifting name space management into a user level process. The use
of message passing, as the basis of all system operations, provides inbuilt network
transparency. This has resulted in a small operating system suited for use in dis-

tributed applications.

3.2.5 Angel

The Angel micro-kernel MSWK93, MWO*93] employs a single 64-bit address space
which is shared completely by the kernel and all processes executing on the system.
The Angel kernel was influenced by perceived weaknesses and limitations in Meshix
[OSW*92] - a conventional micro-kernel. The use of message passing within Meshix
was identified as a major performance limitation. Lightweight RPC mechanisms
were considered; however, the implementation of these mechanisms would reduce
the strength of interprocess protection hence reducing the security of the system.
Angel replaces RPC mechanisms with a shared address space model and implements
secure LRPC mechanisms using shared memory.

The micro-kernel supports two major services: persistent virtual memory and
virtual processor management.

The designers of Angel exploit the address space provided by a 64-bit processor
to unify the functions of memory and the file system to produce a persistent store
accessed through addresses. Memory objects are fixed in the address space. The
designers term this a Single Address Space Architecture (SASA) as each process
finds objects at the same place, within their address space. Improved data sharing
i1s a major advantage of this style of address usage. Data always resides at the same
address, allowing data structures to use addresses directly, and hence avoiding the
need to encode data to remove pointers. The single unified interface reduces the
complexity of programs. Only addresses are required to identify and use objects.
The common interface is valuable on Distributed Shared Memory (DSM) machines
as it eliminates the need for additional mechanisms to use resources located across
the network. Shared memory allows LRPC mechanisms to be implemented through
the use of shared objects which allows fast communication between co-operating

processes at the security level provided to control access to memory.
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The kernel supports the concept of virtual processors. A virtual processorbehaves
similarly to a UNIX process, except that whenever it performs an action that would
block, it is ‘upcalled’. The virtual processor can decide whether it can continue with

some other task rather than surrender its time-slice to another wvirtual processor.

The kernel employs a control structure known as a virtual processor to represent
the virtual processor. This data structure incorporates the state of a process and a

list of upcalls.

An upcall is made by the kernel when an event which would block a virtual pro-
cessor occurs. An upcall is implemented as a small data structure which conveys the
type of the event causing the upcall and two further pieces of information specific
to the upcall type. The upcall is delivered to the virtual processor if there is suffi-
cient space in the upcall list, otherwise the upcall is ignored. The virtual processor
structure specifies how an upcall is dealt with. The options for handling received
upcalls are to discard the upcall, queue the upcall for later attention, or invoke a

handler associated with the upcall type.

Threads are supported by user level code. The kernel has no explicit support for
threads. The upcall mechanism is used to notify the user level thread package of

events, including time based alarms, blocking events, and a change in state of locks.

Angel does not support the concept of user identifiers. Instead, it determines the

right of a process to access an object based on what a process already has access to.

Access to objects within the Angel address space is controlled through the use of
Access Control Descriptors (ACD). They describe the other objects which must be
accessible to a process before this object may be used. A biscuil - a unique identifier
for an ACD - is presented to the object manager to gain access to an object. The
object manager confirms that the process has access to any objects listed in the
ACD for the object the process wishes to load. If the requirements are met, the

object manager allows access to the object.

Objects are composed of one or more pages of memory. Objects must be distinct,
that is objects must not overlap, and an object may not enclose another object.
Objects are created with a fixed length. Tt is necessary to copy the contents of an

object to a larger object to effectively enlarge its size. Angel currently allocates
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backing store to an object when a page is first modified. This allows sparse objects
to be implemented with a minimum of backing store. However, it risks having a
write to memory fail for a lack of backing store.

The Angel micro-kernel is a persistent system using a large flat address space to
hold all objects. The fixed location of objects in the address space eliminates the
need to make data structures independent of memory location, improving access
speed and potentially simplifying the structures. The access mechanism of deter-
mining the right of a process to access an object, based on the ability to access other
objects, allows the protection domain of a process - the set of objects it can access

- to vary automatically.

3.2.6 Chorus

The CHORUS? distributed operating system [RAAT9T, ARGS9, Gie90] developed by
Chorus systemes uses a message passing based micro-kernel to support native pro-
grams and a UNIX based subsystem. Real time application support is incorporated
into the nucleus.

Fach site - a collection of one or more closely coupled processors within a CHORUS

system - has a nucleus. The CHORUS nucleus (figure 3.7) consists of four major parts:

e The ‘Supervisor’ is machine dependent and is responsible for dealing with
events generated by the hardware. The Supervisor incorporates the dispatch

of interrupts, traps and exceptions.

e The ‘Real-time Executive’ allocates processors, provides fine-grained synchro-

nization and preemptive priority-based scheduling.

o The “Virtual Memory Manager’ controls virtual memory hardware and local

memory resources.

e The ‘TPC Manager’ provides asynchronous message exchange and RPC func-

tions.

YCHorus is a trademark of Chorus systémes
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Figure 3.7: The CHORUS Nucleus

The four components of the nucleus are independent. The managers are distributed,
with the users of the services being unaware of the separation of the components.
Access to the functions provided by the managers, and between managers, is by the
standard CHORUS TPC mechanism.

The nucleus uses a number of abstractions to represent objects it manages, and
operations on those objects. Global naming is achieved through the U7l - unique
identifier - abstraction. The unit of resource allocation is the actor. The address
space of an actor consists of a number of regions. The threadis the unit of sequential
execution. Communication is conducted through messages directed to a port or port
group.

A subsystem is composed of a number of servers operating cooperatively to pro-
vide a coherent operating system interface. Three abstractions are managed by both
the nucleus and the subsystem servers. The segment is used to encapsulate data, a
capability provides access control, and a protfection identifier is used for authentica-
tion.

Uls are used to identify actors, ports, and port groups. These identities are
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unique in both space and time, global, and independent of location. The CHORUS
nucleus provides a service that allows the location of an entity with a Ul

A CHORUS actor encapsulates an address space divided into regions, a set of
ports, and a set of threads. The regions are coupled with either local or remote
segments. Threads are tied to a single actor, and share the resources of that actor
with the other threads of the actor.

Actors are tied to a site, as are their threads. Only physical memory local to a
site is used by an actor. The actors on a site have distinct user address spaces, and
they share a single system address space. The shared address space is local to the

site. Three types of actors exist:

User Actors are not trusted nor privileged

System Actors are trusted but not privileged. They may perform sensitive nu-

cleus operations, but cannot execute privileged instructions.

Supervisor Actors are both trusted and privileged. They may execute privileged

instructions as well as sensitive nucleus operations.

A port may be attached to only one actor at a time. However, ports can migrate
from actor to actor allowing easy reconfiguration of services. Any thread within an
actor may use a port held by that actor. Any thread that knows the name of a port
may send a message to that port. Port groups are used to provide multi-cast and
functional addressing. Ports may be added to, and removed from, port groups at
any time. A number of addressing modes are provided to support port groups. It is
possible to broadcast to all the ports in a group, to send to any one port in a group,
to send to any one port on a given site, and to send to any one port on the same
site as the sender.

A message consists of a contiguous string of bytes copied from the sender’s ad-
dress space to the receiver’s address space. The copy is optimised. If possible, a page
descriptor is moved between the sender and the receiver; failing that a copy-on-write
technique is employed.

CHORUS supports both asynchronous TPC and synchronous RPC mechanisms.
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Figure 3.8: A CHORUS Capability

A capability (see figure 3.8) comprises the Ul of the server which manages the
object, and a key which uniquely identifies the object. Capabilities are used as global
names for objects which are not directly implemented by the CHORUS nucleus.

Fach message is stamped with the protection identifier of the source actor-port
combination. This allows the receiver of the message to verify the identity of the
sender.

Deferred copy techniques and local caching are employed by the CHORUS micro-
kernel to improve performance. These techniques have a significant impact on op-
erations which copy large amounts of data between actors, and on TPC and TO
operations which move small amounts of data between segments.

The model of distributed computing employed by CHORUS ties processes to
clusters of tightly coupled processors and employs a position independent addressing
mechanism to allow the delivery sites of messages to migrate. This mechanism
avoids the difficulties of shifting processes while it provides a way of distributing the
work load and allowing services to migrate. The performance of message passing is

improved through the use of caching and deferred copying.

3.3 Capability Based Operating Systems

A capability based operating system uses capabilities to control access to objects
and services. The capability is used as the primary mechanism for referring to an
object. Possession of a capability implies the right to access an object or service.
Five capability based operating systems are covered here: Monads, KeyKOS'
Grasshopper, Opal and Mungi. In each of these systems, capabilities are the fun-

10KeyKOS is a trademark of Key Logic, Inc.
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damental access control mechanism. However, these systems display widely varying
properties, and exploit capabilities in differing ways to provide the facilities of the

operating system.

3.3.1 Monads

The Monads project [RA85a, Geh82, Kee82] ran from 1976 to 1985 at Monash
University. This project attempted to provide an architecture suitable for the de-
velopment of large and complex software systems. Special purpose hardware was
designed and built to support the Monads operating system.

The designers of the Monads systems applied the principle of information hiding
to the decomposition of complex systems into modules. The modules communicate
only through the defined module interface, and the internal data structures of a
module are inaccessible to other modules. The module interface consists of a set of
exported functions which may be called from other modules.

Under Monads, capabilities are viewed as protected pointers - a pointer which
cannot be modified by the process - to objects which exist in a large uniform address
space. Two classes of objects are supported: modules and segments. The segment
is the base unit of storage, and cannot be shared between modules. A module is a
collection of segments which store all the module’s information. Module capabilities
are used to refer to other modules. Segment capabilities are used to address within
a module.

Every memory access within the Monads architecture makes either explicit or
implicit use of a capability. Thus all memory accesses are checked at the instruction
level to ensure that appropriate rights are held to perform the operation.

A uniform paged virtual memory is used to hold all the data contained in a
Monads system. The virtual memory is accessed through the use of large addresses
which identify single bytes''. Segments are defined by a start address and a limit.
They need not be page aligned. (see figure 3.9)

Fach segment is intended to contain a single logical entity'?. Segments have ex-

""Monads-PC supported 60 bit addresses [RA85b]

2An array and a procedure are examples of logical entities
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Figure 3.9: Mapping Monads Segments to Pages

clusive use of the virtual address space they occupy. They are created in a previously
unused portion of the address space, and when they are destroyed, that portion of
the address space becomes unusable.

Fach process is associated with a number of base registers which point to lists
of capabilities know as segment lists (see figure 3.10). Segments in these lists are
available for use by the process. A process cannot directly modify either a base
register or a segment list. Memory can only be accessed by specifying a base register,
segment number and offset. A limited number of capability registers are provided
to increase efficiency. This allows memory addresses to be specified by a capability
register and an offset.

The inter-module call mechanism performs several tasks. The call instruction:

loads the base registers with values appropriate for the called module

e creates a local data segment list and associated segments on the stack

loads a base register with the segment list of passed parameters

e transfers control to the called module

This Timits a module to its own data and any data passed to it. The return call
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Figure 3.10: Addressing Memory Under Monads

removes local segments and restores the previous module’s environment bhefore re-

turning control to the calling module.

Four types of program data are identified in the Monads system: code-related
data, local data, permanent data, and retained data. Code related data is created
at compile time, and typically consists of constants embedded in the code. T.ocal
data is used for temporary storage within a procedure. 1t is created on entry to
a procedure, and destroyed on exit from a procedure. Permanent data'? is data
associated with a module. Several different versions of this data may exist, each
being associated with a different instance of the module type. The permanent data
persists until the module is destroyed. Retained data is associated with a particular
invocation of an instance of a module. The retained data persists between calls to

a module, and is destroyed when a program terminates.

Fach module is required to have two standard procedures: CRFATE and OPEN.

These procedures are used to support permanent data and retained data. The

3Permanent, data would be stored in files in a conventional operating system.
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CRFEATE call is used to generate a new instance of a module. Creating a module
is performed by making a data segment list and associated data segments. This
allocates space for a permanent data entity which can be shared by a number of
processes. The OPEN call is made on the first invocation of a module by a program.
The call consists of two components: the first creates the retained data segment list
and segments, and the second component, removes the retained data segments. The

second component of the open call is made when the program terminates.

Monads employs an in-process architecture. The operating system does not
run as a separate process to user processes; instead operating system functions are
used by calling privileged procedures. Monads supports only user level processes; all
operating system functions are accomplished through calls on privileged procedures.

There are no auxiliary operating-system processes.

Privileged procedures are protected by the same means as normal procedures.
The data of a procedure is inaccessible while the procedure is not running. While
a procedure is executing, its data is available to the code of the procedure, but the
data must cease to be available when the procedure is no longer executing. The
data of a procedure includes information held on the stack. The Monads hardware
supports this mode of operation. This level of protection is sufficient to protect

operating system functions.

The Monads project produced a number of systems, all using specially con-
structed or modified hardware to implement an environment well suited to support-
ing small modules, with strict isolation between the modules, except through the
parameters of a set of exported functions. Capabilities provide both unique names
and a mechanism to implement access restrictions. A C-list based architecture is

used to protect capabilities from user process manipulation.

3.3.2 KeyKOS

Development of the KeyKOS system [BFFT92, Har85] began in 1975 and has been
in use in production systems since 1983. KeyKOS is a capability based operating
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1" was developed

system, with check-pointing built into the kernel. The micro-kerne
to support a secure environment, with data sharing, high reliability, and accurate
pricing. An abstract machine interface is presented to each application program.
The abstract machine interface may be exploited to implement either a KeyKOS
service or an operating system emulation. EDX, RPS;, VM/370, a subset of MVS
and UNIX have been implemented.

The original application of KeyKOS was to support British Telecom’s Tymnet
service. Isolating mutually antagonistic users, supporting highly accurate account-
ing, and providing 24-hour uninterrupted service were the three major priority re-
quirements placed on the operating system.

The architecture of the micro-kernel is based on 3 concepts: a stateless kernel, a
single-level store, and capabilities.

All the micro-kernel’s state is derived from information held in persistent state.
The information cached in the micro-kernel may be in a different format to the
persistent information to increase efficiency. The private information of the micro-
kernel may be discarded at any time, as it can be reconstructed as necessary from
information held in the persistent data elements, known as nodes and pages. The
elimination of critical state in the kernel eliminates the need to checkpoint the kernel,
and avoids the need for dynamic allocation of kernel storage.

All the data of a KeyKOS system is stored in a persistent virtual memory system.
Only the micro-kernel is aware of which pages are present in main memory. The
paging system is tied to the administration of checkpoints, and periodic system-
wide checkpoints are used to guarantee the persistence of data. Both processes and
data are persistent. Service interruptions appear, to application processes, only as
unexplained jumps in the real time clock.

Capabilities'? are central to KeyKOS’s operation in that they are used to control
access to objects and the sending of messages. No other mechanisms are present to
complicate the implementation. Objects in the system are exclusively referred to by

their capabilities, and possession of a capability implies the right to use the capability

"The designers of KeyKOS identify their kernel as a ‘nano-kernel architecture’, but offer no

explanation as to how it differs from a conventional micro-kernel architecture

" The authors of KeyKOS uses the term ‘key’ instead of capability for brevity
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and to pass the capability to a third party. The right to create a capability is
privileged; however, the right to duplicate a capability is available to all applications.
To prevent forgery, capabilities are segregated so that only the micro-kernel has
access to the capability.

Encapsulation of objects is enforced by the kernel through the use of message
passing and capabilities. Mutually suspicious users are protected from each other
by the capability mechanism. For a user to gain access to a service or object, it is
necessary for a holder of a service or object to disclose the required capability.

Multiple capabilities may refer to a single process. An 8-bit field in a capability
is used to identify the class of capability used to send a message to the process.
When a process hands out a capability, it can set this field to a known value. This
field allows the process to partition clients of the process into either service classes,
or privilege levels.

Six fundamental objects are supported by the KeyKOS kernel:

Devices: Device drivers are typically split into two components. Low level hard-
ware drivers are implemented in privileged code and perform the tasks of
message encapsulation and hardware register manipulation. The high level

driver is typically implemented as a KeyKOS process't.

Pages: The simplest object in a KeyKOS system is a page. The size of a page is
machine dependent'”. At initialization the number of pages that a system can

manage is fixed.

A page responds to read and write messages. If a page is mapped into a
processes address space, then loads and stores on locations within a page are
equivalent to the operation of read and write messages. If a page is not present
in memory when a message is sent to it, then it is brought into memory before

performing the operation on the page.

Fach page is known by at least one page key, and the page has at least one

persistent location on disk known as its home location.

6 Except where performance would be inadequate

""In all current implementations of KeyKOS pages are 4 kilobytes in size



3.3. CAPABILITY BASED OPERATING SYSTEMS 51

Nodes: KeyKOS segregates capabilities from direct scrutiny by user processes. It
stores capabilities in nodes'®. A node key is a capability that gives access to a

node. It is used to add and remove capabilities from a node.

Segments: Address spaces are defined through the use of segments which represents
a collection of pages or other segments. Segments are sparse and are not
required to be contiguous. They are implemented as a tree of nodes, with

pages as the leaves of the tree.

Meters: A meter key entitles the holder to the amount of CPU time held in the
meter corresponding to the capability. There is no guarantee that the CPU

time will be allocated in a contiguous unit.

Domains: A domain consists of 16 general key slots, a number of special key slots
and all the non-privileged state of the hardware available to a KeyKOS process.
When a slot in a domain is loaded with a capability, the process executing
within the domain is deemed to hold the key. The special slots for a domain
include: an address slot which holds the capability for the segment acting as
the address space for the domain, and a slot for a meter key which provides

execution time for process executing within the domain.

Under KeyKOS a message consists of a parameter word, a string of up to 4096
bytes, and four capabilities. Only capabilities held by the sender can be sent. There
are 3 mechanisms available for sending messages: call, fork and return. The fork
mechanism sends a message to the recipient, and does not wait for a reply. The
call mechanism generates a resume key for the sender, and dispatches the message
to the recipient. The sender is suspended, and refuses messages, until it receives a
message sent using the resume key. The return mechanism sends a message, leaving
the sender able to receive messages.

Messages are not buffered. If the recipient of a message is unable to handle a
message immediately, then the sender of the message is deferred until the receiver

is ready.

"8n all current implementations of KeyKOS nodes have sixteen slots
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On receipt of a message, the receiver of the message may choose which parts
(parameter word, string, or keys) of the message it accepts, discarding the remainder
of the message.

Periodically a KeyKOS system checkpoints. At this stage, all processes and 1/0
activities are stopped, any dirty pages are transferred to the current checkpoint
area on disk, the alternate checkpoint area is made current and the processes are
permitted to resume. Pages are then migrated from the first checkpoint area back
to their home locations. By ensuring that a second checkpoint does not occur until
the first checkpoint is handled, the system remains in a non-corrupt state.

Exceptions are managed through the use of keepers which are associated with
domains, segments and meters. A message is sent to the appropriate domain keeperif
an exception occurs. The keeper may either terminate the program, supply an answer
and allow execution to continue, or restart the instruction. Segment keepers are
invoked if an invalid operation or a protection violation is performed on a segment.
A meter keeper is invoked when the associated meter runs out. This can be used to
implement complex thread and process scheduling mechanisms.

The use of capabilities for access protection and check-pointing for ensuring
system consistency allows KeyKOS to provide an environment where applications

are secure from both external failures and internal attacks.

3.3.3 Grasshopper

The Grasshopper operating system [DdBFT94h, DdBF*94a, LDdB*94, DI.RIS] is
an experimental operating system that seeks to provide a scalable and efficient
persistent environment using conventional workstation hardware. The operating
system is being developed by researchers in the computer science departments at
the University of Sydney and the University of Adelaide.

Unlike Monads (see section 3.3.1), Grasshopper, is designed to run on conven-
tional hardware, using the existing page translation hardware to support access con-
trol and memory mapping. A direct consequence is that access control and memory
structuring occurs in multiples of pages.

The designers of Grasshopper identify two principles which define ‘orthogonal
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persistence’. The requirements are that objects exist for the same period as the
object is required and that objects are manipulated in the same manner regardless
of their longevity. To provide an environment which supports orthogonal persistence
three fundamental abstractions are employed by the operating system: Containers
are the abstract representation of storage, loci represent actions within the system,

and capabilities are used to represent a right of access to an object.

C1

C4f

C3

Figure 3.11: Mapping containers under Grasshopper

Containers provide all access to storage within the system. They are persistent
and may be of arbitrary size. The contents of containers are derived from 2 sources:
sections of other containers and information supplied by a manager. Containers
may map in segments of other containers (see figure 3.11) to construct a directed
acyclic graph of dependencies on other containers. The elimination of cycles ensures
that there exists a container that is responsible for the provision of data. When a
reference is made to a location within a container (resulting in a page fault), the
kernel determines which container is responsible for the delivery of the information
and calls the appropriate manager to make the information available.

Managers provide data when it is not resident in memory. They are normal user
level programs which reside and execute within their own containers. Managers
provide pages of data which are stored in a container, respond to access faults and
handle data removed from memory by the kernel. It is the responsibility of the
manager to maintain the coherence and integrity of the data of the containers that
they manage.

‘Manipulative managers’ store data in a different form on permanent store to
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the form that is present to a locus in a container. Three examples of manipulative

managers are:

Swizzling managers may be used to support a container that is larger than the
address space of the host hardware. When address fault occurs in a container
managed by a swizzling manager, a page of data is provided which contains
a set of addresses. When one of these addresses is dereferenced, the swizzling

manager maps in the correct data.
Encrypting managers encrypt the data placed on the permanent store.

Compressing managers compress the data placed on the permanent store result-

ing in storage savings.

The presence of manipulative managers clearly distinguishes the container concept
from the concept of an address space.

Loci are the active elements which manipulate the contents of containers. In prin-
ciple, a locus always executes within a single container, known as its host container.
The virtual addresses generated by the locus are used to access the contents of the
host container. By using the mapping mechanism, the locus can make use of the
contents of other containers. Any number of loci are permitted to execute within a
container, allowing the operating system to support multi-threaded programs. Loci
are maintained as persistent entities by the Grasshopper kernel.

A locus can change its host container by invoking another container (see figure
3.12). The locus enters the container at a location known as the invocation point
which is specified as an attribute of the container. The single entry point forces the
locus to execute code that is under the control of the invoked container. This allows
the invoked container to ensure its own security. A parameter block is available
which allows a small amount of information to be carried between the containers by
the locus. Invocation is a low cost operation as the minimal parameter block is the
only context transferred to the invoked container. Larger quantities of information
may be conveyed through the use of an intermediate container.

Invocation is analogous to procedure calls in that loci may make invoke other

containers, and issue a return which takes the locus back to the invoking container.
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The kernel maintains a call chain of invocations. As some loci may not require to
return to the container from which they were invoked, a mechanism exists to inform
the kernel that no return chain need be kept.

Locus private mappings allow loci to share their host containers while retaining
private data which is visible only to a single locus. These mappings take precedence
over host container mappings. Locus private mappings simplify the implementation
of multi-threaded programs, and provide a mechanism for a locus to keep information
secret from other threads executing in the same container. This feature is typically
used to implement stacks, without the need to ensure that stacks are separated
throughout the address space perceived by the loci in a container.

Grasshopper employs capabilities to provide unique naming and access control.
Capabilities are stored in list structures segregated from containers and loci. Seg-
regating the capabilities simplifies the task of garbage collection. A reference count
is maintained on each object and when all capabilities relating to the object are
deleted, the object is removed. Segregation of the capabilities allows the kernel to
keep an accurate count of valid capabilities for an object.

Conventional hardware is used to support Grasshopper’s protection system. The
use of capabilities to refer to coarse grained objects, specifically containers and loci,
allows conventional hardware to provide adequate security without an excessive
overhead.

A locus has access to a number of sets of capabilities.

1. The set of capabilities contained in the locus’ private list of capabilities.

2. The set of capabilities contained in the list of capabilities associated with the

host container.

A locus can move capabilities into and out of the lists, or perform an operation
using a capability through functions provided by the operating system. Specific
capabilities are identified by nominating a capability list and a key.

Managers are capable of, and responsible for, the maintenance of a consistent
recoverable state of their containers.

Grasshopper provides an environment where processes and objects are persis-

tent. The abstractions provided by the Grasshopper system decouple the address
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space from the active agents within the system, and provides a mechanism for trans-
parently transforming the contents of an address space based on the actions of an

agent.

3.3.4 Opal

Opal [CTLF1.94] is a capability-based single address space operating system (SASOS).
It is under development in the Department of Computer Science and Engineering,
University of Washington, Seattle. Like Angel (see section 3.2.5), this operating sys-
tem exploits the appearance of 64-bit address space architectures to provide a single
address space in which objects are uniquely identified by their addresses. Password-
Capabilities are used to protect access to objects. Opal is currently implemented as
a prototype based on the Mach 3.0 micro-kernel.

The Opal system is based upon the principle that addresses have a unique in-
terpretation for all applications. That interpretation is independent of the user of
the address; hence a thread may name any data item. Protection - the control of
access to an object - is managed through protection domains which permit a thread
to have access to a specific set of pages at a given instant.

Single address space operating systems have the advantage of ease of sharing
data-structures containing pointers between threads (processes). For private address
space operating systems to share structures containing pointers it is necessary to
convert the data to an intermediate representation which is shared, or to coerce
the processes using the shared data-structure to load the data at a fixed known
location in their address space. Poor compromises - typical of conventional systems
- between protection, performance and integration, are avoided by SASOS. These
benefits follow from the twin factors: eliminating the need to transform data being
shared between threads; and employing protection based on protection domains
which give specific permission to a thread to access shared data.

Under Opal, a segment is defined as a continuous extent of virtual pages. The
virtual address of the segment is fixed at the time of allocation and remains un-
changed during its existence. Segments are the base unit of storage and protection.

Non-transitory data is held in segments marked persistent.
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A protection domain consists of a set of access rights to segments at a given
instant in time. A thread executes in a single protection domain and has the access
rights conferred by that domain. Threads may execute simultaneously in a given
protection domain, and hence have access to the same collection of segments.

Password-capabilities are used to control access to resources such as protection
domains and segments. Opal capabilities are 256-bits in size and confer permission
to operate on an object in specific ways.

Given a capability, a thread can attach that segment to its protection domain
making the segment represented by the capability available to all the threads of the
protection domain. A segment can be made inaccessible by detaching it.

Calls are made across domains through portals. A portal consists of a fixed entry
point into a domain identified by a unique 64-bit portallD). Any thread knowing a
portalll) can transfer control into the domain associated with the portal.

Opal implements password-capabilities as an extension of the inter-domain com-
munication mechanism. A capability consists of a 64-bit portallD, a 64 bit object
address and a 128-bit random check field. The portalll) is used to make a call on
the server which manages the segment or domain represented by the capability. The
check field performs the functions of identifying the set of rights conferred by the
capability, preventing forgery, and permitting revocation. The server either grants
or denies access to the resource represented by the capability.

In a password-capability system it is not possible to distinguish an instance
of a capability from ordinary data. Thus these systems cannot determine when
there are no references to an object, and hence determine a time when it is safe to
destroy the object and reclaim resources devoted to it. Opal uses a reference count
associated with each object to determine when it is safe to destroy an object. The
reference count is incremented each time a segment is attached, and decremented
when a segment is detached. The reference count keeps track of the number of
protection domains which can make direct use of a segment'? rather than the number
of capabilities existent for a segment. In addition, a segment can be made persistent

causing it to remain after the last detach.

19An alternative interpretation is that the reference count “... indicates the number of entities

that have registered an interest in a resource...” [CTL.FT.94]
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The basic reclamation mechanism is subject to errors. It is possible to arrange
both the premature release of resources and the permanent commitment of resources.
Opal implements reference objects and resource groups to overcome these errors.
Reference objects allow private reference counts to be created for each group of
entities who wish to access a shared object. These groups are typically composed
of mutually trusting threads. The groups are suspicious of other groups which have
access to the shared object. Only when all the reference counts are exhausted will
the object be deleted. The reference counts ensure that the object persists until
all suspicious groups have relinquished an interest in the object. Resource groups
are used to release resources and reference counts held by an entity when the entity
ceases to exist. The capability for a resource group is passed as a hidden argument
in any call that creates a resource or increments a reference count. When a resource
group is destroyed, the references are released. A thread may alter its resource
group, at any time. This mechanism ensures that all resources can be reclaimed
even if the normal reclamation mechanism fails.

The Opal system provides a single address space in which threads are able to
efficiently share structures containing pointers. Access control is performed using
password-capabilities supplemented with resource groups - to assist in garbage col-

lection - and reference objects - to assist in sharing between mutually distrustful

threads.

3.3.5 Mungi

Mungi [HERV94] is a SASOS under development in the School of Computer Science
and FEngineering at the University of New South Wales. The goals of their system
are similar to Opal (see section 3.3.4) in that both support direct sharing of objects
containing pointers through the use of a 64-bit address persistent address space.
Mungi is designed to support a medium sized network of homogeneous machines.
It provides a single virtual address space transparently distributed over the nodes.
Password-capabilities are used for naming and access control of objects. Objects
have a paged sized granularity. No special hardware is required by the system to

support the operating system as the existing page translation hardware provided by
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the processor is used.

Under Mungi, objects are defined as contiguous sequences of pages. Objects are
the base unit of allocation and protection. The operating system locates objects via
the Object Table (OT). The OT’s entries list an object’s address, size, accounting
information, and passwords with corresponding access rights. The OT is distributed
and is organised as a BT-tree. The OT is constructed from a number of ordinary
objects. These objects are distributed across nodes by partitioning the address
space according to node and placing the local nodes OT bucket in the address range
associated with the local node. By partially replicating the nodes of the tree with

read-only copies, the number of accesses required between nodes can be reduced.

Pages may exist in one of six states on a given node: resident, on-disk, remote,
zero-on-use, unallocated, and unknown. The node holding the master copy of an
allocated page is defined as the owner of the page. Additional read-only copies of the
page may exist. Pages can migrate and hence their owner may change. A location
hint is stored for non-local pages. If no location hint is available, then the kernel
may infer one based on the location hints for surrounding pages. When referring to
a non-local page, the node contained in the location hint is contacted. If the page is
not at that location, either the node uses its location hint to forward the message,

or a broadcast message is sent to locate the node.

Attempting to perform a read operation on a page, which is not present on
the node, results in a read-only copy of the page being transferred to the node.
Attempting to perform a write operation on a page, which is not present on the
node or present as a read only page, results in the page’s contents and ownership

being transferred to the requesting node.

The global address space is partitioned. A partition is mounted on a node which
is made responsible for the creation and deletion of objects which appear within that
partition. This mechanism is employed to simplify the management of memory by
ensuring that knowledge of unallocated pages is only required on the creating node.
The creating node has no information about the location of pages from the segments
it manages apart from that gained through the reference mechanism available to all

nodes.
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To improve efficiency, Mungi supports 3 classes of data objects:
e Transient and unshared

e Transient and shared

e Persistent

Fach data class is allocated in a separate partition of the address space. By ensuring
that transient objects are allocated in a section of the OT that is local to the node
and will remain so, the speed of creation and destruction of objects is enhanced.

Capabilities under Mungi consist of a 64-bit address and a 64-bit password.
Associated with each capability is an object and a set of rights permitted over the
object, drawn from the collection: read, write, execute and destroy. Capabilities
can be derived and revoked.

Every kernel in the system has access to an object which contains the capability
tree (Ctree - see figure 3.13). A Ctree is constructed from protection nodes (Pnode).
A Pnode may contain a pointer to a list of capabilities (Clist) and/or a pointer to
a protection fault handler. Fach user is assigned a pointer to a Pnode which is used
to define the process’s regular protection domain (RPD). This pointer points to a
leaf Pnode. All capabilities found in Clists on the direct path between the leaf node
and the root are accessible to the user. Protection fault handlers can be supplied
by the user to supply an alternative search strategy. These handlers either return a
capability or a failure indication. If a capability is returned then the kernel makes
use of that capability otherwise the search towards the root of the tree is continued.

Protection is managed through the use of Active Protection Domains (APD).
FEach APD consists of a list of Clists and protection fault handlers. Tt is constructed
when a user logs in from their RPD. User processes can modify APDs by adding or
removing Clists or handlers. Processes can be created which operate in a limited
protection domain by locking the APD in which the process operates. This allows
untrusted code to be used in a controlled environment.

Mungi also provides a facility to allow code to temporarily change protection
domains. This feature is analogous to the UNIX setuid facility. Protection Domain

Fztension (PDX) occurs when procedure in a PDX object is called. The kernel
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Figure 3.13: Capability Trees Under Mungi
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verifies that the address of the procedure matches a valid entry point and proceeds
to push a Clist pointer associated with the PDX object onto the APD. This gives
the PDX procedure access to a set of capabilities unavailable to the procedures in
the original APD. On return from the PDX procedure the Clist pointer is popped
off the APD.

Mungi provides a sophisticated capability based protection system on a SASOS.
By combining the features of restricting an API) before invoking a procedure and
using PDX procedures, it is possible to construct environments with protection

domains tailored to minimise access between mutually non-trusting processes.

3.4 Observations and Trends

Operating system design is influenced by a large number of often conflicting factors.
Most prominent among these factors are the choice of abstractions made by the
system designer, the functionality of the target hardware, and user expectations.
Examination of these factors provides insight into trends in the design of operating
systems.

The following trends are identified:

e The trend towards supporting large numbers of platforms and the impact of

this design decision on both hardware and software design

e The emergence of small kernels and micro-kernels as the preferred design path

over monolithic kernels
e The use of capabilities to support other paradigms
e An increase in support for distributed computing environments

e Anincrease in research into persistent systems contrasted with the low rate of

acceptance of persistent environments in commercial computing

e The provision of memory objects as directly manipulable and shareable objects

between processes.
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Operating  Addrs  Kernel Paradigm®  Platform?

System size!  Type?

UNTX 16 M F 630x0, 80386, Alpha, Rx000,
Sparc, VAX, etcf

Amoeba 32 u ¢cDOT 68020, 80386, MicroVax 1T, Sparc

Mach 32 u cDOT 80386, IBM 370, IBM RT-PC,
NeXT, Sun 3, VAX, etct

Plan 9 32 S FD SGI Power Series, 68040
Nextstation, MTPS Magnum,
Sun SLC, AT&T Safari PC

QNX 32 u FD 80486

Angel 64 u SDPOt SunOS*, Tadpole M88K

CHORUS 32 u cDOt 680x0, COMPAQ 386/486,
R3000, Sparc, Inmos T425/T805

Monads 60 M CPO Custom Hardware

KeyKOS 32 u CPO 680x0, 88x00, TBM 370

Grasshopper 32 * CPOT  Sun 3, Alpha

Opal 64 * CSOT R3000%, Alpha*

Mungi 64 * CSDPOT  *

' Minimum address size required in native implementations

2 Kernel Type: u - micro-kernel, S - small kernel, M - monolithic

3 Paradigm: S - single address space, C - capability based, ¢ - uses capabilities,
F - access control via file system, D - distributed, P - persistent, O - Object based
T - supports threads with concurrent execution on multiprocessor,
t - supports threads with single thread per process active

4

Partially supported processor families have the least capable suitable member listed
' Many other systems

Hardware is emulated on SunQOS based server

Hosted by a Mach server

Information not available

Table 3.1: Summary Table for Reviewed Operating Systems
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o The emergence of operating systems supporting the thread paradigm.

The majority of the operating systems reviewed in this chapter are supported
on a large number of platforms (see table 3.1). Support of a wide range of plat-
forms requires the operating system to conceal the differences between platforms by
presenting the application developers with a virtual machine independent of the im-
plementation platform. The trend of providing uniform environments over dissimilar
hardware is not recent, although it has significant implications for both hardware
platforms and operating system software. The prime consequence is a tendency for
operating system designers to use only features found on the least capable of the
target processors. As the system needs to run acceptably on all target processors
there is an additional requirement on the designer to make the system run well in the
absence of any processor specific features which might improve performance. This
has led to a self reinforcing trend in both hardware and software design where the
software designer expects only a minimal set of features provided by the hardware
and the hardware designer provides only a minimal set of features. Hardware which
supports segments evidences this trend. Only 3 of the commercial processor types
listed support segments: 80386, IBM 370, and TBM RT-PC?°. The remainder of the
architectures support only paging. A number of the operating systems in this survey
may benefit from the fine grain access control provided by segments, however, the
lack of wide spread architectural support has led designers to use coarser grained
paging based schemes to provide access control and to typically ignore segmentation
hardware even when present.

New operating systems tend to be Micro-kernels or small kernels. There are

several reasons for this trend:

Verification - users are now requiring verification of software in mission eritical
applications. Monolithic kernels are not well suited to verification as they
tend to be large and complex. In addition operating system components tend
to have multiple points of interface. This increases the complexity of the
analysis required to prove the system. Small kernels offer a limited number

of services and tend to be less complex. This reduces the amount of critical

20Forerunner of the Power-PC architecture
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code which needs to be verified at the core of the system, simplifying the
task of proving that the basic functions of the operating system are correct.
By delegating functions found in monolithic kernels to user level servers (for
example: management of the file-system) which have well defined interfaces,

the task of verifying these functions is simplified.

Cost - By reducing the size of the kernel code the task of writing and maintaining

the code is reduced.

Flexibility - As only essential services are provided by system level code it is
possible for services to be written which suit a given work environment without

encountering any loss in performance compared to a standard system service.

Multiple Personalities - Micro-kernels allow the use of multiple personalities of
operating systems on a single system. As the operating environment perceived
by the user is provided by user level code it is possible to run several different

environments on a single system.

The trend towards developing small kernels is likely to continue as it reduces de-
velopment costs and increases flexibility. The trend is not without a price as there
is a potential loss of efficiency when servers communicate. Research is being con-
ducted into reducing the cost of communication in micro-kernel systems, however,
it is clear that if similar techniques are applied to monolithic kernels, any speed
advantage gained by micro-kernels would be negated. This has led to the devel-
opment of a class of operating systems which employ a micro-kernel architecture.
These operating systems are essentially monolithic kernels with a modular design
discipline. In principle, this simplifies the task of writing and verification to the
same level as a micro-kernel. In practice, unless a strongly typed language with
rigorously checked pointers is used, the absence of address space separation between
modules of the operating system allows unforeseen interactions to occur, negating
some of the advantage over a standard monolithic kernel.

Table 3.1 indicates that the capability paradigm has been taken up by a number

of current operating systems. The use of capabilities is likely to continue as they
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provide a mechanism which solves a number of problems. Capabilities offer the

following advantages:
e storage allocation and protocols are simplified as capabilities are of fixed size.

e verification of the sender of a capability is typically unnecessary which simpli-

fies the implementation of system security.
e unique naming scheme simplifies the generation of names.

Operating systems supporting distributed computing environments are gaining
importance. This points to a perceived need to provide facilities which allow pro-
cesses to co-operate over multiple machines. The tendency towards multiple pro-
cessors is cost driven, as it is typically less expensive to purchase a number of less
capable machines rather than a single highly capable machine.

Persistence is a current research topic. The KeyKOS operating system is the only
commercial persistent system reviewed here. Other commercial persistent operating
systems exist, such as IBM’s AS/400 [ST89]. However, there is relatively little
documentation relating to their hardware and operating systems publicly available.
It is also possible to build persistent systems over a Mach micro-kernel. Persistent
systems are highly appropriate for high reliability applications, but, the uptake of
these systems into other environments has been slow.

Many of the operating systems in table 3.1 provide memory objects as a class
of items which can be directly manipulated and shared by user programs. This
trend is consistent with observations that applications on conventional file hased
systems spend a significant amount of their time in converting file based structures
to memory based structures and vice-versa. Among the file based operating systems,
UNIX, has addressed this problem by providing a mechanism which allows files to
mapped into a process’s memory?'. This mechanism approximates the provision of
memory objects to user programs.

Many of the operating systems surveyed have implemented a mechanism which

allows more than one thread of execution (commonly known as threads) to exist

2'The mmap call was originally specified for 4.2BSD although it was not implemented in the
shipped version of that release[l.MKQ90)]
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within the address space of a process. There are two major variants. The simpler
mechanism allows several threads to share the time-slices given to a process. This
mechanism does not allow more than one thread to execute at a time. It inter-
leaves the execution of the threads within the time-slice. The mechanism can be
implemented at user level using upcalls to switch between threads when an event
occurs (Angel uses this method) or it can be managed by the kernel (CHORUS uses
this method as actors are tied to a processor and several threads may inhabit an
actor). The more complex variant allows threads to execute in parallel by using
different processors to execute the parallel threads. Tt should be noted that SASOS
like Mungi and Opal do not require explicit support for threads as all processes have
full access to the address space.

The thread paradigm is becoming more popular in both its implementations as
it provides mechanisms that simplify the task of application programmers who wish
to perform operations in parallel. The shared address space provided by threads
frequently compensates for difficulty in sharing data between processes. Combining
this with the lower cost of switching between threads of a single process than between
processes, provides incentive for programmers to use threads to produce programs
which perform actions seemingly simultaneously. The negative aspects of the use
of threads is that interactions between components of a single program cease to
be deterministic, and the absence of protection offered by using separate processes

allows threads to readily interfere with each other.



Chapter 4

The Walnut Kernel

The Walnut Kernel intends to achieve the benefits of the Password-Capability Sys-
tem without requiring the special hardware used by the Password-Capability System.
That is, supports the use of password-capabilities to provide protection and sharing
among multiple users, object persistence, and the free mixing of capabilities with
other user data, but using only the hardware likely to be available on most general
purpose computers.

The survey (chapter 3) identified a number of trends in the features of operating
systems. The Walnut Kernel exhibits several of these features. Few of the systems
surveyed required special hardware. It became clear that to gain wide acceptance,
the kernel must be supported on a wide range of platforms and must rely only on
the lowest common denominator of adequate hardware.

The Walnut Kernel follows the trend towards small kernels or micro-kernels. The
Walnut Kernel and the small kernel and micro-kernel systems surveyed were moti-
vated by: reducing the size of the task of implementing the kernel of the operating
system, multiple personalities, and easing the task of verification. Small kernels can
be successfully implemented by small groups with limited time and resources - the
Walnut Kernel was produced by one such group. The task of implementing the per-
sonalities of the operating system can be left to others outside the kernel development
group as personalities are user level programs which make calls on kernel functions.
The presence of multiple personalities running on a single machine is attractive as

it allows users to start working in a familiar environment and migrate to the native
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environment as they require the features provided by the kernel. Verification and
the requirement for strong security were common themes of the implementors of the
systems surveyed. As with the Password-Capability System, the security model of
the Walnut Kernel is simple and can easily be shown to be probabilistically secure,
providing the first step in verifying the security of the system.

Protection and security are major features of both the Walnut Kernel and the
Password-Capability System. The password-capability mechanism allows the imple-
mentation of tight security and access control without imposing a hierarchy of access
privileges, and without the concept of the ownership of objects. Implementors of
personalities on top of the Walnut Kernel have the freedom to construct arbitrary
protection mechanisms, including schemes based on ownership and hierarchies. Fur-
thermore, the flexibility and security provided by the kernel are gained at very low
cost. The kernel requires capabilities to be periodically revalidated. Revalidation
is accomplished by invalidating a capability and the pages of the object at regular
intervals. The capability is validated again when a page fault occurs when accessing
a page of the object. This adds only a small overhead to the cost of servicing page
faults when compared with other systems.

The Walnut Kernel is designed for use by most processors that support virtual
memory. A parallel project in the Department of Computer Science, Monash Uni-
versity, was to develop hardware to support a general purpose multiprocessor which
can be scaled from a single processor to a massively parallel multiprocessor. Chapter
11 describes this hardware. The Walnut Kernel and other operating systems may

be supported by that hardware design.



Chapter 5

The User Perspective

This chapter provides an overview of the features of the operating system visible to
a user process. Appendix A provides detailed information for writing user processes
including a detailed description of the contents of the wall (see section 5.2), a map
of the process address space, and the arguments of kernel calls. Chapter 6 provides
the rationale for the design features described in this chapter.

The Walnut Kernel draws on experience gained in the Password-Capability Sys-
tem, and hence has adopted many of the ideas found in that system after adapting
them for use in the new environment.

This chapter initially outlines the environment that is presented to a process.
Subsequently, the operations available to a user process and interprocess communi-
cation are discussed.

This chapter does not contain references to input/output, files or users as these

concepts are not defined at the kernel interface level.

5.1 Volumes, Objects and Capabilities

Volumes represent the physical media on which the persistent storage of the Walnut
Kernel resides. The wvolume number is a unique identifier permanently associated
with each physical storage device used for persistent storage by the Walnut Kernel.
In addition, a special volume is used to represent the memory occupied by the kernel

and memory-mapped interfaces to hardware devices.
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Figure 5.1: An object
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Under the Walnut Kernel all the data available to user programs is stored in ob-
jects. These objects are analogous to segments in a paged-segmented architecture.
They (see figure 5.1) consist of collections of pages defined by a maximum offset, a
limit (the maximum value to which the maximum offset can be increased within the
object), an amount of money, and a number of pages guaranteed to he available to
it.

Objects have the following properties:

Objects are permanently associated with a volume. Objects cannot span more

than one volume, nor can they be moved between volumes.

e Pages are allocated when the first reference is made to them. To prevent data
leakage, pages are blanked by writing zeros into all the locations before the

page is made available to the user.

o If the number of guaranteed pages has been exceeded, and there are unreserved
pages on the volume, then additional pages are allocated to the object. If there

are no unreserved pages available, then an exception will occur.

e Attempts to access beyond the limit of the object will result in an exception.

The limit of an object can be increased by the resize kernel call.
e The main memory acts as a cache of objects.

The Walnut Kernel uses Password-Capabilities (see figure 5.2) to provide naming
and access control to objects. The volume and serial parts of a valid capability
identify an object on a volume. Associated with each capability is a set of attributes

1

which includes a set of rights and a view'. The password components are used to

identify the rights the holder of the capability is allowed to exercise over the object.

VA view is an attribute of a capability. Tt defines the region of the object that can be addressed
by the possessor of the capability. Views are contiguous regions and are defined by an offset from
the base of the object and an extent. An important distinction from the Password-Capability
System is that the view entitles the user to address part of an object, it does not guarantee that
pages are contained in that region nor that the pages are readable to the user (This constraint is

particularly relevant to process objects).
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32 bits 32 bits 32 bits 32 bits
‘ Volume | Serial | Password 1 | Password 2 ‘

Figure 5.2: Structure of a Walnut Kernel Capability

The Walnut Kernel supports several sets of rights: system rights, user rights,
drawing rights, and message rights. The system rights consist of a set of bits which
determine whether the holder is permitted by the system to perform an operation.
The system rights are listed in table 5.1. The user rights consist of a set of 32
bits which are managed by the kernel. The kernel attaches no meaning to the user
rights bits. They are intended to be used by user processes to implement access
to services in a way that is analogous to the control system rights bits have over
access to kernel services. The drawing right of a capability is the amount of money
that can be withdrawn through the capability or its descendents (see section 5.5).
Message rights are only relevant to processes as they determine which subprocess
or subprocesses a capability can be used to send a message to. There are three levels
of restriction: the capability can be used to send a message to any subprocess of
the process, the capability can be used to send a message to any subprocess of the
process except for subprocess zero (subprocess zero is discussed in section 5.9), or

the capability can be used to send a message only to a specific subprocess.

When an object is created it is allocated a master capability. If the master
capability is deleted, the object is destroyed. When the master capability is created
it has system and user rights specified by the creator and provides a view which
covers the object. All other capabilities which refer to this object are derived from
the master capability or its descendents. All capabilities referring to a given object
have identical volume and serial fields. The password fields are selected randomly

with the constraint that for all capabilities for an object the Password 1 is unique.

The Walnut Kernel supports two mechanisms for generating new capabilities:
making new objects and deriving capabilities from existing capabilities. The process
of deriving capabilities is fundamental to the function and security of the Walnut

Kernel. Derived capabilities (see figure 5.3) are made by presenting the kernel
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VOLUMES, OBJECTS AND CAPABILITIES

SRDERIVE - Allow capabilities to be derived from this capability.
SRSUICIDE - Allow this capability to destroy itself and its children.

SRDEPOSIT - Allow the holder of this capability to deposit money

into 1t.

SRWITHDRAW - Allow the holder of this capability to withdraw

money from it.

SRREAD - Allow the holder of this capability to read from the section
of the object covered by this capability.

SRWRITE - Allow the holder of this capability to write to the section
of the object covered by this capability.

SREXECUTE - Not used.
SRUSER - Allow user processes to use this capability.

SRPEEK - Allow the holder of this capability to perform a peek sys-

tem call (see A.11.2) on the process represented by this capability.

SRMULTILOAD - Allow this capability to be loaded by any process.
If this right is absent then only processes with a serial number

equivalent to the capability’s password 2 may load this capability.

Table 5.1: System Rights
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Presented Parameters Derived
Cap Capability
T.imit
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0 0
View Region View
Rights Mask Rights

Figure 5.3: Derivation
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with a capability, a rights mask, an offset and a limit, and invoking the derive
operation. The system rights of the derived capability are the logical-and of the
rights of the presented capability and the rights mask. The message rights may be
further restricted. The drawing right is arbitrary, and may exceed that of the parent
capability. The view presented by the derived capability is the region of the object
that is covered by the intersection of the view of the presented capability and the

region covered by the offset and limit.

Derived capabilities, at the time of derivation, have equal or lesser rights than
than their parent capability. Suicide right is an exception as this right may be added
to the children of capabilities which do not hold this right.

The rights of a parent capability may be reduced through the use of the restrict
kernel call after a child capability has been derived. The child capability is unaffected
by the restriction of the parent capabilities rights.

Fach object is assigned an object type® when it is created. The creator may
choose any 32 bit value for an object type with the exception of a few system
reserved values and the most significant bit of the type. The most significant bit of

the object type is set for process objects and clear for other objects.

Process objects are distinguished from other objects in the system as part of
the contents are interpreted by the operating system. The process object’s major

properties are:

e it defines an address space in which processes operate, by a Table of Toaded

Capabilities (TLC) which is contained in the process ohject

e it contains the state of 1 or more subprocesses

Although the master capability of a process allows all the contents of the process
object to be addressed, parts of the process object are read-only and other parts

permit no attempts at access (see section 5.2).

2An object type is a 32 bit value that can be accessed by holders of an object’s capability
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5.2 Process Address Space

The address space seen by a running process is defined by the contents of the Table
of Loaded Capabilities (T1.C). This table consists of a list of capabilities and their
mappings into windows. The mapping describes the offset from the start of the
object, the extent of the addressable region, and the access rights conveyed by the
capability. The address space of a Walnut Kernel process (figure 5.4) consists of a

number of regions.

The kernel area is located at the low end of the process’s address space (0x0
to 0x3fffff) and is neither readable nor writable by processes. The wall, a single

page located at 0xc000, is an exception as it can be read by processes.

The wall is a page mapped into all processes which contains public information.
This information includes the capabilities of utilities, resources and the current time.

Processes known as wall managers can update the contents of the wall.

The small window area (0x400000 to Oxffffff) is located above the kernel
area. This area can be loaded with views of objects which start and end on arbitrary

page boundaries.

The process object is loaded at 0x1000000 and extends through to 0x3ffffff.
Figure 5.5 is a map of the process object. The process header is not accessible
to processes. The address map contains information that allows capability indices
to be translated to and from locations in the process address space. It is typically
used to translate addresses to capability indices. The parameter page consists of
the parameter block and the message area. It is used to transfer information
when kernel calls are made. The remainder of the process object can be used for

the storage of data or code.

The large window area extends from location 0x4000000 to the top of the
system memory. This area can be loaded with views of objects which start on
offsets exactly divisible by 0x4000000 and, either end on an offset exactly divisible
by 0x4000000, or end on the end of the object.

The Walnut Kernel allows up to 250 views of objects to be loaded into a process’s

address space.
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Region Start - End Access

Process Header ~ 0x1000000-0x100efff No Access
Address Map 0x100f000-0x100ffff Read Only
Parameter Page  0x1010000-0x1010fff Read / Write
Parameter Block 0x1010000-0x101004b Read / Write
Message Area 0x101004c-0x1010fff Read / Write

Remainder 0x1011000-0x3ffffff Read / Write

Figure 5.5: Map of the Process Object

5.3 Processes and Subprocesses

A process defines an environment in which subprocesses operate. The environment,
consists of an address space (specified in section 5.2) and a collection of resources.

When a process is created the maximum number of subprocesses and the number
of mailboxes are set. The number of these process resources cannot be varied during
the existence of the process. Two subprocesses are created when a process is created:
subprocess zero (subprocess zero is discussed in section 5.9) and subprocess one.

Subprocess one executes user code. It, or its descendents, can create other sub-
processes, all of which execute code that has been mapped into the process address
space. Subprocesses have no protection from the actions of other subprocesses within
the same process.

Every subprocess has a priority in the range of () to 254 and a wakeup time.
Subprocess zero has a unique priority of 255, the highest possible. The wakeup time
is a clock time in seconds. A subprocess will not run until the system clock equals
or exceeds its wakeup time.

The scheduling of subprocesses is similar to the scheduling of processes on a
single processor time sharing system. When a subprocess of a process is executing,
no other subprocess of that process can be executing. The algorithm for determining

which subprocess of a process to execute in the current time-slice is as follows:

1. If a subprocess is executing and there is a non-zero value in the reserve field

of the parameter block, resume execution of that subprocess.
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2. Execute the subprocess with the highest priority which is not waiting.

3. For subprocesses of equal priority, select the first subprocess encountered in

the subprocess table.

5.4 Messages and Mailboxes

Fach process has a number of mailboxes allocated when it is created. Mailboxes
may be configured to reject all mail, or accept messages addressed to a specified
subprocess and/or messages starting with a specified string. The application pro-
grammer can guarantee the availability of suitable mailboxes for a given type of
message, provided the application is not already holding pending messages of that
type.

When a process is created a mailbox is opened for subprocess zero. All the
other mailboxes of the process are initially closed, until the process explicitly opens
them. This allows the process to perform its initialization before starting to handle
messages.

Messages perform the following functions under the Walnut Kernel:

e Data Delivery - up to 16 words of information can be transfered to the desti-

nation process in the body of a message.

e Money - messages can deliver money to a process. Attached to each message
is a sum of money which is transfered to the destination process when the

message is stored in a mailbox. Negative sums of money are not permitted.

o Scheduling Control - when a message is delivered it wakes up a sleeping process
and makes the message’s target subprocess runnable by resetting its wakeup

time.

Messages and subprocesses provide a mechanism for encapsulating events which
are not synchronized with the operation of a process.
The presence of a message in a mailbox prevents a process from waiting.

There are two ways of directing messages to specific subprocesses:
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e Using a capability that is restricted to send to only one subprocess of a process
ensures that any message sent with that capability will only be delivered to

the subprocess named by the capability.

e A subprocess must be specified as a parameter of a send operation when a

capability which is not restricted to a single subprocess is employed.

The first mechanism is typically employed by server processes giving capabilities to
processes which will be making use of the server’s facilities. This mechanism ensures
that messages cannot be delivered to other subprocesses of the server, and this
limits the opportunity for both error and malicious attack. The second mechanism
is typically employed by holders of a process’s master capability.

Mailboxes may be set up to admit only specified types of messages. This selective
acceptance of messages was introduced to ensure that important messages could be
guaranteed delivery even if all other mailboxes were full. Mailboxes can be reserved

according to the following criteria:

e Subprocess number: A mailbox can be reserved so that it will only accept

messages addressed to a specified subprocess.

o Message prefix: A mailbox can be reserved so that it will only accept messages

that begin with a specified string.

e Subprocess number and message prefix: only messages addressed to a specified

subprocess and beginning with the specified prefix are accepted.

When a message is sent to a process it is placed in the first mailbox found that will
accept the message. There is no mechanism which can be used to control the order
of filling mailboxes.

A subprocess can determine the order in which messages are retrieved. The
receive operation allows the subprocess to specify a message prefix. The prefix is
used to retrieve the first message starting with a matching string addressed to the

subprocess.
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5.5 Money

The Password-Capability System introduced the concept of rental - for garbage
collection - and extended the use of money throughout the system to provide a
system-wide economy. The Walnut Kernel adopted the economic model used in the
Password-Capability System. This section describes the manipulation of money in
the Walnut Kernel.

Fach object has a money word which stores the amount of money available
to the object. The money word performs two tasks: it acts as a store of money
accessible to the holders of capabilities with withdrawal rights, and provides funds to
pay for the rental of the disk space used by the object. Processes have an additional
store of money known as the cash word. The money stored in the cash word is used
to pay for kernel services, and acts as storage for money transfered by a process to
and from objects. The kernel performs all operations which manipulate the transfer
or use of money.

Associated with each capability is a drawing right. The drawing right of the
master capability is synonymous with the object’s money word. The drawing right
determines the amount of money that can be withdrawn through a capability. Ca-
pabilities with a drawing right of zero cannot be used to withdraw money from the
object to which the capability refers.

Two operations are supported on drawing rights: deposit and withdrawal. These
operations are applied to the drawing rights of all the ancestors of the capability
which is named by the operation. Withdrawal is only permitted when the drawing
rights of all the ancestors and the capability itself are greater than the amount to
be withdrawn.

Figure 5.6 is used to illustrate the effect of deposit and withdrawal operations.
Monetary operations affect all the drawing rights on the path to the root of the
capability tree for an object. If a deposit is made via capability C*? then the
drawing rights D*? and D? and the money word - M - are increased by the amount
of the deposit. To make a successful withdrawal from C*' then D' D* and M
must be greater than the amount to be withdrawn. If this condition is met then

D' D3 and M will each be debited the amount to be withdrawn.

b
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Figure 5.6: A Tree of Capabilities

5.6 Kernel Calls

The parameters used by a kernel call are drawn from the parameter page. The
results of a kernel call are returned in the parameter page. The parameter block is
a data structure located at the beginning of the parameter page. The fields of the
parameter block are listed in figure 5.7.

The reserve field is used to ensure that values of the parameter block are not
corrupted by other subprocesses of the process. When the reserve field is set
to indicate the required kernel call, other subprocesses are prevented from being
scheduled until the reserve field is set to zero®

To make a kernel call, the reserve field is set to the kernel call type, the required
fields of the parameter block are set, data is placed in the message area, if required,
and a system call is issued. The process blocks until the kernel call is completed.

On return from a system call the error field contains either zero or an error

code. If error is zero, the kernel call completed successfully, and information can

3Section 6.6.1 describes the implementation of the System-Call interface and the rationale for

disallowing concurrent system calls by multiple subprocesses.
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error returned error code
vol volume number
serial serial number
passl password 1

pass2 password 2

srights system rights
urights user rights

base offset of capability from front of object

limit, max allowed offset from base

money money to be transfered

type object type

maxoff max offset used / requested

maxsz max size of defined content

maxcap max capabilities now allowed

offset offset into a capability window

subpn subprocess number

cindex index of capability in the table of loaded capabilities

clocktime time in seconds
reserve non-zero value reserves for sub-process and identifies kernel call

Figure 5.7: Structure of Parameter Block

be recovered from the fields of the parameter block and the message area as re-
quired. When all the required data has been extracted from the parameter page,
it is necessary for the program to write a zero into the reserve field to allow other
subprocesses of the process to be scheduled.

Kernel calls always return. If the call requests an illegal operation, including
references to undefined addresses, the call returns with an error value in the error

field of the parameter block.

5.7 Exceptions

Events which raise processor exceptions can be managed through the use of trap
handling subprocesses. Each subprocess of a process may have a specific trap handler
associated with it. A process can register any subprocess other than subprocess zero
or the subprocess itself, as a trap handler for a subprocess of the process. The trap-

handler is invoked when a processor exception is raised. Exceptions are grouped to
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allow for processor independent trap handlers to be written.

Five types of exception can occur. A floating point fault is used for all arithmetic
errors, including underflow and division by zero. Opcode faults are raised when illegal
opcodes are detected. An address fault is raised when a memory access violation
occurs. Debug faults are system dependent and are used to implement debuggers.
Alignment faults are raised on non-aligned accesses when the processor detects this
type of error.

If a trap handling subprocess has not been assigned, then the default action is
to terminate the process.

When an exception is raised, the faulting subprocess is made unrunnable and a
message is sent to the exception handling subprocess for the faulting subprocess. If

the message is undeliverable the process is terminated.

5.8 Controlling Process Scheduling

The Walnut Kernel provides two mechanisms for controlling the scheduling of pro-

cesses:
e Wait and Messages
e Freeze and Thaw

This section describes the conventional mechanism which employs the wait system
call and messages. The freeze and thaw mechanism is accessed through subprocess
zero, and is discussed in section 5.9.

The wait system call is used for several purposes:

e An argument of —1 to the system call sets the running subprocess’s wakeup
time to forever® and causes the scheduler to remove the process from the

scheduling queue if there are no other runnable subprocesses of the process.

e When the argument is (), the system call surrenders the remainder of a process’s

time-slice.

Forever is defined as OxffE£££££. Tt is the largest value that the clock can represent.
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e When any other argument value is used, then the wakeup time of the subpro-

cess is set to the value of the argument

The wait call is used to put subprocesses to sleep when they do not have useful work
to perform.

The presence of a message causes a subprocess’s wakeup time to be set to now.
This ensures that processes with waiting messages are scheduled.

The arrival of a message causes a subprocess’s wakeup time to be set to zero and
the process to be placed into the scheduling queue. Tt does not cause the receiving
subprocess to pre-empt any other process.

A common construct in server processes is the message loop. This construct may

be represented in pseudocode as®:

while true
begin
wait(-1)
receive(msg)
server function(msg)
end

The message loop waits until a message is present after which it performs a task
which acts on the message. If a message should arrive while the current message is
being acted on, the wait operation will have no effect in the next cycle of the loop.
The second message can be handled immediately after the first message has been
handled.

The wait and message mechanisms can be used to implement sychronisation
operations. In this application one subprocess waits, and remains blocked until it
receives a message which allows the process to continue. It is necessary to issue a
receive call after the wait as the presence of the message will prevent further wait

operations having effect.

5The kernel operations of receive and wait have been encapsulated in subroutines to simplify

the code
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5.9 Subprocess Zero

Subprocess zero is part of the kernel. Tt performs tasks in response to messages
which request services. These tasks typically change the state of the process - for
example, one of the functions shifts the process from running to suspended - or
report the state of the process.

A mailbox is opened for subprocess zero when a process is created. Subprocess
zero’s reserved mailbox is never closed while the process exists. This arrangement
ensures that the creator of a process has control over the process at all times.

Subprocess zero currently supports the following functions:

Freeze prevents a process from being scheduled. On receipt of a freeze message
subprocess zero sets the process state to frozen, and causes the process to be

removed from the scheduler queue.

Thaw allows a process to be scheduled. When a process receives a message it is
placed into the scheduler queue. If the process is frozen, the process is typically
removed from the queue after the subprocess zero messages are parsed. On
receipt of a thaw message, subprocess zero sets the process state to normal

and process execution resumes.

Wakeup sets the wakeup time of the specified subprocess to now. The wakeup
message sets the wakeup time of the nominated subprocess to the current
time. The wakeup message is used to start a process that has suspended
activity and has closed mail boxes. It relies on the fact that the mail box

allocated to subprocess zero cannot be closed.

Cooee requests the process to send a status message using a specified capability.
The reply message sent by subprocess zero consists of a set of words which rep-
resent the Cooee reply identifier, the volume and serial number of the current

process, and a process status.

Protected Freeze prevents a process from being scheduled until all protected
freezes on the process have been thawed. On receipt of a protected freeze

message subprocess zero sets the process state to frozen, XORs the magic
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word contained in the message with a key held in the process state, incre-
ments a count held in the process state and causes the process to be removed
from the scheduler queue. The XOR operation and the count prevent other
parties from thawing the process unless they know the set of magic words used

in the protected freeze operations applied to the process.

Protected Thaw allows a process to be scheduled when all other protected freezes
have been thawed. On receipt of a protected thaw message subprocess zero
XORs the magic word contained in the message with a key held in the process
state and decrements a count held in the process state. If both the count and
key held in the process state are zero, then the process is thawed. If the count

is zero and the key is non-zero then the process is terminated.
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Chapter 6

Design of the Walnut Kernel

This chapter describes the guiding principles in the design of the Walnut Kernel, its
overall architecture, the rationale of some key decisions, and its detailed structure

and operation.

6.1 Design Principles

The following design principles guided the development of the Walnut Kernel:

e Avoid features available only on small classes of processors

Avoid stalls in the kernel while waiting on external events

e Minimize retained kernel state variables

e [Fnsure the kernel is scalable

Use static allocation of kernel memory

Allow for a variety of shared memory architectures

The principles, the motivation for their inclusion as design principles and their

implications are discussed in the remainder of the section.

91
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6.1.1 Avoid features available only on small classes of pro-

cessors

The original Monash Multiprocessor Project used purpose built hardware to assist
with the management and use of capabilities. A consequence of this decision was
that the Monash Multiprocessor Project was tied to a specific processor, memory
architecture, bus architecture and implementation of these. This design placed an
upper bound on the performance of the system and, combined with the long lead
times and expense of developing experimental hardware, prevented the system from
advancing. With improvements in technology the advantages conferred by the de-
sign of the hardware were out-weighed by the advantages offered by the improved
technology. The system fell into disuse when it became clear that equivalent perfor-

mance could be gained using conventional technology.

By designing the Walnut Kernel to operate on a wide range of processors and
by placing minimal requirements on the type of memory management expected by
the kernel to be available to the processor, it is hoped that Walnut Kernel will be

less prone to obsolescence caused by improvements in available hardware.

This principle influenced both the design and implementation levels. An example
at the design level is the requirements on page table or translation-lookaside buffer
entries; the Walnut Kernel expects the presence of walid and dirty bits, but does
not expect (or use) use bits. Although the majority' of processors support both
use and dirty bits neglecting the presence of use bits caused no loss of performance
or utility. An implementation lacking a dirty bit would have either a significantly
increased number of page faults or a significantly increased number of writes to disk,
decreasing system performance. The design opted to neglect the presence of use bits

but require the presence of dirty bits.

A direct consequence of this design principle is that the Walnut Kernel does not
take advantage of the segment registers available in the Intel386%. The segment

registers on the Intel386 would permit objects and views with byte or word size

"The VAX architecture provides only a modify bit (dirty bit) [Cor86].
2Tntel386 is a trademark of Tntel Corporation
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granularities to be implemented. However, as the Intel386 / i486” is one of the few
families of current microprocessors supporting segment registers and the trend in
microprocessor design is away from the use of segmentation, it was decided to use

the more generally available mechanism of paging.

6.1.2 Avoid stalls in the kernel while waiting on external

events

The kernel and drivers are implemented with the policy:

Upon encountering a state that would cause the kernel to stall or wait
before being able to continue, the kernel will initiate a corrective action

and then proceed with another task.

A consequence of this policy is that the kernel and drivers avoid tight busy-
waiting loops on external events. This policy avoids the catastrophic consequences
for system performance that result from uninteruptable loops waiting on delayed
events. The policy is particularly applicable in a multiprocessor environment where
actions with other processors are not synchronized and the competition for access
to a resource may take a significant amount of time. The policy allows the kernel
to do other tasks if the current task is prevented from making immediate progress.

With suitable hardware assistance the Walnut Kernel can be configured to allow
for long propagation times. A DMA like operation could be initiated to lock and
modify data. By surrendering control from the current task and scheduling another
task the kernel can continue performing local operations while the operation with a

long propagation delay is completed by the hardware.

6.1.3 Minimize retained kernel state variables

When any kernel activity is invoked, for any reason, the kernel will attempt to effect
some change in the system state. Whether or not it succeeds in completing this

change, the system state is left in a consistent configuration independent of any

31486 is a trademark of Tntel Corporation
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local variables of kernel routines. Thus there is no need for retention of kernel state
information and no need to support multiple threads of activity within the kernel.

The kernel is not regarded as a process with continuing state and threads of
execution. Rather, it is regarded as a set of state transformation rules. A rule
(kernel action), once invoked, either runs to completion or is abandoned with the
transformation incomplete because of the need for a disk transfer, or a resource
conflict. An abandoned rule leaves the system in a state where the transformation

can be later completed.

6.1.4 Ensure the kernel is scalable

The kernel was designed to achieve decentralized operation with additional kernels
to run in parallel. The absence of centralized control allows for easy scaling in
terms of numbers of kernels running. Decentralized operation also encourages fault
tolerance at the kernel level.

With suitable hardware and the correct-and-retry nature of the Walnut Kernel it
is possible to reduce the effects of long propagation delays for remote data accesses

on the throughput of the system.

6.1.5 Allow for a variety of shared memory architectures

There are two broad categories of multiprocessor memory architecture: shared mem-
ory or discrete memory. In shared memory systems all the processors have access
to the same information in memory at the same time. The hardware provides
support for coherence. In discrete memory systems the kernel must provide mech-
anisms allowing access to pages of memory held by other processors. Typically the
mechanisms involve copying pages to local memory and providing many-readers-
single-writer access to the pages. The Walnut Kernel is designed to operate with
both these architectures or their hybrids.

It is necessary to support both categories of memory architecture as it affects the
scalability of the system. The general trend is towards using symmetric multiproces-
sors (shared memory) for small systems and towards discrete memory architectures

for large multiprocessors. Adding processors to a symmetric multiprocessor is cost
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efficient while the memory bus is not saturated as only the processor module needs
to be duplicated. As the memory bus approaches saturation the potential return of
adding additional processors to this shared bus architecture decreases. For systems
with a larger number of processors the bandwidth of the bus and shared memory
eventually ceases to be able to meet the demands of the processors. To avoid this
problem it is typical to have separate buses and memory modules with some com-
munication network linking the buses and memory modules. Accordingly a discrete

memory structure is usual for larger multiprocessors.

6.2 Passive Elements

6.2.1 Disk Structures

Objects are the basic unit of the Walnut Kernel. An object is composed of a body
and a dope. The body of an object consists of an array of bytes. Not all of the bytes
of an object are necessarily defined. All the system information about an object is
stored in the object’s dope. The inclusion of all the system information as part of
the object is a distinguishing feature of the Walnut Kernel.

An object resides completely on a single volume. Fach volume has an identifier
permanently associated with it known as the volume number. Volumes are usually
random-access, block-oriented storage devices. The most common devices used for
volumes are disks.

An object is divided into pages. The size of a page is a multiple of the page
size of the host processor. Data is transfered to volumes in units of blocks. A block
occupies a logically contiguous section of a volume. Blocks and pages are defined to
be of the same size.

The blocks of a volume are numbered from zero to the number of blocks on a
volume minus one. The number of a block is known as its location on a volume.

Both the body and the dope of an object are stored as sets of blocks on a volume.
The sets are not required to be contiguous.

The body of an object has no system-imposed structure unless it contains a

Process.
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Figure 6.1: Object Header Blocks / Pages

The dope consists of two structural elements: the object header and a set of page
tables. The object header consists of one or more blocks. Figure 6.1 shows the
contents of header blocks of an object when joined in order. The first-header-block
starts with the structure Header (see figure 6.2). A list of the locations of disk
blocks containing the header blocks of the object is stored after the Header data
structure. The capability table lists all the capabilities for the object. Empty slots in
the capability table are linked together to form a free list. The capability-hash-table
is an index into the capability table based on the first password of a capability. A
list of the locations on disk of the page tables of the object is the final element of
the header blocks.

The first-header-block contains sufficient information to retrieve the remaining
header blocks and hence allow access to all the pages of an object. The placement
of the list of header blocks ensures that the reference to the second header block
- if required - occurs within the first block guaranteeing access to the second and
subsequent header blocks. As the header blocks contain references to the location
of page tables which contain references to the location of pages of an object, all the

pages of an object can be located using the header blocks of an object. Both pages
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and page tables may be undefined for parts of an object which have not yet been

accessed.

The structure Header (see figure 6.2) begins with a magic number that identifies
the object as the first-header-block of an object. The dopesz field contains the
number of bytes of header information. The type field is a 32 bit object type
identifier. The top bit of the type field is set for process-objects and clear for data-
objects. The master capability of the object is stored in the vol, serial, passl,
pass2, base, limit, money, srights, and urights fields. The information relating
to the master capability and the line field forms an entry in the capability table. The
dopeblks field contains the number of header pages used by the object. The maxsz
field contains the number of bytes guaranteed to be available to an object to store
header blocks and data blocks. The maxoff field contains the largest addressed
offset into an object. The maxpage field contains the highest addressed defined
data block in the object. The size of the table available for holding capabilities is
stored in maxcap. The numecap field contains the number of capabilities stored
in the table. The hashmsk field is equal to the index of the top element in the
capability-hash-table. The freeindx field contains the index of the first element
of the free list for the capability table. The maxtabs field contains the maximum
number of page tables required for maxoff. The totdef field contains the number of
disk blocks allocated to the object. The maxdef field contains the number of pages
needed for maxsz. The dlocoff, hashoff, capoff, and taboff fields respectively
contain the byte offset of the list of disk blocks of header pages, the capability table,
the capability-hash-table, and the list of disk locations of page tables. The dreftime
and altime fields contain the last reference time and the last alter time of the object.
The squeeze field is used to indicate that the page table of a small object has been
squeezed into the header pages of an object to conserve space. The link, state, and

restabs, fields are ignored when the object header is on disk.

The low order bits of the serial number of an object contain the block number
of the first-header-block of the object. The high order bits of the serial number are

randomly selected when an object is created.

The construction of the serial number of an object is a key feature of the design
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typedef struct Headerst {
Uw magic;
Sw dopesz;
Sw link;
Uw type;
Uw state;
Uw vol;
Uw serial;
Uw passi;
Uw pass2;
Sw base;
Sw limit;
Sw money;
Uw srights;
Uw urights;
Sw linc;
Sw dopeblks;
Sw dlocoff;
Sw maxsz;
Sw maxoff;
Sw maxpage;
Sw toppage;
Sw maxcap;
Sw numcap;
Sw hashmsk;
Sw freeindx;
Sw capoff;
Sw hashoff;
Sw maxtabs;
Sw restabs;
Sw totdef;
Sw maxdef;
Sw taboff;
Uw dreftime;
Uw altime;
Sq squeeze;
Sq dumi;
Sq dum2;
Sq dum3;
} Header;

Figure 6.2: The Header Data Structure
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of the Walnut Kernel as it eliminates the need for a catalog of objects on a volume.
However, the kernel needs to be able to distinguish between an ordinary data block
and the first-header-block of an object to prevent users creating a block with the
format of a first-header-block and using the fake header block to access the pages of
other objects. A bitmap has been introduced to identify the contents of disk blocks.

The bitmap consists of a contiguous set of disk blocks. The bitmap provides a
two bit summary of the usage of every disk block on a volume. Blocks are free, the
first-header-block of an object, in-use, or bad. Free blocks are available to be
allocated by the kernel. Bad blocks are ignored by the kernel. The first-header-block
of an object is distinguished from other allocated blocks that are currently in use.

The essential contents of a volume are a Disk-ID-block and a bitmap. The Disk-
ID-block identifies the locations of key data structures on a volume, and the logical
and physical details of the volume.

The first word of the Disk-1D-block contains a bit pattern which identifies the
block as a Disk-ID-block. Tf the signature is incorrect, the volume is assumed to
be either corrupt or invalid. The remaining words contain: the total number of
blocks on the disk, the number of used blocks, the index of the first bitmap block,
the number of available blocks on the disk, the Disk-Block-Mask, the name of
the volume, the serial number of the initialization process (see section 6.8), and the

number of reserved blocks on the disk.

typedef struct Captabentst {
Uw passi;
Uw pass2;
Sw base;
Sw limit;
Sw money;
Uw srights;
Uw urights;
Sw link;
Uw dad;
} Captabent;

Figure 6.3: The Captabent Data Structure

The capability table is built from Captabent structures (see figure 6.3). The
passl and pass2 entries contain the passwords of the capability. The offset field
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gives the offset of the capability window from the base of the object. The limit field
contains the size of the capability. The money field contains the drawing right of
the capability. The drawing right of the master capability is known as the money
word and represents the money held by the object. The srights and urights fields
contain the system and user rights information for the capability. The dad field
contains the index of the parent of the capability. The link field points to the next
element in the hash chain of capabilities.

Figure 5.1 in chapter 5 identified three parameters used to describe the space
allocation of an object: the maximum offset, the limit, and the number of pages
allocated to an object. The three parameters correspond to the maxoff, maxsz, and
limit fields in the Header of an object. The parameters have been selected because
they allow efficient sizing of tables within the object header. The maxsz parameter
determines the number of blocks reserved for the use of an object on a volume.
Reserving disk blocks prevents the over committing of resources on a volume®*. The
maxoff field determines the number of page tables required at present. The limit

field determines the number of page tables allowed for the object.

6.2.2 Memory Structures

The Volume Table lists the volumes that the kernel can access. It is constructed
from an array of VolTabEnt structures. The VolTabEnt structure (see figure 6.4)
holds a pointer to the queue used by the kernel to communicate with the device
driver which manages the volume. The entry contains all the physical informa-
tion required to access the disk including: the device type (devtype), a pointer to
a device properties structure containing information found out about a device at
boot time (physchar), the number of reserved blocks (reserv_blocks), the loca-
tions of the Disk-1D-Blocks (idblk1 and idblk2), the location of the disk’s Bitmap
(map_block), the size of the disk (size), the mask used to extract block locations
from serial numbers (dblkmsk and ndblkmsk), the number of available blocks
(avail), and the number of used blocks (used). Pointers to copies of the Disk-1D-

"Media failures can result in reserved blocks being unavailable, however, it is not practical to

guard against all hardware failures
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typedef struct VolTabEnt {
Uw vol;
struct disk_q_head *queue;
Uh status;
Uh devtype;
struct DevProp *physchar;
Uw reserv_blocks;
Discmapent *map;
Uw *idblk;
Uw idblkil;
Uw idblk2;
Uw max_vol_size;
Uw map_block;
Sw size;
Sw dblkmsk;
Sw ndblkmsk;
Sw avail;
Sw used;
Uq lock;
Uq padl, pad2, pad3;
} Voltabent;

Figure 6.4: The VolTabEnt Data Structure

Block and the Bitmap which are stored in memory are held in the idblk and map
fields.

The Active Object Table (AOT) holds information about each object loaded into
memory. The AOT contains memory images of object headers (the header blocks
of an object: see figure 6.1). The majority of the fields of the object header are
identical when the page is in memory or on disk. However, the link, state, and
restabs fields have meaning when the object header is loaded into the Active Object

Table.

The AOTis managed using a heap discipline. Information relating to a particular
object is found by using a hash table. The serial number of a capability is used as key
into the aothash table. The hash table contains offsets into the AOT and Header
data structures are linked together to form hash chains. The link field is used to
point to the next element of the hash chain.

The contents of the state field indicates the type of change the object is under-
going. An object can be accessed freely if it is in normal (DOPENORMAL) state.
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An object is completely inaccessible while the header blocks are being brought into
memory (DOPECOMING) or removed from memory (DOPEGOING), the ca-
pability list is being compacted (DOPECLEANCARP), the object is being resized
(DOPERESIZE), or the capability list is being rehashed (DOPEREHASH).
Object headers are marked DOPEDYING if the object is being destroyed, or
DOPEMAKING if the object is being made.

The entries in the aotlock table correspond to the entries in the aothash table.
The aotlock table provides locks for each hash chain in the AOT. A hash chain is
locked whenever an alteration is made to an object header, a page table, or the
physical memory table. The design of the kernel guarantees that the locks are held
only for short time. Centralising the locks in the aotlock table removes the need for
locks in many of the other kernel data structures.

The Walnut Kernel uses demand paging with two levels of page tables. The
top level page tables are associated with a process. Second level page tables are
associated with objects®. A page table entry may contain the location of a disk
block on a volume, or a reference to a page in memory and its associated permissions.
The kernel must be able to distinguish between entries containing disk locations and
those containing memory locations. Two bits are required to identify entries that

contain disk locations as an entry may contain a memory location, yet be invalid.

FEntries which refer to disk locations have a clear PTEPRESENT bit (clear valid
bit) and a set PTEDISC bit.

The Physical Memory Table (PMT) holds information relating to the state
of each page frame of the memory. Figure 6.5 illustrates the two types of en-
tries found in the Physical Memory Table. Both types of PMT entries identify
the object from which the page was drawn by volume (vol) and serial number
(serial). The ventry field is the index into the volume table for vol. The
dblk field contains the location on disk for the page. The type field identifies
how the page is used. Pages may be marked as kernel pages (FRAMEKER-

5Second level page tables may also be associated with processes. When a second level page
table is associated with a process it is known as a Private Page Table (PPT). Small windows are
implemented using PPT's. For simplicity the discussion of second level page tables associated with

processes is deferred until small windows are covered (see section 6.5).
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typedef struct Fizentst {

Uw vol;

Sw ventry;
Uw serial;
Sw pagenum;
Sw dblk;

Uw *ref;

Uw dumw;

Uq type;

Uq state;
Uq dum2;

Uq dum3;

} Fizent;

typedef struct Fizenttst {
Uw vol;
Sw ventry;
Uw serial;
Sw tablenum;
Uw dblk;
Sw respages;
Uw freftime;
Uq type;
Uq state;
Uq dirty;
Uq dum3;
} Fizentt;

Figure 6.5: The Fizent Fizentt Data Structure
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NEL), part of the AOT (FRAMEDOPEBUFFER), second level page tables
(FRAMEPAGETABLE), data pages (FRAMENORMAL), top level page ta-
bles (FRAMEDIRECTORY), private page tables (FRAMEPPT), or uncached
pages used for DMA buffers (FRAMEIOBUF). The state field is used to indicate
progress in bringing in and removing pages from memory.

The Fizent data structure describes data pages. The ref field points to the page
table word which corresponds to the physical page represented by the entry in the
PMT.

The Fizentt data structure describes page tables. The number of memory resi-
dent pages for the page table is stored in respages. The last time a page from the
table was referenced is held in freftime. Allocation or deallocation of a disk block
in the body of an object results in an alteration to a page table. The dirty field is
used to indicate if a page table has been altered and should be written to disk.

6.2.3 Processes

Processes are the animate elements of the Walnut Kernel. A process object is an
object which contains the state of a process. The most significant bit of the type
field of an object is set to indicate that an object is a process object. The data
structures holding the state of the process are stored at known offsets. In general,
the pages holding the process state are not readable by user processes.

The Prochd data structure (figure 6.6) is stored in in the first data block of
the process object. The master field holds a copy of the master capability for
the process. The nessp field holds the the number of necessary pages for the
process. All the necessary pages of a process must be loaded into memory be-
fore a process can be scheduled. The state field indicates the state of a process.
A process may be runnable (PROCSTATENORMAL), performing a system-
call (PROCSTATEKERNEL), handling a page fault (PROCSTATERFAULT
for read faults or PROCSTATEWFAULT for write faults), frozen (PROC-
STATEFROZEN), performing house keeping tasks after it has died (PROC-
STATEPROBATE), dead (PROCSTATEDEAD), or protected frozen (PROC-
STATEPFROZEN). In addition if it is not currently in the scheduling queue it is
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typedef struct Prochdst {
Capl master;
Uq nessp;
Uq state;
Uq action;
Uq stage;
Uq currsubp;
Uq maxsubp;
Uq numsubp;
Uq maxlc;
Uq numlc;
Uq maxmess;
Uq nummess;
Uq messlock;
Sw cash;
Uw lockwordil;
Uw lockword2;
Uw icekey;
Sw icecount;
Uw *direcp;
Uw dcleartime;
Uw runtime;
Uw wakeup;
Uw type;
Uw cause;
Uq *messtab;
Uq *subptab;
Uq *tlctab;
Uw tlcfree;
Uq *dmaptab;
Uq *fizadd;
Uw faultaddress;
Capl heir;
Scratch *scr;
} Prochd;

Figure 6.6: The Prochd Data Structure
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deemed idle (PROCSTATEIDLE). For a process in PROCSTATEKERNEL,
the action field contains a value indicating the system-call currently being executed
by the process. The stage field indicates the stage to which a system-call action
has been completed. The currsubp and numsubp fields respectively indicate the
current subprocess and the number of defined subprocesses of a process. The numle
field holds the number of capabilities currently loaded. The number of empty mail
boxes is stored in nummess. The messlock field acts as a semaphore for the pro-
cess’s mail boxes. The money used to pay for system-calls and transfers of money
to and from objects is stored in the cash field. The process’s two lock words are
held in lockword1 and lockword2. The protected freeze and protected thaw op-
erations use the icekey and icecount fields. The last time the process’s top level
page table was cleared is stored in dcleartime. The runtime field holds the time
when the process was last run. A process does not run until after the wakeup time
has passed. The type field is a duplicate of the object’s type field. The cause
field is used for diagnostics; it identifies the reason for entering the scheduler. The
faultaddress field contains the logical address of the memory access which resulted
in a page fault. The fizadd field is a pointer to this Prochd data structure using
a physical address. The heir filed contains the capability of an object to which a
process’s cash should be sent upon its demise. The ser field is a pointer, using phys-
ical addressing, to the Scratch data structure of the kernel executing the process.
The direcp, messtab, subptab, tlctab, and dmaptab fields respectively point
to a process’s top level page table, message table, subprocess table, Table of Loaded
Capabilities (TLC), and the map of its address space. The tlcfree field contains the
index of the head of the free list of the process’s TLC.

The sizes of the TLC, the message table, and the subprocess table are specified
when a process is created. These values cannot be varied during the life of a process.
The maxlc field specifies the maximum number of loaded capabilities. The number
of mail boxes - the size of the message table - in a process is specified by the maxmess

field. The maxsubp field holds the maximum number of subprocesses.

Fach process has a Table of Loaded Capabilities (TLC). The TLC lists all the
capabilities loaded by the process, the rights held by those capabilities when the
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typedef struct Tlcentst {

Uw
Uw
Uw
Uw
Uw
Uw
Uw
Uw
Sw

vol;
serial;
passi;
pass2;
srights;
urights;
base;
size;
displ;

} Tlcent;

Figure 6.7: The Tlcent Data Structure

capabilities are loaded and the location of the loaded section of the capability in the

process’s address space. The index of an entry in the table is known as the capability

index or cindex of a capability. The index can be used to identify a loaded capability.

Empty entries in the table are formed into a doubly chained linked list. The Tlcent

data structure is illustrated in figure 6.7. The vol, serial, passl, pass2, srights

and urights fields hold the values present when the capability is loaded. The base

and size fields hold the offset. from the start of the visible part of the object and

the size of the visible part. Both quantities are in characters. The displ field holds

the displacement between the beginning of the window holding the capability and

the beginning of the address space.

typedef struct Subprocentst {

Uw wakeup;

Sw pcnt;

sysstate regset;

coprocstate coproc;

Uw trap;

Uq state;

Uq priority;

Uq pad2;

Uq pad3;

} Subprocent;

Figure 6.8: The Subprocent Data Structure

The Subprocess Table holds the state of each of the subprocesses of a process

The state of the supervisor of a subprocess is stored in slot zero and the state of the
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subprocess corresponding to the master capability of the process is stored in slot one.
The subprocess table is constructed from Subprocent data structures (see figure
6.8). The subprocess is not scheduled to run until after the time in the wakeup field
has passed. The pent field contains a pseudo program counter value used by drive
processes. The state of the processors when the user process is pre-empted is stored
in the fields regset and coproc. The number of the subprocess assigned to handle
traps in the current subprocess is held in trap. The state field. Subprocesses may
be non-existent (0), alive (SUBPNORMAL), or (SUBPDEAD). Subprocesses
are allocated scheduling priorities to help select between subprocesses when a process
has been scheduled to run. The priority of a subprocess is held in priority. The
larger the value of the priority field the higher the priority of the subprocess. The
value 0xff is reserved for the supervisor.

A process’s address map is stored at 0x100£000 in the logical address space, and
the page containing it is marked read-only. The address map is a table of capability
index values for memory locations. Figure 9.4 in chapter 9 contains sample code
using the address map.

typedef struct Messentst {
Uq chars;
Uq subproc;
Uq reserve;
Uq matchlen;
Sw money;
Uw body [WORDSPERMESSBODY];
} Messent;

Figure 6.9: The Messent Data Structure

The message table is built from Messent data structures (see figure 6.9). Fach
mail box - Messent data structure - can hold a single message. Fmpty mail boxes
have 0xff in the chars field, otherwise the chars field contains the length of the
message. The subproc field holds the number of the subprocess to which the
message should be delivered. The money field holds the amount of money sent
with the message. Negative amounts of money cannot be sent by user processes
The body array holds the message sent.

A mail boxr may be reserved for the use of a particular subprocess by setting the
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reserve field to the subprocess number. The value 0xff indicates that the mail box
may be used for a message to any subprocess. A match string can be specified for
a mail box. The match string is stored in the body of the message and the length
of the string is stored in the matchlen field. Only messages which are prefixed by

the match string can be stored in the mail box.

Fach process has a parameter page. The parameter page is made up of the
parameter block (see figure 5.7 in chapter 5) and the message area. The kernel reads
fields from the parameter page when a system-call is made and returns values in
fields of the Param data structure when the system-call returns. The fields and

usage of the parameter page are described in chapter 5.

Offset 1n Address

Process when
Object T.oaded
0 0x1000000 Prochd
21 ay 5 5 Message Table
Zo a9 i Subprocess Table
T3 as i Table of Loaded Capabilities
0xf000 0x100£000 Address Map
0x10000 0x1010000 Paramaeter Page

Figure 6.10: Layout of the Process Object

The layout of the process object is illustrated in figure 6.10. The Prochd data
structure is concatenated with the message table, the table of loaded capabilities and
the subprocess table to construct the first set of pages in the process object. The
subsequent two pages of the object hold the address map and the parameter page. A
significant feature of the process object is that the message table is entirely contained

within the first page of the object to avoid extra page faults when sending a message.
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6.2.4 Kernel Data Structures

Scratch data structures hold the state of each instance of the kernel while the
kernel is performing an operation (see figure 6.11). The error field is used to hold
an error code. Negative error codes indicate that a function cannot be performed
at this time - the kernel, typically, retries the operation at a later time. Positive
error codes indicate that a function cannot be completed. Error codes greater than
20000000 indicate that the kernel is in an inconsistent state. The numeric value of
an error code indicates the routine in which the error occurred and the error that
occurred: The rightmost 2 decimal digits indicate the error, and the more significant
three digits indicate the routine.

Only some of the fields contain valid information. The set of valid fields is deter-
mined by the operation being carried out. The vol, serial, passl, pass2, srights,
urights, base, limit, money, type, maxoff, maxsz, maxcap, offset, subpn,
and cindex fields hold information about the process or object being operated on.
The ventry field holds an index into the volume table. The head field holds a
pointer into the AOQT for an object header. The xhead field is a pointer to another
object header. The capent field points to a capability entry in the header of an
object in the AQT. The maximum offset into an object is held in objlim. The size
of the object header is held in dopesz. If the hash chain for an object header in the
AOT is locked, aotres holds a pointer to the semaphore. The fields pnum - page
number, dirent - second level page table entry, and pte - private page table entry
are used for manipulating page table entries. Resolved physical addresses are stored
in fizadd. The darg field contains a counter which is decremented while operations
are carried out. It is set to a positive value whenever a kernel operation started or
restarted. When darg is zero or negative, the operation is abandoned until it is
retried. This use of darg ensures that no kernel action lasts for more than a certain
time, chosen to be less than a scheduling time-slice. The field prochd points to
the process header of the process currently being handled by the kernel and param
points to the process’s parameter page. The kerneltick field holds the value of the

tick counter® when the kernel function was started.

fFach time a timer interrupt occurs the tick counter is advanced.
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typedef struct Scratchst {
Sw error;
Uw vol;
Uw serial;
Uw passi;
Uw pass2;
Uw srights;
Uw urights;
Sw base;
Sw limit;
Sw money;
Uw type;
Sw maxoff;
Sw maxsz;
Sw maxcap;
Sw offset;
Sw subpn;
Sw cindex;
Sw ventry;
Header x*head;
Header *xhead;
Captabent *capent;
Sw objlim;
Sw dopesz;
Uq *aotres;
Uw pnum;
Uq *fizadd;
Uw dirent;
Uw pte;
Sw darg;
Prochd *prochd;
Uw *param;
Uq kerneltick;
Uq dumi;
Uq dum2;
Uq dum3;
} Scratch;

Figure 6.11: The Scratch Data Structure
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Two arrays of integers are used in process scheduling. The arrays mixvol and
mixserial hold the volume and serial numbers of processes to be scheduled by the
kernel. Process’s which are scheduled to wake up at time FOREVERT are not

present in the miz.

6.3 Active Elements

The operations of the active elements of the kernel may be collected into five groups.
Object Memory Management is concerned with the moving of parts of objects into
and out of main memory, and with ensuring the stability of data stored in an object.
Capability Management consists of providing all the operations on capabilities and
ensuring that the set of operations is consistent. Process Memory Management
governs the loading of views into a process’s address space. Message Management
is responsible for delivering and receiving messages. Finally, the Process Scheduler
controls the scheduling of processes and subprocesses. Figure 6.12 shows the major

relationships between these groups of functions and the data structures of the kernel.

6.3.1 Object Memory Management

Three elements of the kernel are connected with Object Memory Management: scav-
enge, aotscavenge, and a collection of routines that provide access to parts of
objects. The routines scavenge and aotscavenge each have their own Scratch
data structures and are periodically scheduled. These routines are responsible for
removing entries from memory and the active object table. A number of routines
are used to load and access a page of an object. The refer routine is central to
accessing pages.

The Walnut Kernel’s Object Memory Management is founded on the following
guarantees:

A page remains in memory as long as any page table entry (including private
page tables) contains a valid reference to it.

A page table remains in memory as long as any process’s first level page table

“The end of time or FOREVER. has the value Oxffffffff
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PMT
Physical Memory Table

AOQT Object Memory
Management
(Active Object Table) anagemen
VolTab
o o
- Ob: : Capability
Object Header Management

Process Memory]
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(Scheduling Queue)
Process : :
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Figure 6.12: The usage of data structures by kernel functions
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contains a wvalid reference to it, and as long as any page to which it refers remains
in memory.

An object’s dope remains in memory (in the AOT) as long as any of the object’s
page tables remain in memory.

The scavenge routine examines each entry in the PMT. The routine both copies
dirty pages to disk and removes pages from memory. Scavenge stores the time at
which the last pass through memory was completed and the number of the page
currently being examined in its private Seratch data structure. The scavenge rou-
tine aims to examine every entry in the PMT in DIRECTORYDELAY seconds.
When scavenge is scheduled it selects a target page frame number and attempts
to examine each entry in the PMT between the last entry examined and the target
entry. The target frame number is proportional to the number of seconds elapsed
since a sweep of the table was completed divided by the DIRECTORYDELAY.
To avoid flooding the disk queue, scavenge will exit if there are more than SCAV-
WRITELIMIT disk write operations outstanding.

When scheduled by the kernel scheduler the scavenge routine checks the state
of any outstanding disk write operations. The state of each enqueued disk-write is
stored in the scavnote hash table. There are four possible states for each entry:
page accepted for write and selected for removal; page written and selected for
removal; page accepted for write; and page written. For each completed write

operation scavenge:

o If the page contains a page table and the page is not scheduled for removal -

clears PMT dirty field.

o If the page does not contain a page table and the page is not scheduled for
removal - clears the dirty bit in the page table entry for the page.

o If the page contains a page table and the page is scheduled for removal - the
object header in the AOT is retrieved, the number of the disk block for the
page table is written into the dope, restabs is decremented, and the memory

page is released into the free list.

o If the page does not contain a page table and the page is scheduled for removal
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- the number of the disk block for the page is written into the page table for
the object, respages is decremented, and the memory page is released into

the free list.

After processing the contents of scavnote, the routine attempts to schedule pages
to be copied to disk and /or removed from memory. Pages are scheduled to be copied
to disk if they are dirty. Only if less than a quarter of the memory is free are the data
pages of an object scheduled for removal. An LRU (Least Recently Used) discipline
is used to determine which pages should be removed. Scavenge clears the present
bit in the second level page table entry on clean pages to ensure that a page fault
occurs. A page fault is used to determine that a page has been accessed eliminating
the need for a use bit in the page tables provided by hardware. The bottom four
bits of the state field of the fizent data structure are used to hold a counter which
indicates when a page was last accessed. The counter is incremented each time a
page is examined by scavenge and cleared by any page fault on the page. The value
of the threshold at which a page is determined to be old enough to be removed is
determined by the demand for pages. The greater the demand for pages, the lower
the threshold. Clean pages are removed by clearing the page table entry and adding
the page to the free list. Fntries are made in scavnote to indicate whether a page
is being copied to disk or copied and removed. Second level page tables are removed
only when there are no pages pointed to by the table resident in memory. Top level
page tables are discarded and their pages released after DIRECTORYDELAY
seconds has elapsed.

In addition to assisting in the removal of pages scavenge will retry failed at-
tempts at loading a block from disk.

The aotscavenge routine performs a similar task to scavenge; however, it acts
on the Active Object Table. The routine examines each entry in the AOT by stepping
through the aothash table, and pursuing each hash chain. If either the darg of
aotscavenge’s scratch is zero, or the routine has processed more than the fraction
of the hash table’s entries than the time since the last sweep through the AOT
divided by DIRECTORYDELAY, then the routine will exit. Tt will resume work

from where it left off when next invoked. Fach Header is examined and the action
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of saving the object header to disk is initiated if the time since it was last referenced

is greater than a threshold value. The threshold is guaranteed to be greater than

DIRECTORYDELAY.

An attempt by a process to reference an object can fail at many points. The
actions taken by the kernel depend on the point of failure. In general, the kernel
takes corrective action when a failure occurs and allows the reference to be retried
when the process is rescheduled. References to an object are typically generated by
processes. The majority of references are handled by the page translation hardware
using the page tables set up by the kernel. A page fault occurs when a page is either
not-present, as shown by absence of the page table entry wvalid bit, or an attempt is
being made to write to a page which has been marked read-only. In either case, the
fixfault routine is invoked by the fault handler. The fault handler stores the fault
address in the faultaddress of prochd. On entry, fixfault examines the top level
page table associated with the process and recovers the top level page table entry. If
the top level page table entry is valid, the second level page table entry is recovered.
If the fault has been caused by a not-present mark in the second level page table
entry, then the state field of fizent is modified to indicate that the page has been
accessed; the present bit in the page table entry is set; and fixfault returns to the
process. If the fault was caused by an attempt to write to a page without write
permission, an error is returned. Otherwise, the process’s address map is used to
find the capability index of the the capability corresponding to the faultaddress.
The entry in the process’s Table of Loaded Capabilities is copied into seratch and
the refer routine is invoked. Refer checks the type of access being performed is
valid and within the loaded section of the capability. The vol and serial fields are
used to access the Active Object Table. 1f there is no entry for the object in the
bitmap corresponding to the volume, an error is returned indicating the object no
longer exists. If there is no entry in the AOT, the recovery of the Header for the
object from disk is started, and fixfault returns. The capability table in the object
header is checked to ensure that the capability loaded in the process’s TLC' s still
valid. If the passwords do not match, an error is returned. If a page table for the

object is already in memory, refer recovers the address of the page table from the
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list of page tables in the object header and returns both a top level page table entry
and a second level page table entry for the required access to fixfault. If a page
table is not in memory, refer starts an operation to retrieve the page table from
disk and returns to fixfault. If refer was successful in constructing the page table
words, fixfault uses the words to complete the page tables and returns to the user

program.

6.3.2 Capability Management

Capability management consists of three elements: the derivation of capabilities,
the restriction of capabilities, and the revocation of capabilities. The majority of
these operations are conducted solely in the header of the object the capabilities
relate to.

The derivation of capabilities is performed by the addcap routine. The vol,
serial, passl and pass2 of the capability to be derived from is passed to addcap
in the scratch data structure. The rights mask and the parameters for the cover-
age of the derived capability are passed in the fields srights, urights, base and
limit. Before a derivation can be performed, the rights of the presented capability
are checked to ensure that it has SRDERIVE right. If no derive right is present,
an error is returned. If the SRMULTILOAD right is absent, the password 2 of
any derived capability is coerced to the value of the password 2 of the presented
capability. With the exception of the suicide right and the message rights of pro-
cesses, derivation consists of returning the logical-and of the rights of the nominated
capability and the rights mask supplied by the caller. The memory area covered by
the capability is determined by the intersection of the region covered by the pre-
sented capability, and the area covered by adding the base to the start of the region
covered by the presented capability up to the extent provided by the limit. The
SRSUICIDE right can be added to the children of any capability.

The system rights field for a process is treated differently from the system rights
of a data object. The last eight bits of the srights field limit the subprocesses to
which a message may be sent by using this capability. The bits may contain 0xff for

all subprocess, or 0xfe for all subprocess other than subprocess zero, or a subprocess
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number. Only more specific or equal subprocess destinations for messages can be
derived. Furthermore, it is required that the capability base be zero for a derived
capability which has SRSEND right.

The revocation of a capability is a two phase process. The delcap routine deletes
a capability and all the derivatives of the capability from the capability table in the
object’s header. References to a deleted capability loaded in the address space of a
process remain valid until a page fault results from attempting to access the deleted
capability. The top level page table of every process is guaranteed to be discarded
and replaced with an empty page table every DIRECTORYDELAY seconds.
The first access after the top level page table is replaced results in a page fault,
and the deletion of the capability is noted. The Walnut Kernel guarantees that a
capability is unavailable to all processes within DIRECTORYDELAY seconds of

revocation.

6.3.3 Process Memory Management

Process Memory Management consists of two operations: mapping views into the
address space of a process and removing a view from the address space of a process.

A process requests the loading of a view into its address space using the LOAD-
CAP system-call. When presented with the capability to be loaded, the Walnut
Kernel attempts to locate the object header in the AOT. If the object is not repre-
sented in the AOT, recovery of the object header from disk is initiated. When the
object header is present in the AOT, the appropriate entry in the capability table is
recovered. If the recovered capability lacks SRMULTILOAD right and password
2 of the capability is not equal to the serial number of the process, then an error is
returned. Otherwise, the values representing the area covered by adding the base
to the start of the region covered by the capability to be loaded up to the extent
provided by the limit are placed in the base and limit fields of TL(C entry. The
rights fields of the Tlecent data structure are filled in, and the system-call returns
successfully. The capability’s cindex is written into all address map entries covered
by the view.

The removal of view from a process’s address space is trivial. The fields in the
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process’s address map corresponding to the memory address range occupied by the
mapping are zeroed, and the entry in the process’s T1L(C'is invalidated and linked

into the list of free TLC entries.

6.3.4 Message Management

The message mechanism enables both the transfer of information between processes
and control of the scheduling of processes. When a process is created an array of
Messent data structures is allocated within the process object. Only the kernel
can access mail boxes directly.

A message is sent by the kernel copying a set of bytes from the source process’s
message area (the remainder of the page in a process’s address space that contains
the parameter block) to the destination process’s mail box. For this to occur, it is
necessary for the capability used to identify the destination to start at offset zero
from the beginning of the process, and to have the SRSEND right. The recipient
process may be explicitly named using the external form of the send system-call;
alternatively it can be implicitly named by sending a message to a capability loaded
into the sending process’s address space using the internal form of the send system-
call. The latter method is more efficient as it eliminates the need for the kernel
to verify the access rights of the destination process object. It reduces the send
operation to a memory copy. The transmit routine implements both the internal
and external forms of message sending.

The transmit routine transfers money from the sender’s cash word to the re-
ceiver’s cash word. The transfer is made after the message has been placed in the
mail box.

Messages are always directed to a subprocess. When a message is sent to a
subprocess, the wakeup time of the process is set to the current time, and the
process is placed in the miz. Whenever a mailbox contains a message, a subprocess
cannot change its wakeup time from the current time. Hence non-frozen processes
with pending messages are always scheduled to run.

The receive routine is called by the receive system-call. The routine can take a

match string as a parameter which allows a subprocess to retrieve messages begin-
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ning with the specified string. If no match string is provided, then the message in
the first mail box containing a message for the current subprocess will be retrieved.

When a process is created all of its mailboxes are closed, except for a single mail-
box allocated to subprocess zero. After the process has completed its initialisation,
the process can open its mailboxes setting the fields which reserve mailboxes for
messages with specified prefixes and specific subprocesses. Messages sent before the
process has opened its mailboxes are not delivered. A system-call allows mailboxes

to be closed.

6.3.5 Process Scheduler

At present a round robin scheduler is employed within the kernel to schedule all
processes with a specified wakeup time. Processes which have selected to wait forever
are removed from the scheduling queue. The scheduling queue within the kernel is
known as the mix.

When the process scheduler - macro_schd - selects an element from the mix, the
volume and serial number of a process are passed to the startproc routine using
the scratch data structure.

Startproc must ensure that the set of pages critical to the operation of a process
are loaded into memory before attempting to transfer control to the process. The
set of critical pages consists of two parts: the dope for the object holding the process,
and the set of necessary pages of the process. The necessary pages of an object are
the pages containing the Prochd, the Table of Loaded Capabilities, the subprocess
table, the message table, and the parameter page. The AOT entry for the process is
checked. If the entry is not present, retrieval of the dope is initiated. When the AOT
entry is recovered, the top bit of the type is tested to ensure that the entry object
contains a process. If the object does not contain a process, an error is returned.

A lock is placed on the message table by locking messlock. If the lock operation
fails, a message is currently being sent to this process, and startproc exits with a
negative error. If the lock operation succeeds, startproc guarantees to clear the
lock before exiting.

The PROCSTATEMIX bit of the state field of the process header is set.
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Prochd’s wakeup field is examined next. If the process wakeup time is NEVER
(also known as FOREVER), startproc exits with a positive error which informs
the scheduler to remove the process from the mix. If it is too early to wakeup the

process, a negative error is returned.

The time the process’s directory (top level page table) was last cleared is checked
to ensure that the top level page table is still valid. If scavenge has had an oppor-
tunity to remove the page, a new page is created. This has a side effect of ensuring

that all capabilities are revalidated when they are next used.

Once the top level page table has been established, references to the necessary
pages page table are inserted in the top level page table. If the necessary pages are

not present in memory, they are recovered from disk.

The process state is checked. If a process is dead (PROCSTATEDEAD),
an error is returned, and it is removed from the miz. If a process is in probate
(PROCSTATEPROBATE), the process attempts to send a message to its heir
containing the process’s cash and the process’s name. Only 255 attempts are made

at delivering the message to the heir. If the heir is unable to accept the message,

the process changes to PROCSTATEDEAD and the cash is lost.

A check for new messages is performed, and messages for non-existent subpro-
cesses are erased. When a subprocess receives a message it is marked runnable.

Messages for subprocess zero are processed and the operations performed.

If the process is either frozen (PROCSTATEFROZEN) or subject to a pro-
tected freeze (PROCSTATEPFROZEN), startproc exits allowing other pro-

cesses to be scheduled.

At this point, startproc chooses the subprocess to execute. If the reserve field
of the process’s Param data structure (Parameter Block) is non-zero, the subprocess
that was executing at the end of the last time-slice is re-started. Otherwise, the
subprocess with the highest priority and with a wakeup time less than the current
time is selected. If no runnable subprocesses are found, startproc returns with a

negative error.

Having selected the subprocess to be run and ensuring that the pages critical to

the operation of the process are in memory, startproc returns to the macro_schd
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routine.

If an error was returned by startproc, macro_schd selects a new subprocess
from the mir and calls startproc. Only when a runnable process is selected, is the
remainder of macro_schd executed.

The remainder of macro_schd is devoted to executing the selected process. The

actions of macro_schd fall into three categories:

o If the process is currently handling a page fault (PROCSTATERFAULT
or PROCSTATEWFAULT), the fixfault routine is called. If the fault is
fixed, the process state is set to PROCSTATENORMAL, the subprocess
state is restored, and the process is executed. If the fault cannot be fixed

immediately, the process is returned to the miz.

o Ifthe process is currently performing a system-call PROCSTATEKERNEL,
the keact routine is called to handle the system-call. If the system-call has
been completed, post_kcact is invoked to clear any fields in Param of data
which are not to be returned to the process, the subprocess state is restored,
and the process is executed. The process is returned to the miz if the system-

call cannot be completed.

e If the process is in PROCSTATENORMAL, the subprocess state is re-

stored, and the process is executed.

6.4 Persistent Elements

Figure 6.13 illustrates two typical layouts for a disk containing a Walnut Kernel
volume. The layout of disk is fairly flexible as the only elements which have fixed
locations are the Disk-I1D-Blocks. The first Disk-ID-block is located in the first block
of a data volume or at a location defined by a compile time constant in the kernel for
a bootable volume. The duplicate Disk-1D-Block is always located in the last block
on the disk. The Disk-I1D-Blocks and the Bitmap contain information relating to
the whole disk. The remainder of the disk is used to store objects.

The reserved areais located at the front of the disk and is typically used to hold
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the operating system and the boot block. The reserved area isignored by the kernel.

Typically data volumes do not have a reserved area.

The Disk-1D-Blocks are duplicated to assist in the recovery of information from a
corrupted volume. The location of the bitmap and the identification of the reserved
area simplify the recovery procedure. Furthermore, the duplicate Disk-1D-Blocks

allows a volume with a damaged Disk-ID-Block to be mounted.

Unlike the Password-Capability System and file based operating systems, the
Walnut Kernel does not possess a File Allocation Table (FAT) or its equivalent. A
FAT is a lookup table that is used as the first step of translating a name into a disk
location. Instead the Walnut Kernel uses part of the objects name - the low order

bits of the object’s serial number - to locate an object.

A file allocation table allows names to be independent from position. The absence
of a FAT structure initially appears to be a critical problem for the Walnut Kernel as
it ties objects to particular locations on disks. The failure of a disk block containing
the header of an object would result in the loss of the object. In practice the presence
of a FAT has little advantage for the operation of the Walnut Kernel. Three issues

are significant: reliability, reconstruction and security.

Reliability and reconstruction are related issues. Fnhancing the reliability of a
system’s data storage reduces the likelihood of needing to reconstruct lost informa-

tion. Both processes require redundancy in the data to infer the lost components.

A file allocation table provides a centralised listing of all the items on a disk.
They are frequently duplicated to several locations on a disk to prevent the poten-
tially catastrophic results of loss of the table - the loss of all translation information
and hence the loss of access to all the objects on the disk. The entries in a FAT
either contain information relating to an object or point to block of information

about an object.

Redundancy has been built into the Walnut Kernel’s persistent representation.
The Walnut Kernel has a pair of Disk-1D-Blocks which are used to identify the
volume and, the header pages of an object are recognizable by signature words at
both the top and bottom of the page allowing pages to be identified. The signatures

can be used in reconstructing damaged bitmaps.
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The presence of a FAT would not significantly enhance the reliability of the

system above the level provided by the current scheme as:

e l.oss of a header block results in the loss of all derived capabilities for an object.
Although a FAT could contain a duplicate of all the information contained in
the header of an object the significant penalty in terms of both space and

speed would be unacceptable.
Nor would reconstruction be significantly enhanced by the presence of a FAT as:

e The data regarding the location of header pages is already duplicated in the
bitmaps.

The use of the low order bits to identify the disk location of the header page of
an object has a minimal effect on the security of the system (see section 10.3).

The absence of a FAT is significant in terms of restoring data from a backup
media. Under the Walnut Kernel it is not possible to restore an object if the block on
which the header page is required to reside is damaged. The disk storage mechanism
lacks position independence. A system using a File Allocation Table would not be
constrained to restoring an object to the same physical location. However, the
majority of modern disks employ re-mapping techniques which translate accesses to
failed sectors to replacement sectors seamlessly. Thus the hardware appears to be
faultless on restore even if there has been a failure.

A more subtle problem is present. Under the Walnut Kernel it may not be
possible to backup a single object and restore that object at a latter date. The
problem stems from the lack of position independence. If a block required for the
header page is already in use then it is not possible to restore the object.

The backup and restoration of capability based systems is an open question.
Problems exist as to the meaning of partial backups and restores; the semantics of the
deletion of an object is changed as the object may have been backed up. The security
of backed up objects is also subject to significant doubts. Solutions employing
cryptography to protect the contents and signatures to prevent tampering have
been put forward. These mechanisms are vulnerable to cryptographic attacks with

selected plain texts and hence require extremely strong algorithms to remain secure.
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Furthermore as they rely on an encryption key derived from secret information held
by the system it is typical for backups of objects on the system to be generated
using keys related to keys used to backup other objects on the system. Relying on
related keys decreases the system security as the compromise of the encryption of
one object can give clues to compromising other objects.

The Walnut Kernel does not address the problems of backup - apart from the
trivial case of sector by sector backup and restoration of the complete system -
at this stage. Our view is that backing up an object creates a new object with a
new name, which should be distinguished from the original, even if its body and

passwords are the same.

6.5 Small Windows & Private Page Tables

Second level page tables are typically associated with objects. However, to provide
small windows, a collection of second level page tables - known as Private Page
Tables (PPT) - is associated with each process. In the description of the system,
the second level page tables associated with processes were neglected for simplicity.
This section describes the operation of small windows and PPT's.

A compile time constant determines the number of top level page table entries
devoted to implementing small windows. These entries are separated from the page
table entries used for large windows by the entry used to hold the second level page
table for the process object (see figure 6.14).

Private Page Tables are subject to scavenging and require replacement if the
table may have been removed. The operation of PPT's is analogous to the operation
of top level page tables. When a reference is made to an object using a capability
loaded into a small window and the PPT is invalid, the capability is validated, and
a pointer to the required page of the object is made. The only significant differences
between the usage of PPTs and top level page tables are that the PPT's are a per
process data structure, and the dirty bits in the object’s page tables need to be set
when a write operation is performed on a small window. To ensure that the dirty
bits of the object’s page tables are correctly updated, entries in PPTs created by

reads are not marked writable, even if the capability allows the object to be written
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to. This causes the first write operation to page fault, and allows the dirty bit in

the object’s page table to be set. The PPT entry is then marked writable.

6.6 System Architecture

The design of the Walnut Kernel is divided into common and hardware architecture
dependent components (see figure 6.15). This division in the design is reflected in the
implementation which simplifies the task of porting the kernel to other processors
and allows the identification of features required to allow the implementation of the
Walnut Kernel on other architectures.

The components of the Walnut Kernel common to all implementations include
the system-call interface, and memory and capability management. The low level
functions that support the common components of the system are architecture
dependent. The architecture dependent components include the low level device
drivers and the kernel interface to essential system hardware.

The functions of the modules of the kernel are defined as follows:

System-Call Interface module as the interface between user programs and the
Walnut Kernel. The module performs the initial verification of arguments to
system-calls and ensures that only permitted information is returned to the

user

Subprocess Zero Interface interprets messages sent to subprocess zero of a pro-

cess. This mechanism augments the system-call interface.
High Level Functions have been described in section 6.3.

Kernel Scheduler moduleis driven by the timer interrupt and it calls device driver
routines which require regular execution and the process scheduler to allow

pre-emption of user processes

Device Drivers are not logically part of the kernel. In some implementations
the collection of interrupt driven modules that interface with the hardware

execute within the kernel. In other implementations hardware may perform
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all the functions required[Cat88]. Tn both cases a user level process gains access
to the device through a number of pages of physical memory accessed by the

capability mechanism.
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Figure 6.16: Organization of the Walnut Kernel

This design applies to both single processor systems and multiprocessor systems.
Figure 6.16 presents a high level representation of the organization of the Walnut
Kernel.

Interfaces to devices are placed into memory regions which can be mapped into
ordinary processes. The remainder of the physical memory accessible to the pro-
cessor is used for paging. The architecture exploits the sharing of memory to allow
the kernel and user processes to communicate with devices. In systems with pur-
pose built devices the device can interrogate the shared memory area directly to
determine its actions. Devices which require a processor to provide close control of

the stages of their operation are supported using low level device drivers which are
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scheduled using the kernel scheduler and interrupts. The low level drivers transfer
data and operate on instructions found in the shared buffer area.

The disk device / device driver is unique in that it is the only device which has
direct access to the tables used by the kernel. The disk device notifies the kernel
that a page has been brought into memory by setting a bit in the physical memory
table indicating that the page is present.

The kernel is unaware of the operation of other classes of input / output devices.
All other devices are handled by user level device drivers which interact with the
devices using the standard capability mechanism to map in the memory shared with

the physical device or the low level device driver.

6.6.1 System-Call Interface

The system-call interface is the mechanism through which user processes explicitly
communicate with the kernel.

The System-Call Interface consists of both architecture dependent and architec-
ture independent elements. The system dependent component provides a transition
of privilege level to supervisor mode and starts kernel code at a fixed address. The
portable component communicates directly with the majority of the high level mod-
ules of the kernel. The user process transfers information to the kernel by filling
in a parameter block that is accessible to both the kernel and the user process and
using the system dependent mechanism for switching to supervisor mode.

The System-Call Interface performs some checking on calls to ensure that re-
quests are valid and legal before invoking the appropriate kernel routines to perform
the requested operation. After completing the required kernel operation, the param-
eter block containing the values to be returned to the user process is post processed
to erase fields which contain information not to be passed back to the user. This
practice simplifies the task of showing that the kernel does not leak information to
user processes.

The programmer’s view of the parameter block, user level system-calls and mes-
sage operations are discussed in detail in appendix A.

The ‘reserve’ field of the parameter block is used to select the type of system-
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call to be executed. Furthermore, setting the ‘reserve’ field to a non-zero value
guarantees that only the current subprocess of a process is scheduled until the field
is set zero. It is imperative that subprocesses set the the reserve field to the system-
call identifier before setting any of the other fields of the parameter block. Failure to
do so may result in the parameters of a system-call being corrupted by the operation
of another subprocess of the process. At the completion of the system-call, a process
must copy any values required from the parameter page before clearing the ‘reserve’
field.

Other mechanisms were considered for transferring information between user
processes and the kernel. These included using registers to pass parameters, passing
a pointer to parameter block located in the processes address space, using a block
of data located on the stack, and using multiple areas for both each subprocess and
each type of system-call.

The use of registers for transferring data was rejected as it places constraints
on the choice of processor and platform. This is not compatible with the design
principles.

Using the stack to pass parameters was rejected because of the extra effort re-
quired to check the validity of the parameter area on each system-call to prevent
attempts to read memory outside the area permitted. Furthermore, using the stack
would have the potential to allow programmer’s to create errors which would be
difficult to trace. Many processors have stacks which grow towards zero allowing
string operations which overflow the space allocated on the stack to corrupt the
parameters of subroutines which have not yet completed. Routines constructing the
parameters of system-call which use other subroutines are especially vulnerable as
the effect of a system-call varies widely with minor changes to the parameter block.

The use of a parameter block fixed in a process’s address space was motivated

by the following considerations:

e Fixing the block in the address space eliminates the need to test whether the
parameter block lies in an area of memory validly accessible to the process.
Using fixed memory locations simplifies the task of ensuring that the kernel

does not leak information and cannot be tricked into altering system state
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invalidly.

e Including the parameter page in the set of pages required to be present in
memory for a process to execute ensures that the parameter page is always
present while a process is running, so processes can make system-calls without

the risk of a page fault.

The current design supports passing a wide range of parameters to the kernel
as the message area can be used to pass any data structure (slightly smaller than a
page in size) required to the kernel. The design offers great flexibility and potential
to extend the design.

We decided not to allow subprocesses of a process to execute in parallel. This
eliminated the requirement to provide multiple parameter blocks. Should it be
deemed desirable to allow subprocess to operate in parallel the kernel can be easily
modified to allow subprocesses to operate in parallel until a subprocess sets the
reserve field to a non-zero value. Other subprocesses would then not be scheduled
until the reserve field is cleared. Mutual exclusion on the ‘reserve’ field prevents
simultaneous system-calls from the same process simplifying the kernel design. In
effect, system-calls would become ‘critical regions” which only one subprocess could

enter at a time.

6.6.2 Subprocess Zero

A special subprocess known as subprocess zero was introduced in the Walnut Kernel.
Subprocess zero is an extension of the kernel that interprets specially formatted
messages sent to a process. It allows a process to control the execution of another
process by sending a message to the other process’s subprocess zero. This mechanism
supports only a limited number of operations on a process including suspending /
resuming the running of the process, starting a subprocess and enquiring about a
process’s status. The mechanism is implemented by parsing any pending subprocess
zero messages at the start of a process’s time-slice and then performing the action
associated with the message. If the content of the message is not recognised the

message is ignored.
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There are two alternative implementations of this mechanism: extending the
system-call mechanism by adding calls to perform the tasks currently handled by
subprocess zero, or requiring all processes to provide an executive subprocess which
handles the messages and performs the actions currently delivered to subprocess
zero. The current mechanism was selected because it provided the conceptual equiv-
alent to the latter mechanism with the immutability of the former mechanism. The
design considers the functions performed by subprocess zero to be semantically asso-
ciated with a process, but requires that all the functions be present in each process

in a consistent form.

6.6.3 Device Drivers

The UNIX model of a device driver consists of two halves both of which are built
into the UNIX kernel. The top-half of the driver interacts with user processes.
It runs in synchrony with the user process and may suspend itself using the sleep
system-call. The bottom-half of the device driver runs asynchronously with respect
to user processes. It is typically interrupt driven.

The Walnut Kernel handles devices in a manner which differs significantly from
the UNIX model. Under the Walnut Kernel a user level process performs the tasks of
the top-half of the UNIX device driver. The user process (also known as the device
manager) communicates with either the hardware or a low level driver using a shared
buffer area. If interrupts or the system 1/0 address space need to be addressed to
operate a device then a low level driver is required. The low level device driver is
compiled into the kernel, and typically performs the task of handling interrupts and
moving data between buffer pages in the unity mapped region of the kernel and the
device. lLow level device drivers use only physical addresses to access the device,
and the data and control buffers. Although the low level driver is compiled into the
kernel it is logically not part of the kernel as it operates on only a defined area of
physical memory in response to interrupt events.

In a multiprocessor system the low level driver could be replaced with specialised
hardware writing directly into shared memory.

This method of implementation avoids a number of potential security holes:
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e There is no requirement for a special class of user level processes that can
access physical 1/0O. Only the kernel has direct access to hardware functions,

eliminating a common avenue of attack.

o Careful coding of the low level device driver can insure that the kernel does

not leak information or alter data which does not belong to the device.

This method also provides a number of significant performance advantages as it
allows the low level drivers to respond rapidly to interrupts. Two factors contribute

to the performance of this mechanism:

e The use of physical addresses and buffers statically allocated in memory: This

avoids the overheads of paging and ensures the presence of buffers in memory.

e The direct use of the interrupt, which eliminates the need to invoke user rou-

tines upon an interrupt.

It should also be noted that the Walnut Kernel is at least as efficient as the UNTX
model in terms of the number of memory copies required to transfer data from the
device to the user program. Under UNIX at least 3 copies are required to transfer
the data from the device to the user process®. The Walnut Kernel typically uses 3
copies, but requires only 2 copies. The two copy scenario is achieved by providing
the capability of the memory buffer to the user level process that is going to use
the data. In this scenario data is copied from the device into the buffer and then

retrieved by the user process.

6.6.4 Kernel Scheduler

The Kernel Scheduler periodically invokes routines that have been registered with
it. These routines include the Process Scheduler and device drivers. Tt indirectly
activates the scavenger routine by calling the Process Scheduler. The Kernel Sched-
uler is driven by a hardware interrupt and invokes each registered routine in turn.

The Kernel Scheduler provides the ticks which are used to pre-empt running tasks.

8device bottom-half top-half user process
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6.6.5 Discussion

The architecture enhances the portability of the kernel. The kernel interacts with
only one class of input/output device - disk drives. The interface to this class of
devices consists of a disk queue. By standardising the queue interface the kernel
can be made portable up to the disk queue interface. Any system dependent code

is placed on the hardware side of the disk queue.

The logical separation of devices from the kernel allows the easy introduction of
special purpose processors on multiprocessor systems. This provides an opportunity
to use a special purpose processor which handles disk transactions freeing the general
purpose processors to handle user code. Other special purpose 10 processors may
also be directly mapped into the memory of a processor. This makes the kernel
extremely flexible as new peripherals can be made available without modification
to the kernel by mapping the devices into the address space and using user level

programs to control the new devices.

This architecture is slightly less efficient at handling interactive programs than
conventional systems such as UNTX. When a process blocks on 10 in a conventional
system, the process scheduler is notified that the process cannot be run, and the pro-
cess is typically removed from the short term scheduling queue until the 10O operation
has completed. Under the Walnut Kernel this optimisation is not available to the
processes which manage devices. Device drivers are separated from the kernel and
this prevents the scheduler from being notified that a process is blocked on 10. The
name of the device manager process could have been stored in the data accessible to
the low level device driver and messages sent to the process on device activity at the
cost of increasing the coupling of the device driver and the kernel, and additional
system load resulting from messages sent by the kernel to the device manager. The
absence of this optimization results in a small loss of efficiency. Careful program-
ming practices, such as surrendering the processor quickly on determining 10 is not
possible, reduce the impact of this architectural limitation. Efficient blocking 10 is
provided for other processes through stream 10 libraries. These libraries put the
reading process to sleep when the process is blocking on input. When more data is

available, the reading process is reawakened by a message from the writing process.
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A significant feature of the kernel - to the user - was the decision to make
the kernel occupy a region of the process address space. From a system design
point of view, making the kernel permanently resident in memory was of greater
importance. By making the kernel permanently resident in memory and a part of
the user process address space, a number of significant problems were avoided and
the task of implementation simplified. Development and debugging time was saved.

The elimination of page faults within the kernel simplifies the virtual memory
system. In systems where paged kernels are employed, it is possible for the kernel
to be stalled while paging in a critical component. In addition the problem of page
faulting while handling a page fault has been eliminated, resulting in a reduced size
of the kernel stack and reduced complexity in handling page faults. As page faults
should not arise in supervisor mode, the leaking of kernel powers to user processes
is prevented.

A unity mapping of the kernel memory region into the process address space
allows the kernel to switch between virtual and physical addressing schemes easily.
Unity mapping memory simplifies the design and implementation of low level device
drivers.

A major advantage of placing the kernel at a fixed location in the physical address
space is that it enables use of a logic analyzer to be used to trace the addresses of
executing instructions. During the early phases of development the logic analyzer
proved invaluable as it provided a mechanism for determining the cause of failures

at the instruction level.

6.7 Design Issues

6.7.1 Pages versus Segments

The overriding concerns of portability forced a much coarser granularity of protec-
tion onto the Walnut Kernel than was present in the Password-Capability System.
Although it would be desirable to have the 4 byte protection granularity found on
the Password-Capability System available, this would require the use of either seg-

ment registers, where the processors have these available. Is not possible to provide



138 CHAPTER 6. DESIGN OF THE WALNUT KERNEL

extremely fine levels of control where only the paging mechanism is available us-
ing memory access instructions. It would be possible to provide fine grain control
on accesses to an object mediated by the kernel. This could be implemented as a
system-call which would recover a set of bytes specified by the caller. This mecha-
nism suffers from significant overheads and was deemed too inefficient to be widely
used.

The Walnut Kernel has a significant advantage over the Password-Capability
System in that the Walnut Kernel supports approximately 250 capabilities in a
process address space at a time. This number could be easily increased should the
number be considered insufficient. The older system supported only 32 capabilities
at a time. Although it would have been possible to rewrite the Password-Capability
System’s kernel to handle greater numbers of concurrently loaded capabilities, the
modifications would be far greater than those required on the Walnut Kernel.

The division of windows into small and large types reflects a compromise between
the space efficiency provided by large windows and reduced granularity offered by
small windows. Although the compromise adds complexity to the view of the system
seen by the programmer, it allows programmers greater flexibility in dealing with,

and control over, objects being manipulated by Walnut Kernel programs.

6.7.2 Multiple Processors

A peer implementation was selected for the design of the multiprocessor system
rather than a master/slave implementation. The use of a uniform architecture for
both uniprocessor and multiprocessor systems eliminates optimisations available for
the two classes of implementation. However, it significantly eases the task of port-
ing the system and reduces development costs. In the case of multiprocessor de-
velopment it allows low cost compatible uniprocessor hardware to be used in the
development phase before shifting to multiple processors for the production phase.

Supporting shared memory multiprocessors is relatively simple in that the kernel
can access information available to other processors by uttering addresses within the
shared component of the system memory. The code and data used by the kernel

can be shared in total. The only exception is that the scratch data structures need
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to be distinct for each instance of the kernel. Typically an instance of the kernel is
associated with each processor in the system. If each processor possesses sufficient
private storage, each instance of scratch may be held in the memory associated with
each processor. In the case of fully shared memory multiprocessors it is necessary
to distinguish the private storage of different instances of the kernel by using an
indexing scheme based on processor number to prevent the overwriting of the areas

by other kernels.

As commercial SMP machines typically have uniform memory access speed, the
organization of system tables has a limited effect on the operating efficiency of the
kernel. In direct contrast to this, the performance of implementations on machines
with NUMA (Non-Uniform Memory Architectures) organization is sensitive to the
arrangement and location of system tables. On such systems it is necessary to place
frequently accessed data in memory local to the processor. On architectures with
a large communication path diameter, the organization of memory can become a

critical factor in system performance.

To allow for efficient implementation of the kernel on multiprocessor systems
with a NUMA organization, the Walnut Kernel has been designed to allow process
information to be stored in memory local to the processor executing the process, and
to minimize access to centralised tables. This approach leads to distributing system
tables across the system. By associating system tables with individual processes,
the Walnut Kernel provides a mechanism for decentralising the majority of the
system tables and ensuring that kernel information required for a process can be
easily identified and hence moved to memory local to the executing processor. A
few centralized data structures are still required. Key among these structures are
a list of objects currently in use in the system (AOT) and a list of processes to be
run (miz). The kernel was designed to minimise the number of accesses required to

these structures.
Multiprocessors with partitioned data in address spaces which are private to

a processor or group of processors” such as the SP2 [AMM™95] can be supported

by the Walnut Kernel. The SP2 is representative of a class of multiprocessors,

?Systems without a globally addressable memory space
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which has recently become popular, known as a network of workstations. These
systems communicate using message passing. The Walnut Kernel would implement
distributed shared memory on this class of architecture by copying blocks of mem-
ory from address space to address space using the message mechanism provided by
the hardware. Access to common tables would be performed by encapsulating the
operations on the tables into messages and either broadcasting the message, where
appropriate, or transmitting the message to the node managing the table. Shar-
ing pages of user data could be performed by sharing read only copies of a page.
The first process to attempt to write to a page would invalidate all other copies
of the page and then allow the process to write to the page. A short time later
the process would return the page to a read-only state and allow other processes to
take new copies of the page. This mechanism allows processes to provide the sem-
blance of shared memory on a partitioned data machine. However, the mechanism
is expensive in both communications costs and page fault handling. This indicates
that although the Walnut Kernel can operate in that environment it would incur

significant overheads with programs using fine grained parallelism.

The practice of timing out data structures used by the kernel and the page map-
ping mechanism applied to a process have significant advantages over the alternative
mechanism of recording processes that use a given capability and updating affected
processes upon revocation of a capability. Although the timing out approach places
a constant overhead on process execution this overhead is not directly dependent
on the number or arrangement of the derivatives of an object’s master capability
nor is it dependent on the number of processes sharing a capability. The overhead
of updating lists of processes using a given capability is especially burdensome on
multiprocessing systems. This is because it requires the list to be locked during
updates caused by processes loading and unloading capabilities. Contention over
locks can cause major performance bottlenecks. The Walnut Kernel avoids this
problem by ensuring that the structures describing a capability are only locked for
a short time when a capability is being modified. This ensures that processes on
separate processors sharing resources are not inhibited significantly by the loading

and unloading of capabilities.
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The expiring of page tables too rapidly introduces a significant overhead to a
process, however, reducing the rate causes an increase in the length of time the
rights conferred by a revoked capability persist. A balance between these competing
interests determines the rate at which page tables are replaced. Noting that the cost
of rebuilding page tables for a working set of pages is proportional to the number
of active pages within the tables makes a rapid rate of expiration attractive as it
reduces the amount of work required for the rebuilding of a table. A period of the

order of a second is viable.

6.7.3 Messages

The message passing mechanism does not preserve the order of messages. In partic-
ular, when messages are passed between a single sender and a single receiver there
is no guarantee that the messages will be received in the order sent. The property
of preserving the order of messages is highly regarded by other system designers and
is supported in systems such as the SP2 [SHFG95]. The presence of the property
reduces the level of non-determinism present in parallel programs, enhancing the
reproducibility of results.

Although the issues of preserving the order of messages were considered, the
current design of the message passing mechanism makes no attempt to preserve
chronological order. The decision was made on pragmatic grounds, as to properly
support order of delivery it is necessary to have synchronized clocks for each pro-
cessor to provide a precise representation of a universal time across the system.
The requirements for precise timing would restrict the type of hardware that could
be employed in contradiction of the design principles. Furthermore, encouraging
programmers to believe that the order of messages is strictly preserved could pro-
mote unsafe programming practices in a multiprocessor system. Programmers might
attempt to exploit the property using a collection of processes resulting in an in-
crease in non-determinism of the system rather than a decrease in non-deterministic
behavior.

When a Walnut Kernel process sends a message the process remains blocked

until either the message is delivered or it is determined that the message cannot be
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delivered. Another potential implementation is to block the process only until the
message is queued for delivery to the other process. The alternative implementation
is attractive as it allows a process to dispatch messages quickly and continue pro-
cessing, however, it also has significant disadvantages. Among the problems is the
design issue of the correct sizing of the queues to contain undelivered messages and
the absence of a guarantee of delivery of a message. The current implementation does
not suffer from the problems inherent to the alternative and although an individual
process is delayed, other processes are able to use processor cycles while delivery is
taking place. In addition, the Walnut Kernel implementation places greater control
of the message mechanism in the hands of the programmer, as the programmer is
able to determine what action to take if a message is deemed to be undeliverable.
In systems with a delivery buffer shared by a number of processes it is possible
to create a deadlock by preventing the delivery of messages from a process to a
process expecting that message. This potential is not present in the Walnut Kernel
as each process has its own mail boxes. The ability to reserve mail boxes allows
the programmer to guarantee the availability of a set of mail boxes for a given task.
Control of the allocation of mail boxes gives the programmer greater control over

message delivery allowing the programmer to manage resources to minimise or avoid

the risk of deadlock.

6.7.4 Processes and Subprocesses

The original Capability Based Kernel did not support subprocesses and provided
no mechanism for asynchronous event notification. The Walnut Kernel introduced
subprocesses as a mechanism to allow asynchronous events to be handled by a pro-
cess.

Subprocesses consist of a thread of execution through the process’s address space.
The Walnut Kernel supports up to 250 subprocesses within a process. Subprocesses
are pre-emptively multitasked with the exception that they share access to a common
parameter block and the subprocess claiming the parameter block excludes other
subprocesses of the process from executing until the parameter block is released.

Facilities for dealing with asynchronous events were added to processes by allowing
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subprocesses to receive messages and reserve mail boxes for their use. A message
constitutes an event asynchronous to the process. Subprocesses are necessarily co-
operative by nature as they share a single address and share a critical common
resource - the parameter block - and hence have no protection from each other.
Processes may be adversarial in nature as they are immune from the effects of other
processes unless address space is shared or another process possesses capabilities to

the process or objects used by a process.

Only a single subprocess of a process may be active at one time. The design
decision was driven by two considerations: ensuring compatible behavior between
uniprocessor versions and multiprocessor versions, and avoiding splitting process
data structures over the local memories of more than one processor. By eliminating
multitasking at the subprocess level processes have compatible behavior on both
single processor and multiprocessor systems. In NUMA machines, significant per-
formance losses could result from a processor executing a subprocess with non-local
process data structures when increased load on the communication mechanisms oc-

CUurs.

The restriction on concurrent execution to processes encourages the use of sub-
processes for their original function of supporting asynchronous events. The ability
of a process to control the level of the exposure to the actions of other processes -
by explicitly sharing address space - makes processes superior to subprocesses for

many co-operative tasks.

6.7.5 Execute-Only Code

During the design process, it was observed that it would be desirable for the kernel
to support the execute-only right found in the Monash Multiprocessor Project. As
the primary target machine (Intel386) did not support execute right directly within
page tables, the design option of introducing execute right by manipulating the
page tables was explored. Several mechanisms for synthesising execute only code on
machines with execute right implied by read right were proposed. The most time

efficient mechanism was:
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For each execute-only object loaded into the process’s address space,
a new set of top level page tables and private page tables is created.
These page tables have read right set for the execute-only capability. All
other entries in these page tables are set to invalid. The normal page
tables used by the process have the invalid bit set for entries relating to
execute-only objects.

Upon entry to an execute-only object a page fault occurs. The fault
handler checks the Table of Loaded Capabilities and discovers that the
fault location corresponds to an execute-only page. The fault handler
substitutes the appropriate set of page tables for the normal set of page
tables.

When an access is made outside the the execute-only area a page
fault occurs. If the access is made to a non-execute-only capability the
normal page tables are used, otherwise the appropriate set of page tables

for the new execute-only capability are loaded.

The mechanism is quite expensive as it incurs the cost of a page fault for both
entry to and exit from execute-only code and every memory access outside the
execute-only capability. In addition the mechanism adds a significant number of
overhead pages to a process using execute-only capabilities as it requires the presence
of a number of sets of page tables.

The overheads required to provide execute-only code across a wide range of
platforms were considered too high. Two motivations exist for the need for execute-
only code. The first is the desire to hire out code to a user with the certainty that
they cannot retain the use of the code after the hire period has ended. Unfortunately,
the Walnut Kernel does not currently support a mechanism suitable for renting code,
except by renting the services of a process which has access to that code. The second
motivation is to hide a critical piece of information - typically a capability - within a
code object. A new mechanism was introduced to provide an alternative solution to
the problem of hiding critical data - the SRMULTILOAD right. SRMULTILOAD
right allows capabilities to be derived which are only usable by a specific process,

making dissemination of the capability unproductive.
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A number of mechanisms have been considered for hiding the contents of an
object. One mechanism requires a new class of objects known as protected objects.
Protected objects are unreadable until a system-call - enfer - is made which causes
a jump to a fixed location in the object. The object is then made readable. A
further system-call - leave - is used to make the protected object unreadable and
return to the caller. Protected object mechanism is only a partial solution as it does
not provide adequate protection in a process with several subprocesses and it does
not protect the calling subroutine from the code contained in the called subroutine.
The mechanism can be enhanced by making all other protected objects contained
in a process unreadable when an enter call is made. This prevents called routines
from spying on the caller. Further enhancement is required to deal with multiple
subprocesses. Pages must be made readable or unreadable depending on which
subprocess is executing. This is undesirable as it requires a process to maintain
information about the accessibility of the object represented by each entry in the
TT.C for each subprocess. At present no acceptable mechanism has been found.

The prefered approach to making code widely available but unreadable is to
encapsulate it in a Walnut Kernel process. Users wishing to employ the code can
then request its execution by sending the process a message including capabilities
for the data on which the code is to operate. Clearly, this approach is inefficient for
code bodies with very short execution times, but these are unlikely to be candidates

for hiring.

6.7.6 Hardware

The minimum requirements for supporting the Walnut Kernel on a system are:

e Support for paged virtual memory. This may be implemented using either
page tables or translation look-aside buffers. If page tables are supported then
a two or more level page table is required and page table entries must be of

regular size and format having at least valid and dirty bits.

e A timer interrupt. A regular source of interrupts is required to allow pre-

emptive multitasking to function.



146 CHAPTER 6. DESIGN OF THE WALNUT KERNEL

o Integers of at least 32 bits in size must be available.
e Hardware support for atomic access to memory locations.
e Access to a time source of at least second accuracy.

e A privilege mechanism and a method for making system-calls.

These requirements are met by a wide range of currently available microproces-
sors from both the RISC and CISC design streams.

The Walnut Kernel places minimal requirements on the contents of page tables.
It requires only the presence of a dirty bit and a valid bit (of course). The use of the
Walnut Kernel’s own data structures combined with the minimal requirements on a
page table entry, enhance the kernel’s portability. However, this comes at the cost
of duplicating part of the data contained in the page tables. On systems with only
translation look-aside buffers, such as the R4000 [MIP91], no duplication occurs.

6.8 System Initialization

The system initialization process is unique within the Walnut Kernel as although
it is persistent (as are the other processes) it is restarted each time the kernel is
started. The capability mechanism enhanced with the restrict operation allows user
processes to manipulate the system memory with high security. The initialization
process is run as an ordinary user process. The only special feature of the initial-
ization process is that no other process can execute before the initialization process
allows the process scheduler to start. It uses system-calls to derive relatively safe ca-
pabilities for user level device drivers from a capability for the kernel address space.
The initialization mechanism allows the existing derivation code to be employed
minimizing the amount of specialised code for use only during initialization found
within the kernel.

Currently the initialization process performs the following tasks:

1. read the capability for the system memory from the wall (a page mapped into

the address space of all processes)
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2. derive capabilities required by device drivers

3. restrict the capability for the system memory

4. remove the capability for the system memory from the wall
5. start the process scheduler

6. send messages to device drivers containing the required capabilities

The scheduler is enabled to schedule processes other than the initialization pro-
cess by writing into an address in the kernel area of the system memory. By ensuring
that other processes are not scheduled hefore the initialization process has restricted
and removed the publicly readable version of the system capability, leakage of in-
formation critical to the function of the system to malicious processes is prevented.

The current system uses a constant for the value of the capability for the physical
object. However, by having the initialization process read the value of the capability
from the wall, a randomly selected set of passwords could be employed without

changes to the initialization process.

6.9 Money

This section addresses the issues of rent collection and payment for kernel services.
The mechanisms discussed have yet to be implemented in the experimental version
of the kernel.

The rent collector periodically scans every process on the mounted volumes and
deducts rental proportional to the time since rent was last collected from the object.
The rent collection mechanism allows for variations in the rate of operation of the
rent collector and for consistent charging in proportion to resource use for off-line
volumes. Rent is collected from an object’s store of money. Bankrupt objects are
deleted.

The system-call interface incorporates a charge which is levied against the cash
of the process making the call. Although it would be desirable to levy the process
for the amount of work required to complete the system-call, this would introduce

uncertainty for the caller and complicate the collection process.
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6.10 Process Scheduler

The Walnut Kernel’s existing round-robin process scheduler is suitable for testing
purposes in an experimental implementation, but is inadequate for a production
system. In a mature system, a more sophisticated scheduler would be employed.
This scheduler would use a round robin policy for a set of processes with current
wakeup times (the process is scheduled to wake up at or before the current time).
A set of lists of processes with access times in the future would be maintained. The
lists would contain processes scheduled for wakeup within a time period. Periodically
each list would be examined and elements would be migrated to appropriate lists or

the current queue. Figure 6.17 illustrates the proposed scheme.

EXEC [+
-~ -~ -~
I |
Round Robin  Stage 1 Queue Stage 2 Queue Stage n Queue
Scheduler wakeup < 1 t1 < wakeup < 1y tno1 < wakeup < oo
wakeup = 0 Scan Rate = 1 sec Scan Rate = t; sec Scan Rate = #,,_1 sec

Figure 6.17: Proposed Scheduling Scheme

It is intended that this scheme will be implemented in two parts. The first will
consist of the existing round robin scheduler within the kernel but enhanced so that
the interface to the queue will be accessible to user processes holding an appropriate
capability. The second part will be one or more user level processes which will
maintain the lists of processes, and move processes into the mix.

The proposed mechanism allows process scheduling to be conducted at the user
level. User level scheduling offers the possibility of exploring alternative near term
and long term scheduling schemes, and simplifies the kernel. Short term scheduling
is retained in the kernel for the purposes of efficiency, to eliminate the need to
communicate with a user process on each process swap.

The current implementation of the process scheduler is clearly inadequate for a
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production system. The highly restrictive limits it places on the number of processes
is inappropriate for a persistent based system. However, the implementation allowed
the system to be assembled and tested quickly.

The proposed scheduler addresses the deficiencies of the current implementation.
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Chapter 7

Implementation

At present there are two implementations of the Walnut Kernel. The first of these
runs under both UNTX and MS-DOS'. This version simulates the hardware sup-
porting the kernel. The second version runs on IBM-PCs using Intel386 and 1486
processors based on an ISA bus architecture. This chapter describes the two imple-

mentations and the mechanisms used to load user programs onto a native system.

7.1 The Standalone Implementation

The Standalone version of the Walnut Kernel emulates aspects of the underlying
hardware and executes above a host operating system. Its name has been the subject
of debate and is sometimes considered a misnomer. It was named the Standalone
version early in the development to imply that it did not require the support code
used in a native version. The name is somewhat misleading as the Standalone
version is dependent on the host operating system for persistent storage, memory
and T10O. This version does not support the execution of compiled programs. Instead,
a special type of process known as drive processes are executed.

Drive processes are interpreters for a simple language that allows the contents of
the parameter block to be specified and system calls to be invoked. The language has
constructs that allow for iteration and alternation providing a language sufficiently

powerful for testing all the higher level functions of the kernel.

TMS-DOS is a trademark of Microsoft Corporation
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This version of the kernel shares all the architecture independent code of the ker-
nel with the exception of the process scheduler which has been modified to support
the operation of drive processes and the system call mechanism. The scheduler, in
the standalone version, is a loop which selects the next process to run, sets up the
parameter block, and invokes the drive process interpreter. When the drive process
returns, the ‘program counter’ - position in the drive process program - is stored and
the loop is repeated. The drive process does not access the system call mechanism,

instead it calls the routines that the system call mechanism would use directly.

The system memory controlled by the Walnut Kernel is simulated by allocating
a large block of memory when the kernel is started. This is then divided up by
the support routines before the scheduler is invoked. Accesses to memory by the
drive process are simulated by having the drive process call a subroutine which
accesses the page tables constructed by the kernel in the simulated memory. These
routines emulate the activities of access which result in page faults as well as ordinary

aCCeSSes.

A single volume is simulated by the supporting software. 1t is represented as
a memory array. This volume can be loaded from or stored to disk. The user is
prompted for a file, when the kernel starts, from which to read the disk image and
has the option of specifying a file name for storing the image when the system is
shutdown. The disk images are accurate representations of the data stored in disk
blocks on a native system. These images are used as one of the mechanisms for

loading programs into a native system (see section 7.3).

The Standalone system was invaluable in the development of the Walnut Kernel
as it permitted the development of the kernel in an environment where debugging
facilities where available. Activities of the kernel could be logged to files and re-
peatable test scripts could be run. Early in the development of the 1486 version
several significant difficulties occurred: triple faults could occur which resulted in a
reboot; timing problems resulted in subtle, difficult to repeat errors; and there was
no permanent store available for logging. The Standalone version provided both a
mechanism to build disk images used to initialize the native system, and a testing

ground that allowed the high level routines to be exercised in a friendly environment
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before attempting to use them in a native system.

The Standalone version of the kernel has been used in the following environments:

80386 bhased PC running DOS

80486 based PC running OS/2

80486 based PC running FreeBSD

R3000 based workstation running Ultrix

R4000 based workstation running Trix

7.2 1486 Implementation

The current implementation of the Walnut Kernel runs on Intel386 and 1486 based
personal computers. The kernel makes direct use of the system hardware, requiring
only the boot sector loader and initialization code contained in the PC BIOS.

Use of an existing operating system as a host allows the implementor to use the
work of the designers of the host operating system. However, the price is a loss of
flexibility, and the additional overhead of accessing the host operating system. For
these reasons the kernel was made to rely only on the system hardware for support.
The option of using MS-DOS as a host was rejected. In addition, only the loading
and initialization services provided by the BIOS were used as the standard PC BIOS
routines are written to operate in the processor’s real mode (16-bit mode) only.

The 1486 supports a number of architectural features which may be exploited at

the operating system level[Int90, CG87]. These features include:

Segments - Variable length segments are provided as the primary mechanism for
memory protection. This mechanism enables checking of segment type (read-

able, writable, and executable), segment limits, and segment privilege levels.

Paging - Two level page tables with user/supervisor and read/write bits are sup-
ported. Translation lookaside buffers are loaded automatically by the processor

using the contents of the page tables.
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Multiple Privilege Levels - Two distinct privilege mechanisms are present: a 4

level segment based mechanism and a 2 level page based mechanism.

Tasks - A task data structure is required by the processor. This data structure con-
tains the values of registers for a task at each of the privilege levels supported

by the processor.

I/0 space - Access to the I/O memory space of the processor can be controlled on
a segment based privilege level basis or on a per task basis using a map which

allows access to /0 addresses selectively.

The current system uses Intel’s ‘Flat Model” of memory management. Under this
model, segments are present in a minimal capacity, and cover the complete address
space of the processor. The paging mechanism is used to provide protection and a
large virtual address space. This decision conforms to the requirements of section
6.1.1 where only features available on a wide class of processors are exploited by
the Walnut Kernel. A two level privilege scheme is the most general mechanism for
providing the necessary protection for the kernel. This mechanism was adopted in
the interests of portability.

The task mechanism and its associated 1/0 address space access management
allowed the Walnut Kernel to have user level processes with the ability to operate
as low level device drivers. A scheme was adopted using a single task with multiple
user processes and a single kernel shared by the user processes. The current scheme
has the advantages of greater portability offering similar levels of support to those
found on RISC processors. It also avoids the need for the kernel to manage multiple
task state segments.

I/0 address space access was limited to the kernel to force low level drivers into
the kernel. User level low level drivers have the apparent ‘advantages’ of being mod-
ifiable during the operation of the system and having the same facilities available
as user level programs. User level drivers can complicate the support of user pro-
cesses as they place new and significant demands on the kernel. The ability to allow
selective access to hardware facilities is required for user level drivers. In systems

with memory mapped 1/O this is clearly compatible with the concept of capabil-
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ities. Supporting systems with a separate 1/O address space requires additional
complexity to be added to the capability model. This is because there is no longer
a single uniform resource consisting of memory to be managed, but two distinct
resources, memory and 1/0Q address space to be managed. The user level driver
approach is further complicated by the need to ensure that drivers have adequate
access to physical memory and execution time. Lack of either of these resources
could result in a deterioration of system performance. By placing device interrupt
handlers into the kernel, it is possible to make the kernel responsible for the correct
operation of the system. This allows the kernel to ensure that accesses to hardware
do not place the system into an unstable state. Moving low level drivers into the
kernel allows scheduling and resource issues to be handled easily. As a result of these
considerations, the Walnut Kernel implements device interrupt handlers within the
kernel.

The kernel does not use many of the special features of the Intel386 and 1486 to
ensure a simple migration path from the initial implementation to generic hardware.

1486 implementation currently has low level device drivers for RS232 serial ports,
Centronics parallel ports, keyboard, and color and monochrome text based displays.
The circular buffers used to access these devices are held in the first 16 pages of
memory. Access to volumes (block oriented devices) is provided by a low level
device driver which supports STH06 and IDE based hard disks. A floppy disk driver
is provided for reading programs from DOS formatted disks.

7.3 Loading Programs into the Walnut Kernel

There are three mechanisms currently available for loading executable programs into

the Walnut Kernel:

e Using a serial port under the control of a drive process.

e Adding a program to the collection of objects written to the boot drive when

the system is initialised.

o Using Shell (see section 9.6) to read the program from a DOS formatted floppy
disk.
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The Walnut Kernel expects executable programs to consist of two parts. The
first part is the ‘text’ component (the instructions to be executed), and the second
part is the ‘data’ component (static data, global variables, etc). Constants can be
placed in either part. Two objects are used so that the program data can be copied
and hence used for each each process without interference, and the program code
can be shared. Programs are currently compiled under gee and linked with [d. A
program reads the resulting a.out file and produces a text and a data file. These are

then transfered to the Walnut Kernel using one of the techniques described below.

The 1486 version of the Walnut Kernel currently supports drive processes. These
are used as a debugging aid and for testing purposes. The two serial ports provided
in the current version are used to provide a console - operating on a glass tty - for
the drive processes, and a serial 10O stream used for transferring data. A primitive
communication protocol is used on the serial connection to drive a program running
under DOS. The program reads disk files and transfers them through the serial
connection. Although this mechanism is still present in the kernel, it is no longer
used. The simple protocol was prone to failures caused by the loss of synchronization
between the sender and receiver; at the time the inconvenience caused by this was not
sufficient to warrant the additional effort required to improve the protocol. Other

mechanisms have been implemented which are faster and more reliable.

When a bootable system is being created, the initialization process and the data
it operates on must be transfered to the system. These objects must be present
bhefore the system is started to ensure that they are placed in standard locations and
hence can be found by both the kernel and the initialization process. To perform
this task, the standalone version of the kernel is employed, to load the objects in a
prescribed order and create a disk image file. The volume and serial numbers are
known for each object created by the standalone version because: the size of each
object is known, the order of loading is specified, the algorithm for allocating disk
blocks is known and no objects are removed. Furthermore, the series of instructions
used by the standalone version to load the object from disk includes instructions
to store the master capability of the objects loaded in an object on the disk. This

object is read by the initialization process on startup and then deleted. Other user
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programs can be added by having the standalone version load their code and data
objects. The master capability for the objects created can be displayed using a drive
process. The final disk image file produced by the standalone version is read by one
of the install programs, and the blocks are copied to the install disk.

A facility to read files from DOS formated floppy disks and make objects under
the 1486 version of the kernel was introduced into the shell. This mechanism uses the
floppy disk manager to access the floppy disk at the sector level. Shell has functions
which allow it to read files from disk and read the disks directory.
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Chapter 8

Performance

This chapter details a number of performance measurements carried out on the
Walnut Kernel. The method of the experiments and the conditions under which
they were conducted are discussed. In addition, the performance of a conventional
UNIX operating system, operating on similar hardware, is provided to permit some
comparison to be made between the Walnut Kernel and a conventional operating
system. The tests conducted under UNTX approximated the functions of the Walnut
Kernel. However, significant differences in design between UNIX and the Walnut

Kernel, prevent a close comparison of the performance of the two systems.

8.1 Test Environment

8.1.1 Software

The tests were conducted on a version of the Walnut Kernel which did not contain
the kernel debugger but retained diagnostic code. This version of the kernel had not
been optimised for performance.

The tests on UNIX were run on a FreeBSD' V1.1R operating system [Wal94].
This version of UNIX is a derivative of the University of California Berkeley’s Net-
working Release 2 of 4.3BSD.

Note that the Walnut Kernel was compiled without optimisation, whereas the

"The FreeBSD CDROM is a trademark of Walnut Creek CDROM
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UNIX kernel was highly optimised.

8.1.2 Hardware

The test machines were as close to identical as possible in that they used mother-
boards, peripherals and interface cards sourced from the same manufacturer. The

critical parameters of the test machines were specified as follows:

Intel 486X 33MH7
8 Mb RAM

Caviar 2120 HDD
Both the 804861 X’s internal cache and the external 128k cache were disabled for

the tests. The caches were disabled to make the initial conditions of all experiments
as similar as possible. In addition, because of the wide variety of external caches
available for the 1486 and the difficulty in determining the type of cache in use
from system specifications, disabling the external cache would tend to improve the
repeatability of results when the experiments are performed on similarly specified
hardware.

There is no apparent reason to suggest that the memory reference patterns of

the Walnut Kernel would be less favorable for caching than UNIX.

8.2 Timing

The test programs on the Walnut Kernel had access to a 32 bit counter that is
driven by a 1.19318 MHz frequency source. This counter was derived from channel
0 of the system’s Programmable Interval Timer [SC90, Mac84, Tri92, Nor85]. High
resolution timing - The resolution of the timer is ~840nS - is achieved by polling
the Programmable Interval Timer’s counters [Rod92].

The 8254-2 Programmable Interval Timer supports 3 channels. Although several
modes of operation are supported by each of the 8254-2’s channels, only the square
wave generator mode is relevant to the implementation of high resolution timer.

When configured as a square wave generator, a channel provides a 16-bit counter

which is driven by the 1.19318 MHz frequency source. The 16-bit counter is loaded
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with the reload value, and the counter proceeds to count downwards by two. Each
time the counter reaches zero, the output bit of the channel is inverted and the
counter is reloaded with the reload value. The output bit of a channel in this mode,

with an even reload value, generates a square wave with a 50% duty cycle.
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8254-2 - Programmable Interval Timer
8259A - Programmable Interrupt Controller

Figure 8.1: Timer and Interrupt Hardware in the IBM-PC/AT

In the IBM-PC/AT architecture (see figure 8.1): channel 0 is used to provide
timer interrupts; channel 1 is used to provide memory refresh cycles, and channel 2
is used as a tone generator for driving the system speaker. Channel (’s output bit

drives interrupt request line 0 (IRQ0) which is connected to the interrupt controller.
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The interrupt controller generates a timer interrupt? on each positive transition of

TRQO.

As the 16-bit counter provided by the 8254-2 is decremented by twos, the least
significant bit of the timer’s counter provides no useful information. A 16-bit counter
is synthesised by extracting the 15 useful bits from the timer’s counter and using
the timer’s output bit to provide the most significant bit of the synthesised counter

value.

The process scheduler is entered whenever a timer interrupt occurs or a process
surrenders its time-slice. The process scheduler determines the number of counts
that have elapsed between the current access to the timer and the last access, and
adds this to a 32 bit counter that is visible to programs. This guarantees that
whenever a process’s code is entered the current value of the 32 bit counter is

accessible.

The microsecond timing provided by FreeBSD is derived from the channel 0
timer of the Programmable Interval Timer using a method similar to that described

above. The gettimeofday() library function is used to access the time.

8.3 Walnut Kernel

Three programs were written to test the performance of the Walnut Kernel. The
programs contained several tests. Fach test consisted of 100 repetitions of a set of
system calls. The results of the tests were written into an object created by the test

program.
A 25 second delay was built into the test program to allow the drive-type® process
to be used to freeze any other processes present on the system and to allow time for

the system to settle after performing this task.

2Timer interrupts are known as ticks

3Drive processes are processes which execute a simple command interpreter built into the
kernel. Drive processes are intended only to be used in the development phase of the Walnut

Kernel and will be removed from other versions of the kernel
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8.3.1 Program 1

This program tested the performance of communication related system calls. Specif-

ically it tested the speed of the following system calls:
e external send
e send
e receive
e load capability

e unload capability

Test 1 and Test 2

These tests measured both the time taken to execute an external send system call and
the total time taken to complete the transfer from the beginning of the first attempt
until the end of the successful attempt. In both tests no money was transferred
between the sender and the receiver. Test 1 had a message of zero length and Test

2 had a message of 64 bytes length.

Test 3 and Test 4

These tests measured both the time taken to execute a send system call and the total
time taken to complete the transfer from the beginning of the first attempt until the
end of the successful attempt. The target process was loaded into a large window
of the test process and identified by offset. In both tests no money was transferred
between the sender and the receiver. Test 3 had a message of zero length and Test

4 had a message of 64 bytes length.

Test 5 and Test 6

These tests measured both the time taken to execute an external send system call
and the total time taken to complete the transfer from the beginning of the first

attempt until the end of the successful attempt. A wait of one second was introduced
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between each repetition of the test to ensure that the target process had an empty
mailbox available to receive the message. In both tests no money was transferred
between the sender and the receiver. Test 5 had a message of zero length and Test

6 had a message of 64 bytes length.

Test 7 and Test 8

These tests measured both the time taken to execute a send system call and the total
time taken to complete the transfer from the beginning of the first attempt until the
end of the successful attempt. The target process was loaded into a large window
of the test process and identified by offset. A wait of one second was introduced
between each repetition of the test to ensure that the target process had an empty
mailbox available to receive the message. In both tests no money was transferred
between the sender and the receiver. Test 7 had a message of zero length and Test

8 had a message of 64 bytes length.

Test 9 and Test 10

This test measured both the total time taken to transfer a message and the time
taken to execute a receive system call. The transfer time is calculated from the
beginning of the first attempt to perform a send to the time at which the contents
of the message is made accessible by a successful receive call. A message of 4 bytes
length and with no money was sent. A wait of one second was introduced between
each repetition of the test to ensure that the target process had an empty mailbox
available to receive the message.

Test 9 used an external send system call to perform the transfer. Test 10 used

a send system call to a process loaded into a large window.

Test 11 and Test 12

These tests measured both the time taken to load and the time taken to unload an
object from a window of the test process’s address space. Test 11 used a large

window and Test 12 used a small window.
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8.3.2 Results

The following table summarises the raw results for each experiment. The measure-

ments are in microseconds.

Messages

High low Average Median
Exp 1 - 0 byte transfer
K_EXTSEND 782.78 458.44 482.55  A77.72
Total time 5558.26 471.85 755.38  489.45
Exp 2 - 64 byte transfer
K_EXTSEND 812.95 460.11 496.79  496.99
Total time 3286.18  492.80 752.45  500.34
Exp 3 - 0 byte transfer
K_SEND 880.84  585.83 610.72  605.94
Total time 3095.93  600.92 913.76  613.49
Exp 4 - 64 byte transfer
K_SEND 882.52  584.99 622.11  624.38
Total time 2567.93  620.19 919.03  628.57
Exp 5 - 0 byte transfer
K_EXTSEND 511.24 497.83 504.71  505.37
Total time 511.24 497.83 504.71  505.37
Exp 6 - 64 byte transfer
K_EXTSEND 533.03 H17.11 525.89  526.32
Total time 533.03 517.11 525.89  526.32
Exp 7 - 0 byte transfer
K_SEND 993.14 616.84 742.84  626.06
Total time 993.14 616.84 742.84  626.06
Exp 8 - 64 byte transfer
K_SEND 1013.26  636.12 762.22  645.33
Total time 1013.26  636.12 762.22  645.33
Exp 9 - 4 byte transfer
Ext. Trans 813.79  794.52 805.00  805.41
K_RECV 301.71  298.36 299.84  300.04
Exp 10 - 4 byte transfer
Send Trans 1294.86  888.38  1025.80  899.28
K_RECV 306.74  273.22 284.51  274.90
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Address Space Management

High low Average Median
Exp 11
lLoad TLarge 3118.56  740.88 779.63  755.96
Unload Targe 885.03  621.03 631.12  626.06
FExp 12
l.oad Small 995.66  690.59 71131  706.52
Unload Small 652.88  633.60 641.66  638.63

8.3.3 Program 2

This program tested the speed of system calls which manipulate objects. The fol-

lowing system calls were tested:

e Make Object

e Bank

e Destroy Capability

Test 1 to 4

This test measured the time required to execute a make object system call, to perform
a deposit and a withdrawal on that object using the bank system call, and to destroy
the object using a delete capability system call with the master capability of the
object. There was a 1 second delay between repetitions of this test.

Test 1 generated objects of a single page in size. Test 2 made a 2 page objects,
Test 3 made 4 page objects and Test 4 was applied to 8 page objects.

8.3.4 Results

The following table presents the raw results for each experiment. The measurements

are in microseconds.
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Object Management

High low Average Median
Exp 1 -1 page object
K.MAKEOB.J 800.38  613.49 710.73  708.19
Deposit 515.43  489.45 502.35  502.02
Withdraw 374.63  348.65 359.49  356.19
K_DEL 34111 319.31 330.78  329.37
Exp 2 - 2 page object
K.MAKEORI 903.47 673.83 795.79  810.44
Deposit 515.43  489.45 503.70  503.70
Withdraw 373.79  349.49 360.45  362.06
K_DEIL 341.94  319.31 330.44  329.37
Exp 3 - 4 page object
K.MAKEOB.J 1002.36  611.81 870.35  911.85
Deposit 520.46  493.64 504.54  502.86
Withdraw 373.79  349.49 360.41  358.71
K_DEIL 342.78  319.31 330.24  328.53
Exp 4 - 16 page object
K.MAKEOB.J 2053.34  709.87 960.45  999.01
Deposit 531.35 49448 508.59  509.56
Withdraw 372.95 347.81 361.32  364.57
K_DEIL 348.65  320.15 330.47  331.89

8.3.5 Program 3
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This program tested the performance of process related system calls. Specifically it

tested the speed of the following system calls:

e make process

e bank

e unload capability

e delete capability

Test 1

This test measured the times required to execute a make process system call, to

perform a withdrawal on that process’s object using the bank system call, to unload

the new process from the test process’s address space, and to destroy the process



168 CHAPTER 8. PERFORMANCE

using a delete capability system call with the master capability of the process. There

was a 2 second delay between repetitions of this test.

8.3.6 Results

The raw results for each experiment are in the following table. The measurements

are in microseconds.

Process Management

High low Average  Median
FExp 1
K.MAKEPROC 104149.42  74981.98 76018.40 75020.53
Withdraw 377.98 354.51 367.82 367.92
K_UNLOADCAP 641.98 623.54 632.44 632.76
K_DEL 346.13 323.51 336.53 336.91

8.4 UNIX

Two programs were written to perform measurements under UNIX. The first pro-
gram contained several separate tests. The second program contained a single test
routine. Fach test consisted of 100 repetitions of a set of library calls. The results
of the tests were written into a number files created by the test program.

The programs were run on a FreeBSD system which had just been rebooted and
had only a single interactive session operating on it. This session was used to run

the two test programs.

8.4.1 Program 1

This program evaluated the times taken to perform interprocess communication

tasks, file system tasks and memory allocation tasks.

Test 1 and Test 2

These tests used two processes connected by a pipe to test the time required to
send and receive messages. After creating a pipe, the test process created a child

process through the use of a fork system call. The child sent messages to the parent
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process through the pipe. The times spent in the write and read library functions

were recorded. Both the write and read calls were operated in non-blocking mode.

Test 1 had a message of zero length and Test 2 had a message of 64 bytes
length.

Test 3 and Test 4

These tests used two processes connected by a pipe to test the times required to
send and receive messages. After creating a pipe, the test process, created a child
process through the use of a fork system call. The child sent messages to the parent
process through the pipe. The times spent in the write and read library functions
were recorded. A one second delay between attempts to transmit a message was
introduced. Both the write and read calls were operated in non-blocking mode.

Test 3 had a message of zero length and Test 4 had a message of 64 bytes
length.

Test 5

This tests used two processes connected by a pipe to test the time required to send
and receive messages. After creating a pipe, the test process, created a child process
through the use of a fork system call. The child sent messages to the parent process
through the pipe. The time taken from entering the write library function to exiting
the read library function was recorded. A one second delay between attempts to
transmit a message was applied. Both the write and read calls were operated in

blocking mode.

Test 6 and Test 7

Test 6 measured the time required to create a zero length file using fopen and the
time required to destroy the file using unlink.
Test 7 measured the time required to open an existing file using fopen and the

time required to close the file using felose.
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Tests 8 to 15

Tests 8 to 11 measured the time required by malloc to allocate space and free
to release the allocated space. The tests allocated 1, 2, 4, and 16 pages of space
respectively.

Tests 12 to 15 measured the time required by calloc to allocate space and free
to release the allocated space. The tests allocated 1, 2, 4, and 16 pages of space

respectively.

8.4.2 Results

The following tables show the raw results for each experiment. The measurements

are in microseconds.

Inter-Process Communication

High TLow Average Median
Exp 1 - 0 bytes
read 93156 296  1235.21 297
write 1385 569 592.35 572
Exp 2 - 64 bytes
read 1054 296 495.17 645
write 15902 569 877.45 677
Exp 3 - 0 bytes
read 816 296 313.80 297
write 16528 580 740.60 581
Exp 4 - 64 bytes
read 4740 519 1403.62 521
write 15952 566 722.30 568
Exp 5 - 8 bytes
transfer 16958 999 1162.52 1003
write 24047 1750 2074.98 1815

File Management

High low  Average Median

Exp 6 - Create File

fopen 15146 14497  14693.86 14654
unlink 26102 23076 23719.08 23732
Exp 7 - Open Existing File

fopen 1410 874 911.27 877

fclose 1208 463 4R82.72 465
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Memory Management

High lLow Average Median
Fxp 8 - 1 page
malloc 2085 1178 1244.34 1187
free 616 140 149.74 142
Fxp 9 - 2 pages
malloc 1923 1196 1255.79 1205
free 378 140 146.62 142
Fxp 10 - 4 pages
malloc 2864 2043 2307.17 2296
free 691 140 151.66 142
Fxp 11 - 16 pages
malloc 108099 2457 3806.77 2731
free 396 140 146.83 142
Fxp 12 - 1 page
calloc 64795 1020 1710.56 1028
free BT 140 145.47 141
Fxp 13 - 2 page
calloc 180489 1870 5304.91 1881
free 867 139 150.68 141
Fxp 14 - 4 page
calloc 4046519 3575 63252.07 3610
free 866 140 148.58 141
Fxp 15 - 16 page
calloc 3134522 16196 336518.51 102325
free 65845 141 8146.38 143

8.4.3 Program 2

This program evaluated the times taken to create a new process.

Test 1

This test used a fork library call to generate a child process which performed an

exit. The time required by the parent process to perform the fork was measured.

8.4.4 Results

The following tables list a summary of the raw results for each experiment. The

measurements are in microseconds.
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Process Management

High low  Average Median

FExp 1
fork 47191 11294 14263.85 11331

8.5 Observations

Making direct comparisons between the Walnut Kernel and FreeBSD is difficult
as the two architectures support different paradigms and operations. The Walnut
Kernel’s memory object paradigm is not reproduced in UNTX. Operations on objects
have some of the characteristics of operations on files - persistence - and other
characteristics best modeled by UNIX’s memory management libraries. A major
difference, in operation, between the two systems was the method of acquiring the
current time. Under FreeBSD a system call was required to get the current time
whereas under the Walnut Kernel the current time was available as a by-product
of any system call. The use of intrusive measurement on UNIX and non-intrusive
measurement on the Walnut Kernel made the duplication of some of the behaviors
of the test programs impractical. As a result, only broad comparisons can be made

between the systems.

8.5.1 Walnut Kernel Behavior

Every 10 seconds a process is required to rebuild its private and top level page tables
and the process also invalidates all its windows. When the process next accesses a
memory location the capabilities for that window is revalidated. Introducing a delay
between tests reduces the number of operations per second and increases the effect

of these overheads per operation performed.

8.5.2 Messages & TPC

An unexpected feature of the measurements of the Walnut Kernel’s message delivery
system was that KLEXTSEND performed better than K_.SEND. This raises the pos-
sibility of improving the message transfer performance of the system by optimising

K_SEND. The transfer of data to a process which is already loaded into the sender’s
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address space should require fewer checks on the accessibility and validity of the
target process. In addition, the transfer of data should be simplified as the target

page is loaded into the processes address space.

Write / External Send Performance
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Figure 8.2: Comparison of External Send to Write Operations

Figure 8.2 compares the K_.SEND and write times for the two systems. The
message transfer performance of the two systems is similar. The graph indicates
that the performance of the external send operation is typically faster than that of
the write operation, and that the worst cases encountered for the Walnut Kernel
were significantly better than those encountered by FreeBSD.

Figure 8.3 compares the time taken to complete a transfer of data between two
processes. The Walnut Kernel performs significantly better than FreeBSD in this
test. The worst case performance of TPC using pipes under UNIX is significantly

worse than for the equivalent operation under the Walnut Kernel.

8.5.3 Address Space Management & File Management

The typical performance of fopen and load capability operations to be similar. as
shown in figure 8.4. However, the worst case performance of the Walnut Kernel load

capability large operation is approximately twice the cost of the worst case of fopen.
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Transfer Performance
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Figure 8.3: Comparison of Transfer Time Between Two Processes

Although the typical speed of performing an unload operation is about 30% larger
than that of felose, the worst case performance of the Walnut Kernel is better than

UNIX.

8.5.4 Object Management & File Management

The creation of objects under the Walnut Kernel is approximately equivalent to the
creation of files under UNIX as objects and files represent the units of persistent
storage found in the two systems. Figure 8.5 compares the performance of the two
systems in this area.

Although the time required by the Walnut Kernel to create an object is depen-
dent on the size of the object and the initial number of capabilities required, object
creation time seems to be significantly faster than file creation time under FreeBSD.

The destruction of objects is approximately equivalent to the deletion of files
under UNIX, as both destroy items in the persistent store. In figure 8.6 the Walnut
Kernel is shown to perform better in terms of returning more quickly than FreeBSD.
However, it should be noted that although this prevents new Walnut Kernel pro-

cesses loading the object immediately, processes which currently have the object
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Figure 8.4: Comparison of File Operation Times to Object Operation Times
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File Creation / Object Creation Performance
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Figure 8.5: Comparison of File Creation Time to Object Creation Time

loaded will retain access for 3 seconds.

8.5.5 Process Management

The fork operation to the make process operation are compared for purposes of
completeness. The comparison yields little useful information as the result of a fork
i1s to produce a copy of an existing process, whereas the make process operation
produces a new process. The closest approximation of the Walnut Kernel’s make
process offered by UNIX is a fork followed by an exec. Unfortunately as the exec
system call does not return, it is not possible to measure the speed of that system

call using user level programs. Figure 8.7 compares the two operations.

8.6 Conclusion

Where operations were comparable, the Walnut Kernel performed as well or better
than the competing FreeBSD system. The Walnut Kernel’s poorest performance,
when compared to UNIX, was in the generation of new processes. However, this

comparison is of limited significance: as the Walnut Kernel generates a new process
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Figure 8.6: Comparison of File Deletion Time to Object Destruction Time
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with differing contents (the equivalent of a fork followed by an ezec under UNIX);
and because UNIX returns as soon as it is clear that there are adequate resources
for the new process to be created unlike the Walnut Kernel which returns as soon

as the new process is ready to execute.



Chapter 9

User Level Programs

This chapter' describes programming techniques used for application programs and
applications that have been written to operate under the Walnut Kernel. These
applications have allowed programmers to explore the possibilities offered by a
capability-based operating system and provided feedback to the operating system
designers. This feedback has resulted in changes to the design of the kernel.

Four programs are described:

Initproc - the initialization process

e Glui - a screen multiplexor

Shell - a user shell

e Wyrm - an arcade style game

Initproc is responsible for deriving capabilities used by processes which manage
access to devices. Shell and Glui form a user level interface which allows access to
the functions of the kernel and to objects within the system. The game Wyrm is an
example of a highly interactive application which demands fast response times from
the system and is 10 bound.

Program structures and data structures used in the applications are described

in section 9.1. Section 9.3 describes enhancements to the Walnut Kernel’s process
p

"The majority of the material contained in this chapter is reproduced from [CPW95].
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structure to assist the implementation of shared libraries. Sections 9.4 to 9.7 discuss

the application programs.

9.1 Structures

This section describes a number of common structures found in programs operating
under the Walnut Kernel. Tt addresses both organization of programs and data

structures.

9.1.1 Program Structures

Walnut Kernel programs are similar to programs which are implemented under
GUlIs in that both types of programs respond to external events. GUls provide

two constructs for handling events:

Message Loops are a loop which contains a call to a function that accepts an

event from a queue of events, and then calls a function to handle the event.

Callback Functions are registered with the user interface and are invoked with a
set of parameters when an event occurs. Callback functions are used to handle

asynchronous events.

The Walnut Kernel supports constructs which perform similar tasks, but are imple-

mented differently.

while true
begin
wait(-1)
receive(msg)
server function(msg)
end

Figure 9.1: Pseudocode for a Message loop

The Walnut Kernel typically handles messages by using a message loop (see

figure 9.1). This simple construct places the process (or subprocess) into a sleep
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state until a message arrives, receives a message, handles the message, and returns
the process to a sleeping state. As a process cannot sleep when there are messages
waiting for it, the message loop can handle multiple messages without the need to
test for the presence of a message before going to sleep.

Asynchronous events which would be handled with a call back function under a
GUT are implemented through the use of subprocesses. A subprocess is a thread of
control within a process to which a message can be specifically addressed. When
a message arrives for a subprocess, the subprocess is made executable. Typically a
message loop 1s used to receive and handle the message before putting the subprocess

back to sleep.

9.1.2 Data Structures

Persistence, sharing and relocation shape the types of data structures in common
use under the Walnut Kernel.

File oriented operations are typically performed on a stream of data, converting
the contents of an input stream to an output stream. Persistent data structures
do not require conversion to and from a secondary storage format, eliminating the
stream orientation imposed by the file mechanism. In addition, programmers are
able to perform random access operations on input and output data structures
without the overheads that would be present on a stream oriented system. The
absence of these constraints provides a new degree of freedom in the design of data
structures.

A hash table is an example of a data structure that benefits from a persistent
implementation. On a persistent system the hash table is stored in a directly usable
form. This can be contrasted with a file oriented system which has the choice of
extracting the data from the table and storing it in a linear form, or storing the
table as a block of memory dumped to disk. The former requires either a complex
transform on the data to recover it in the correct order for storage, or an additional
data structure that keeps track of the order in which data should be stored. The
latter approach requires the table to be read at the beginning of the program and

written at the end of the program, introducing a significant 1O overhead.
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The easy sharing of data requires programmers to be aware of synchronization,
access control, and locking issues. Currently systems programmers work in an envi-
ronment where sharing considerations are important. Application programmers need
to become aware of the issues and techniques for managing shared data. Provision
must be made in shared data structures for collective access to the data structure.
This may include choosing data structures that allow simultaneous access (circular
buffers) or employ locking.

Programmers have a choice of loading an object at a fixed address or allowing
the loading of an object at an arbitrary address. If an object is always located
at a fixed address, pointers may be used within the object to refer to other parts
of the data structure. This arrangement has the advantage of speeding references
within an object. However, it causes a loss of flexibility and may restrict the sharing
of objects. This is because programs will only be conveniently able to load one
object at a time that occupies a set of points in the address space. Relocatable
objects use index values to refer to parts of the object. This requires an addition
operation before a dereference operation can be performed resulting in a potential

loss of performance.

A A A
- Read
Write - Write
<[]
Read Write Read
<[ 1] <[]
Empty Partly Full Full

Figure 9.2: A Circular Buffer

Circular buffers (see figure 9.2) are used to transfer stream oriented information

between processes. Two implementations are used:

e A minimal implementation is used by character mode devices such as serial

ports and the keyboard to communicate with their manager processes.
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e An optimized version is used for interprocess communication.

Both circular buffer implementations do not require locking, but ensure that
data is correctly transfered from the sender to the receiver. They operate by giving
the sender read /write access to the write-pointer, and read-only access to the read
pointer. The receiver has read /write access to the read-pointer, and read-only access
to the write pointer. This eliminates contention over updating the pointers. The
data structure operates safely even if information relating to the position of the
other pointer is old. The data structure has a minor inefficiency in that there is
always a single wasted slot when the data structure is full.

In the more efficient implementation, both the sender and receiver have a private
pointer known as the tripwire. The tripwire is set to point to either the value of
the other pointer or the top of the buffer. Before sending or receiving an element
from the circular buffer, the value of the pointer is compared against the tripwire to
determine if there is the risk of overfilling the buffer or crossing the end of the buffer.
This mechanism saves the cost of a comparison on most accesses to the buffer by
converting the separate tests for overfilling and wrapping, from top to bottom of the
buffer, into a single test. If the comparison indicates that either of the boundary
conditions has been reached, further tests are carried out to determine which of the

two conditions caused the problem, and the tripwire is set to a new position.

9.2 Legacy Code

A library has been constructed that emulates many of the functions found in the C

stdio library. This library has two roles:

o It allows the reuse of a large quantity of existing C code, reducing development

effort.

o [t provides an environment that is familiar to a large range of programmers al-
lowing them to use existing skills while learning about the features the Walnut

Kernel environment offers them.

Under the emulation library files and streams are implemented using the same cir-

cular buffer code. Files gain no advantage from being implemented using circular
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buffers; however, there is no performance penalty either. By choosing to implement
the two mechanisms in the same way, code volume is reduced and code maintenance

is simplified.

9.3 Shared Libraries

One of the major objectives of the Walnut Kernel was to encourage sharing of code
and data. Section 9.1.2 discussed mechanisms which allow the sharing of data. This
section describes existing mechanisms for the sharing of code.

The executable code may be either relocatable or non-relocatable. Relocatable
code uses relative addressing to reference other parts of the library module. Non-
relocatable code is linked using absolute addresses for all references. Relocatable
code simplifies the implementation of shared libraries. In the absence of relocatable
code it is necessary either to force modules to be always loaded at the same address
or create multiple versions of a module at differing addresses.

Several classes of data? may be required by shared libraries: embedded data,
shared data and data local to an instance® of the code. Embedded data consists of
literal constants compiled into the code. Shared data is accessible to all invocations
of a library and may be seen and modified by each instance. A variant on shared
data is constant data shared by all instances but typically not modified. Data local
to an instance of the code is private to that instance and is typically not accessible
to other instances of the code.

The current implementation of the Walnut Kernel supports relocatable code.
The password-capability model is well suited to supporting the majority of the
classes of data. Embedded constants can be protected from alteration by not pro-
viding the write system-right on capabilities given to users. Sharing of data 1s
achieved by loading capabilities. Providing mechanisms which support data local to

an instance is less straight forward.

?This taxonomy of memory types is based on work conducted for the Monads project [Geh82].

3For the purposes of this discussion an instance of the code is created by loading a piece of
library code into the address space of a process. If the code is multiply loaded into a process, there

are said to be multiple instances of the code.
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Section 12.1.2 describes a number of potential approaches to supporting shared
libraries. The remainder of this section addresses current mechanisms and the mod-

ifications to the process structure required to assist their implementation.
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Figure 9.3: Tmplementation of Local Storage for Shared Library Code

To support data local to a process, a module must be able to create an object,
load the object into the address space of the process and be able to locate the
object to allow the module to read and write the module’s local data. There are
two varieties of solutions. The first variety involves structuring the address space of
the process so that either modules are always loaded in the same place or providing
a fixed relation between the location of the object used to store local data and the
code object. Both these mechanisms place restrictions on the layout of memory.
The second variety of solution is to store the address of the object containing local
data in a location known to the module. This appears to be a catch-22 situation, as

the module requires a private location to be able to store the address of its local data
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object. This paradox can be avoided by providing a table stored - by convention - in
the process object. The module has access to the address its code is loaded at and
uses the address to index into the table. This provides a small private store readily
accessible to a shared library module. The table is typically used to store pointers
to a local data object. The mechanism is illustrated in figure 9.3.

A table indexed by the addresses of locations where objects can be loaded is
relatively large. An enhancement which makes more efficient use of space is to use
the Capability Index for the window in which the code is running. Capability indices
range from 1 to 250, keeping the table down to a manageable size. Although it is
possible to use the KLCAPID system call to find the index value for an address, it was
considered too inefficient to use a system call for a potentially frequent operation.
To assist in the rapid translation of addresses to Capability Indices, the process
structure was altered to make the Address Map readable. This allowed a short
segment of assembly code (see figure 9.4) to be used to rapidly translate addresses

to index values.

9.4 Initproc

When a Walnut Kernel is booted, it generates an object known as the system object.
This object contains all the memory pages occupied by kernel code, kernel data, and
device driver interfaces and buffers. The initialization process derives capabilities
from the system object used by the processes which manage devices. The restrict
operation is then applied to the master capability. This operation removes rights
associated with a capability without affecting the rights of the children of the ca-
pability. This eliminates a potential security hole associated with the existence of a
capability allowing unfettered access to the kernel and device interfaces. After deriv-
ing the set of less powerful capabilities, Initproc notifies the scheduler that it is safe
to schedule other processes, and sends messages to all manager processes containing
the capabilities they require to access the devices they manage. Initproc completes
its operation by entering a message loop and waiting for a message indicating that
the system is to be reconfigured.

Initproc illustrates a number of features of programming under the Walnut Ker-
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.globl _codecapindex

PROCHDADDRESS = 0x1000000
MAPADDRESS =

.text

0x100£000

.align 2, 144

/*

addr =
if (addr < PROCHDADDRESS)

ugp

else

ugp

return

*/

calling_address_magic();

MAPADDRESS + ((addr >> 12) & Oxfff)

= MAPADDRESS + ((addr >> 22) & Oxfff)
(*uqp) ;

_codecapindex:

smallwin:

bigwin:

both:

movl

(hesp), heax

pushl Y%ecx

cmpl
jge

movl
sarl
andl

jmp

movl
sarl
andl

movb
andl
popl
ret

$PROCHDADDRESS, Yeax
bigwin

$12, Yecx

%cl, Y%eax

$0xfff, Yeax
both

$22, Yecx
%cl, Y%eax
$0x3ff, Yeax

MAPADDRESS (Yeax), %eax

$0xff, Yeax
%ecx

Figure 9.4: Find Capability Index for Executing Code
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nel; however, the process is unique among Walnut Kernel processes in that it is
restarted from a fixed address each time the kernel is booted. Apart from always
starting Initproc from a fixed address, the kernel provides no special functions to
support this code. Thus all of Initproc’s code operates at the user level, requiring no
special kernel support or privileges. All other processes resume their operations from
the point at which they were stopped when the system was shutdown. Furthermore,
as the system object is stored in volatile storage, the system object does not retain
information about the capabilities applying to it over a reboot. The initialization
process is responsible for remaking the capabilities used by the manager processes
before allowing other processes to be scheduled.

The kernel scheduler monitors a word in the Wall. When the word becomes non-
zero, the kernel scheduler allows the scheduling of any runnable process. Initproc
derives a capability for the Wall from the system object. This capability is sent to
the Wall manager and used by Initproc to notify the scheduler.

In addition to the easy sharing of data demonstrated by the above application,
persistence is also exploited in Initproc. The derivative capabilities generated from
the system object are stored in an array. When Initproc is restarted following a
shutdown, it examines this array and generates derivative capabilities with the same
name and rights as those found in the array before restarting the scheduler. This
simplifies the design of the manager processes as the capabilities given to managers
by Initproc appear to persist over the reboot. Holders of derivatives of capabilities

distributed by Initproc will find that those capabilities no longer work.

9.5 Glui

Glui is the manager process for the screen and the keyboard. Tt provides several
stream mode interfaces to the keyboard and screen. A series of keystrokes are used
to switch between sessions. In addition, Glui supports a mechanism for giving direct
access to the screen memory for a number of processes. Like Initproc, Glui functions
using system calls available to all processes.

When the Walnut Kernel is booted, Initproc sends a message with a capability

for the resources managed by each manager process. On receipt of the messages
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Figure 9.5: Keyboard and Screen 10

containing capabilities for the keyboard, the screen, the VT100 emulator built into
the kernel, and the Wall, Glui creates 10 virtual screens and derives a capability
which allows messages to be sent to Glui. This capability is then placed on the
Wall.

The screen and keyboard 10 architecture of the Walnut Kernel is illustrated in
figure 9.5. To provide terminal multiplexing facilities, Glui intercepts all keyboard
input scanning for control sequences. If no control sequences are found, the keyboard
input is placed in the input buffer for the application currently being displayed on
the screen. The output buffer of the current application is polled periodically. Tf
new information is found in the buffer, it is passed to the VT100 emulator code
built into Glui. This emulator writes its output directly to the memory mapped
screen buffer. To move the cursor and sound the bell, Glui passes control codes to
the VT100 emulator built into the device drivers.

To change the display to another application, Glui stops accepting input from
the current client program. The current contents of the screen are copied to a buffer
associated with the current application. This buffer is located within Glui and is not

made accessible to other programs. The buffer corresponding to the new application
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is copied to the screen, and the output buffer of the new application is read to update
the screen. Keyboard output is directed to the input buffer of the new application.

Glui supports two types of output services:
e a VTI100 emulator
e the hardware screen buffer

When a process requires 10 through the VT100 emulator and keyboard, it sends
a message to Glui using the capability on the Wall. If there is a virtual screen
available, Glui sends a message back which contains the capability for a keyboard
buffer and a screen buffer. These buffers use the circular buffer protocol discussed
in section 9.1.2. The process requesting the screen may send data containing V1100
screen control sequences via the output stream. Input is received via the input
stream.

When direct access to the hardware screen buffer is requested, the process must
supply for itself a capability that allows the process to be frozen. If this capability
is not provided, or does not allow Glui to send the freeze message, the request will
be rejected. If a suitable valid capability is supplied, a capability without SRMUI.-
TILOAD right and with a password 2 equivalent to the requesting process’s serial
number is returned to the requesting process. When loaded by the the request-
ing process, this capability allows direct access to the screen buffer; however, this
capability cannot be loaded by any other process.

Protected freeze and thaw are used on the processes granted direct access to
the memory mapped screen buffer. This prevents other processes from thawing a
process with a usable capability for writing to the screen. Glui is able to ensure
that only one process writes to the screen at a time, preventing corruption of the
screen’s contents.

Both the SRMULTILOAD right and the protected versions of freeze and thaw
were introduced to enable Glui to allow controlled direct access to the hardware
screen buffer. Other solutions were considered, including locking processes [AW85]
and schemes for the rapid revocation of capabilities.

Under the Walnut Kernel, a process is locked when it is created with a 63-bit
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lockword. This lockword is XORed with each ‘alter’ capability® before the capability
is used by the kernel. The process can only use capabilities which have been XORed
with the lockword, and then be passed to the process. This prevents a locked
process from communicating with other processes without the assistance of a party
who knows the lockword value. This mechanism was considered, but locking severely
curtailed the ability of the client program to communicate.

Although a number of rapid revocation schemes were considered, the generaliza-
tion of these schemes to a multiprocessor environment either resulted in a mecha-
nism insufficiently responsive, or required an unacceptably high overhead to support

a relatively infrequent operation.

9.6 Shell

Shell is a command interpreter. It provides mechanisms for managing objects, or-
ganizing ‘files’ generated through the stdio emulation code and launching programs.
Shell has detailed information relating to the structure of a process which follows
the conventions adopted for the Walnut Kernel.

When Shell is first started it sends a message to Glui requesting a terminal
emulator output buffer and a keyboard input buffer. On receipt of these capabilities,
it presents the user with a prompt and awaits further instructions. Users can run

processes in two modes:

e Yielding the screen to the new process. The input buffer and output buffer
used by Shell are given to the new process for its use until the new process

terminates.

e Creating a new screen for the new process. The shell requests a new set of

buffers from Glui which are given to the new process.

The two modes differ in several respects. When the new process is to inherit the

screen from Shell, the buffers are made available to the new process and the shell

4 A non-alter capability does not possess write rights and cannot be used to transfer information

to another process. Alter capabilities can be used to transfer information.
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goes into a loop which polls the new process’s status. Shell ignores the contents
of the buffers and does not take any command input until it detects that the new
process has ceased to function. Shell then resumes using the buffers and accepting
commands. When the screen is not inherited from Shell, a set of buffers is requested
from Glui and made available to the new process. Shell continues to interpret
the input from the keyboard and remains active on the screen that it is currently
connected to.

Two mechanisms were introduced into the Walnut Kernel to allow processes to

determine the state of another process:

Cooee Messages are sent to a process and results in a Cooee reply message being
sent to a capability specified in the cooee message. The Cooee reply message is
automatically generated by the kernel and contains a field indicating whether

the process is running, frozen, sleeping or dead.

Peek System Call returns a value which indicates whether the process is running,

frozen, sleeping or dead.

The Cooee message was introduced first; however, polling processes to determine
their state proved to be useful and popular, so the more efficient peek mechanism was
provided. The peek mechanism has the advantage of a significantly lower overhead
as it requires only a single system call and the message passing mechanism is avoided.

A process object conforming to the Walnut Kernel conventions contains:

Startup Code Area (optional) This area may contain a small amount of code

used in starting a process.

File Descriptor Table (mandatory) This area contains the file descriptors for use
by the process. Note: The first 3 elements of the File Descriptor Table are
mandatory to allow for standard output, standard input and standard error.

The entries in this table are used by the Unix emulation library.

Private Data Pointer Table (mandatory) This area contains pointers to private
data. The table is indexed by the capability index of the executing code and

is used to locate data used by the executing code.
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Default Heap (optional) The default location for the creation of the heap.
Default Stack (optional) The default location for the creation of the stack.

To start a process, the shell takes a code object and a data object for the program
to run in the new process. The data object is duplicated. A new process is made
by invoking the kernel. The capabilities for the code object and the duplicate data
object are passed to the kernel as autoload capabilities®, the stack pointer and
program counter are set and the wakeup time for the new process is set to forever.
After the new process is created, Shell, modifies the pages of the object loaded into
the shell’s address space. Shell writes into the file descriptor table the capabilities for
the new process’s standard input, output and error, and any other file descriptors
that are required. The command line arguments and a capability for the object
containing the process’s environment strings are written into the heap space. A
message is sent to the process to wake the process up.

The method used to create processes allows multiple copies of a program to be
run simultaneously. The scheme is economical of both disk space and memory space
as it shares a single image of the code. The data is duplicated to prevent multiple

copies of a program interfering with each other.

9.7 Wyrm

Wyrm©is an arcade style game inspired by the games nibbles[Cor90] and worm[Toy91].
Apart from its frivolous value, Wyrm has been used to test the responsiveness of
the interface and a number of 10 mechanisms.

The current version of Wyrm makes use of the Unix emulation stream 10 code
to communicate via standard 10 with Glui which draws the parts of the game on the

screen. This version is highly responsive and shows that the two layers of software

5 Autoload capabilities are automatically loaded into the address space of a process when the

process 1s created.

A wyrm is a mythical creature of great power. The game was sarcastically named wyrm
because of its lack of speed. After tracing a number of implementation problems in the stream TO

code Wyrm now proudly lives up to its name.
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provided by the existing 10 structure are sufficiently quick for highly interactive
applications.

Farly in the development of the Unix emulation libraries a misplaced fflush had
caused us to believe that the system performance was inadequate. At that time, a
version of Wyrm which made direct use of the screen was written in an attempt to
determine where the bottleneck lay. This resulted in changes in the design of the

kernel and Glui to correctly support the sharing of memory mapped buffers.



Chapter 10

Security

The Walnut Kernel differs from the Password-Capability System in a number of
respects. This chapter outlines the effect of these differences on the security of the
Walnut Kernel. The Password-Capability System required that objects be continu-
ous and that there be sufficient storage to contain the object when the object was
created. The Walnut Kernel has paged objects which may have unallocated pages
within the object. Other significant differences include the introduction of the re-
strict operation by the Walnut Kernel, serial numbers having a physical meaning,
capabilities with non-random passwords, the SRMULTILOAD right and the pro-

tected freeze and thaw operations.

10.1 Objects

The Walnut Kernel uses three parameters to describe the storage and address space
requirements of an object. The Password-Capability System used a single parameter
to describe these features of an object. The separation of storage requirements
of an object from the size of the address space used by the object was aimed at
overcoming the limitations imposed by having a page sized protection granularity. Tt
also provided an opportunity to introduce a new degree of freedom into the Walnut
Kernel not found in the Password-Capability System. Figure 10.1 compares the
structures of the two systems’ objects.

The decoupling of the address space requirements from the storage space re-

195
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Figure 10.1: Comparison of Walnut Kernel and Password-Capability System Objects
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quirements increases the flexibility of the object mechanism. In the Walnut Kernel,
several uses have been proposed that make use of this flexibility. These applications
include the construction of single-object processes and the storage of source code
and its derived object code in the same object. Compiler designers tend to use a
large address space and populate it with widely separated code and data segments.
Compilers using this approach on the Password-Capability System would have com-
mitted a large amount of system disk resources. In contrast the Walnut Kernel
requires fewer resources.

The second suggested application places code into the same object as the com-
piled output. This mechanism ensures that source code is available to maintenance
programmers. The wide separation of the starting address of the source code from
the compiled object code eliminates the need to relocate code on code growth. This
simplifies the task of locating the start of the sections of an object, and allows the
object to be easily partitioned into source and code segments using the capability
mechanism.

The mechanism of assigning the pages of an object when the page was first
accessed introduced a secret channel. The channel resulted from the changing of
the state of an object when a read operation was carried out on memory accessed
through a read-only capability. To transfer information through this channel the

following pre-conditions must be fulfilled:
o All the pages of the volume must be allocated to objects on the volume

e There must be a known number of unassigned pages in the object through
which the information is to be conveyed and the location of unassigned pages

must be known.

The transmitter of the message sends it by reading from previously unassigned pages.
This results in the pages being assigned. After the assignment has taken place, the
receiver of the message determines the number of pages left by reading from a

collection of unassigned pages' until a fault results from attempting to allocate a

"The collection of pages used by the receiver must be disjoint from the set used by the

transmitter
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page. The address-fault exception handler of receiving process is invoked, and the
number of pages the receiver has managed to access corresponds to the message.
The existence of a new secret channel has been demonstrated. However, the
transmission mechanism can be easily frustrated by either freeing space on the vol-
ume, restricting information relating to the assignment of pages in shared objects,
or ensuring that read-only capabilities are assigned only to sections of objects which

are completely assigned.

10.2 Restrict

The security analysis of the Password-Capability System was based on a model
which required child capabilities to be no more powerful than their parents. The
introduction of the restrict operation allows parent capabilities to be made less
powerful than their children. The Walnut Kernel modified the requirement on child
capabilities to apply only at the instant of creation.

The initial motivation for restrict was to provide a mechanism which allowed
the kernel memory object to be made available, safely. to the initialization process.
When the Walnut Kernel is started an object is created which covers the kernel
program and data areas. The initialization process derives smaller views from the
kernel memory object, which contain buffers used to communicate with hardware
devices, and kernel variables which may be used to send information to processes
or allow possessors of the capability to perform restricted functions?. Possession
of the master capability for the kernel memory object allows the holder complete
control of the system. Early versions of the Walnut Kernel used a capability with a
well known value for the kernel memory object®. The restrict call was introduced to

allow the initialization process to remove all the rights of the kernel object’s master

capability after the smaller views were derived.

2This mechanism has been proposed as a method of allowing the kernel to be notified that the

system should be shutdown.

3The current system passes the value of a randomly selected master capability to the initial-
ization process. The restrict call is used at the completion of derivation as an additional security

measure.
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The restrict operation reduces the rights of a capability by performing a bitwise-
and of the rights mask supplied with the rights bitmap of the capability. The restrict
operation will only operate on capabilities which have suicide right.

To show that the Walnut Kernel retains the security properties of the Password-
Capability System, it is necessary to show that the restrict operation introduces no
behaviors that cannot be achieved under the Password-Capability System. The re-
strict operation places a system enforced limitation on the usage of a capability. The
limitation is equivalent to a program on the Password-Capability System voluntarily
foregoing the use of some of the rights conveyed by a capability. Thus, the Wal-
nut Kernel is no more subject to rights amplification than the Password-Capability
System.

Appendix B contains a formal description of the effects of the restrict operation.

10.3 Serial Numbers

The Walnut Kernel uses the less significant bits of the serial number to locate the
header page of the object. The remaining bits of the serial number are randomly
allocated (see figure 10.2). When an object is referenced, the block number of the
header page is extracted by performing a bitwise-and of the Disk-Block-Mask and
the presented serial number. The header page is accessed and the presented serial
number is compared with the serial number stored in the header page. If they match,
the operation which made reference to the object is allowed to continue. If there is
no match, an error is returned indicating that the capability is invalid. This differs
from the mechanism in the Password-Capability System where serial numbers of
objects were allocated randomly, and a table was used to convert the serial number
to a reference to the physical representation of an object.

This change has the potential to reduce the security of the system by reducing
the size of the name space that an individual must search to find a valid capability.
In practice the mechanism has a minimal effect on system security. It can be shown
that the impact of this change is equivalent, in the worst case, to reducing the serial
number’s length by 1 bit. The proof follows:

The random bits of the serial number are unpredictable hence those bits do not
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Figure 10.2: Components of the Walnut Kernel Serial Number

reduce the size of the space which must be searched.

The user has limited knowledge of the state of the physical device. The user can
only determine the header blocks which have been allocated to capabilities the user
already knows. This is the same level of knowledge as found in the password capa-
bility system. Furthermore, as the system operates, objects are created, destroyed,
enlarged and shrunk. This results in a continually changing set of candidate header
blocks. Selection from the changing random pool results in a random series of po-
tential header blocks.

Unless the disk holds exactly a power of two blocks, the most significant bit of
the block number will not be biased towards zero. The worst case would occur when
there is only a single block number with a serial number in which the top bit is set.
This would result in reducing the search space by a bit.

Assuming the worst case, the serial number is 30 bits in length*. Although the
serial number of an object was never regarded as a secret, a 2% item search space
for serial numbers is sufficiently large to make random probing for capabilities not

viable.

10.4 Non-Random Passwords

The Walnut Kernel introduced a mechanism for creating capabilities with passwords
specified by the process performing the derive operation. This mechanism was

introduced to allow the initialization process to create capabilities derived from the

“The top bit of the serial number is used to mark alter capabilities
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kernel memory object with known passwords. The kernel memory object has the
unique feature of retaining no state over a system reboot. All other objects reside on
a physical medium allowing the state of the object to remain in existence until the
object is destroyed. Accordingly, all the capabilities derived from the kernel memory
object are forgotten whenever the system reboots. Without the ability to generate
capabilities with known passwords, all processes using capabilities derived from the
kernel memory object would, after a reboot, have to handle the loss of access to
the view provided by that capability. The initialization process regenerates the
capabilities for the kernel memory object after each reboot before allowing other
processes to restart. Regenerating the capabilities simplifies the processes which
interface with the kernel memory object.

The ability to create capabilities with non-random passwords is essential to allow
capabilities without the SRMULTILOATD right to perform a useful role.

The creation of capabilities with known passwords has a minimal effect on the
security of the system. As the random password mechanism remains, the user is
still able to create capabilities which have a full range of password values providing
the same level of security as in the Password-Capability system. In addition, the
non-random mechanism can be used, with no impact on system security, in the two

following roles:

o A capability can be made available to a wide range of users by creating a
capability with a known name. Using a known name is equivalent to widely

advertising a capability with a random password.

e Deleted capabilities can be replaced by a possessor of a sufficiently powerful
capability. Accordingly those who knew the original name of the capability
can make use of the new capability created with the same passwords, entailing

no further spread of information

10.5 SRMULTILOAD Right

The SRMULTILOAD right was introduced to allow capabilities to be created which

could only be used by a specified process. The screen manager uses this mechanism.
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The screen manager acts as a screen multiplexer supporting several text screens.
The user can switch between screens by using a hot key sequence.

To speed up access to the screen and allow greater control over the screen, the
manager can grant direct access to the screen’s video buffer to a process. However,
the screen manager needs to be able to ensure that only one process can exercise
write access to the screen buffer at a time. When the hot key sequence is pressed, the
screen manager uses a protected freeze to prevent the process with a capability to
the screen buffer from executing, and switches control of the screen to a new process.
In this example, the screen buffer capabilities given out by the screen manager do
not have SRMULTITLOAD right; so only the designated process can use them. Other
processes cannot use the capability so if the capability is given to a third party the
screen’s contents cannot be altered through the use of that capability.

Capabilities without SRMULTILOAD right can only be used by processes whose
serial number is equal to the value of password 2 of the capability.

This mechanism allows only a decrease in the number of potential users of a
capability thus allowing tighter control over the use of capabilities. As it restricts
the potential domain of use of a capability it does not decrease the security of the

system.

10.6 Protected Freeze and Thaw

The protected freeze and thaw mechanism is an enhancement of the freeze and
thaw mechanism that allows a process to ensure that a process under its control
cannot awake unexpectedly through the action of another process.

The screen manger example (section 10.5) used for the SRMULTILOAD right
also employed a protected freeze and protected thaw. The motivation for the in-
troduction of this new mechanism was that the original freeze and thaw mechanism
could not prevent a third party process from waking up a process holding a capability
for a screen buffer and hence altering the contents of the screen.

The protected freeze mechanism and thaw mechanism uses a magic number to
prevent a process from being thawed unless all the processes which used a protected

freeze on a process have thawed the process. The magic numbers are XORed together
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and a process is only runnable when the number of protected freezes equals the
number of protected thaws and the product of the XOR operations is zero.

This mechanism provides an enhancement on an existing mechanism. The basic
properties of the mechanism do not affect the security model of the Walnut Kernel.
The mechanism has enhanced the security of the system by allowing a process to
exert control over the execution of another process without the risk of a third process

overriding the inhibition of execution.
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Chapter 11

Proposed Hardware

This chapter describes a proposal for a novel hardware environment on which the
Walnut Kernel may operate. The proposal presented here was originally jointly
developed by Dr Ronald Pose of the Department of Computer Science at Monash
University and myself in 1993. A paper [CP94] outlining the design of a node of
the multiprocessor and a mechanism for avoiding the problems associated with a
global system clock was presented to the Seventeenth Annual Computer Science
Conference. This paper is reproduced in appendix C. Further work based on this

proposal has since been undertaken by Dr Pose and a number of his postgraduate

and honors students [PFR94, FPR95].

11.1 Design Goals

The Secure RISC Multiprocessor Project undertook to design a scalable general
purpose multiprocessor. The architecture was required to support a wide range of
sizes varying through: single processor workstations, multiprocessor workstations,
medium size multiprocessors and large clustered multiprocessors.

In addition the system was required to be built of modular components, use
a passive backplane for interconnecting processors, provide high performance by
minimizing the potential for performance limiting bottlenecks in the bus structure,
be sufficiently flexible to support a variety of algorithms - rather than being tuned

to a specific class of algorithms - and provide mechanisms to support fault tolerance.

205
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A key requirement was to allow the number of processors to be increased grad-
ually when demand for processor power was required and budgets allowed. Targe
commercial multiprocessors tend to scale incrementally up to the size of the inter-
connection network. Scaling beyond this size typically requires replacing the inter-
connection network with a larger network. This can make upgrading prohibitively
expensive.

To achieve the goal of gradual scaling, we proposed an architecture where the
switching network was distributed evenly across the nodes of the system. We also
determined that the speed of processors and memory must be allowed to vary from
node to node. This decision allowed older, less fast, nodes to be retained in a useful
role in a system which had acquired more recent faster processor and memory units

while still exploiting the new units to their maximum potential.

11.2 Architecture

The design goals eliminated a number of popular multiprocessor organizations. Nei-
ther hypercube nor tree architectures were suitable as they lacked adequate path
redundancy for fault tolerance and they were unable to support well a wide variety
of algorithms. Dr Pose put forward a series of bus topologies with varying degrees
of interconnection between buses. These designs were mesh-based, providing re-
dundant paths and allowing for the possibility of minimising bottlenecks by routing
around network ‘hotspots’. We converted the proposed bus interconnection schemes
into a regular' implementable form. The resulting 4-way and 6-way interconnection
designs are illustrated in figure 11.1. Furthermore, we observed that the patterns
could be converted into cylindrical and spherical forms by folding the mesh in half
and connecting busses at the edges of the mesh.

Figure 11.2 provides the conventional representation of the processor intercon-
nection topology. The diagram shows the direct connections between processors.
The 4-way interconnection pattern allows a processor to directly communicate with

6 other processors, and the 6-way interconnection pattern allows a processor to

VA structure of repeated subunits
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communicate with 10 other processors.

Conventional clock distribution mechanisms were unlikely to be sufficiently scal-
able to be used on an architecture with widely variable topologies and bus lengths?.
To meet the demands posed by this architecture we proposed a system built from
a single type of node. Fach node had its own clock which it exported to the other

nodes on its bus segment when communicating.

11.3 Node Design

The Multiprocessor Node hoard (Figure 11.3) supports a combination of processor or
memory modules on the M-P bus (Memory - Processor Bus). These modules are to
be constructed on daughter boards which are plugged into the Multiprocessor Node
board. A single Multiprocessor Node board behaves as a classic SMP machine. Using
the 2 external ports it is possible to connect to an external network of multiprocessor
node boards using a passive backplane.

Fach Multiprocessor Node Board has a local clock pulse generator. This is used
to provide clock signals to the processor and memory daughter boards, the control
logic, and the arbiters. This clock is also gated out through the ports to clock the
external bus when the port becomes a bus master.

The requirement for a global clock is eliminated by using the FIFOs to decouple

the local clocks from the clock found on the external bus.

11.3.1 Functional Description

The Multiprocessor Node Board consists of 4 major functional blocks connected by

a state machine (the control logic). The blocks are:

e M-P Bus

e Bus Switching Unit

2A technique known as ‘Salphasic Clock Distribution’ [Chi90] can be used to distribute a syn-
chronous clock signal with the required accuracy. However, a synchronous design does not allow
processors to operate at arbitrary speeds, reducing debugging flexibility and negatively affecting

the cost of system expansion
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e 2 Port Interface Units

M-P Bus

The Memory-Processor bus (M-P bus) is a data, address, and control signal bus.
The data and address paths are 64 bits wide, with the data and address signals
multiplexed onto the bus. This bus runs using a split bus protocol provided by the
processors[MIP91] on the daughter boards plugged into the Multiprocessor Node
Board.

The processor units and memory units on the M-P bus form a classical shared

memory, SMP machine.

Bus Switching Unit

To help provide off-board communications the switching unit provides 4 operational

states:
e Port A connect Port B

e M-P Bus connect Port A
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e M-P Bus connect Port B

e No Connection

Port Interface Units

Fach port has a port interface unit which performs the 2 functions of transmitting
data onto a bus and receiving data from the bus.

To receive data this unit recognizes relevant information on the bus and accepts
it into the input FIFO, otherwise bus traffic is ignored.

To transmit data the port interface unit arbitrates for the bus, and then outputs

data from the output FIFO.

11.3.2 Operational Description

All addresses in the system are partitioned into 2 regions. The most significant
bits of the address determine which Multiprocessor Node Board is to be accessed,
and the least significant bits determine the address of the memory location on the
Multiprocessor Node Board (see Figure 11.4). Two Multiprocessor Node board
numbers are reserved: node board number zero always refers to memory local to
the node board, and the maximum node board number refers to hardware control
memory local to the node board.

The Node Number is used to index into a routing look-up table held in static
RAM, which is decoded to determine where the memory location can be found.

There are three types of access available to the processor:
e local Memory - Memory is addressed directly over the M-P bus.
e Remote Memory - Discussed in Section 11.5.2

e Hardware Control Memory - The bus ports are isolated and the routing (look-

up) tables are modified by the processors.

In addition a Memory to Memory DMA transfer facility is available to facilitate

page sized transfers.
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This section illustrates the operation of routing data between memory and processor

by following the path of a memory access

Transfers between nodes employ a packet structure. A packet comprises a header,

a body containing the data and a packet check sum. The header contains the source

and destination addresses, the packet size and the packet type. Packet types include

read, write and an indication of whether the destination is a processor or memory.

Packets are constructed and interpreted by control logic in the multiprocessor node

board.

[ocal memory operations use the intrinsic addressing mechanism of the proces-

SOr.
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Memory accesses are routed through the network in a manner similar to a packet
based store-and-forward network.

When a processor utters an off-board address, the high order bits of the address
are used to index the M-P Bus look-up table. The look-up table contains bits which
indicate which port should be used to attempt the access (Figure 11.5).

If the output FIFO on the required port is below the high water mark (the point
at which it is guaranteed that the largest permissible packet will fit in the FTFO) and
there is no traffic currently passing through the switch, then the switch is connected
to the appropriate port. A packet header is constructed and transferred to the FIFQ.
Data is transferred to the output FIFQO. A check sum is added to the FIFO. If the
conditions are not met the processor should reattempt the operation later.

When there is data in the output FIFO and the bus to which the port connects
is idle, an attempt is made to arbitrate for the appropriate bus (The arbiter is
discussed in Section 11.3.4). When the port becomes the bus master the packet is
broadcast onto the bus.

The high order bits of the destination address of the packet on the bus are used
to index into the port look-up tables of all ports attached to the bus. If the port’s
‘Read In” bit is set and the input FIFQ is below the high water mark, then the data
on the bus is read into the FIFO, otherwise the data is ignored.

The node number of the destination address in the header of the first packet in
the FIFO is used to index the M-P Bus look-up table. Tf the ‘In’ bit is set, the
switch allows the contents of the packet to be directed to the memory on the M-P
Bus; otherwise the switch is set to permit the flow of data from the input FIFO to
the opposite output FIFO.

11.3.3 Design Features

The M-P bus and switched external memory packet transfer allows better utilization
of processor memory resources. Both the external and M-P buses may be loaded to
the level providing optimal utilization of the bus capacity.

The design introduces a memory hierarchy based on the number of hops between

nodes. This feature introduces a new degree of flexibility in the management of
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both memory pages and processes. The throughput of a process is maximized by
relocation of the process and/or its data to minimize the memory access time. The
optimization of overall system performance is complicated by memory’s being shared
by multiple processors. Peak performance is achieved by balancing processor load,
memory load, and process average access time [BFS89].

By employing FIFOs on each port, the risk of being unable to accept data on
a port due to traffic on the M-P bus to the other bus’s port is reduced. However,
this design decision has the cost of adding latency to every transfer through a mul-
tiprocessor node. The presence of FIFOs on each port is especially valuable where
large packet transfers are expected as it effectively doubles the depth of the FIFOs
for flow through traffic, hence reducing the risk that a packet will not be accepted
because a FIFO is above the high water mark.

11.3.4 Arbitration

The project has considered many arbiter designs. The designs were evaluated against

the following required properties:

e Fairness - Fach node must have a similar probability of becoming bus master

as the starvation of a node would prevent the delivery of data.
o Guaranteed Result - A bus master is selected every time an attempt is made.

e Varying Asynchronous Clocks - Arbiters are synchronous with respect to their

local clock.

The mechanism proposed in the paper used a priority based arbiter to resolve
bus master conflicts. Priorities were rotated after each arbitration to ensure long-
term fairness. The implementation employed a set of bus-request lines and a set
of acknowledge lines to provide a handshake. This ensured that the priority-based
phase was not undertaken until after all nodes on the bus had acknowledged that
they had recorded the request state of all other nodes. The recording of the request
state of other nodes was necessary to reduce the effects of potential meta-stabilities

in the components of the arbiter on the result. The implementation was deficient
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in that it reduced the arbitration speed to a multiple of the speed of the clock on
the slowest board on a bus. A variant on this design was proposed which used
a clock which was independent of the node’s master clock to supply the arbiters’
requirements. The independent arbitration clock could operate at a high speed and
could be run at a uniform rate across the boards resulting in an improvement in the
speed of arbitration and a simplification of the arbitration circuitry.

Dr Pose currently has students working on alternative solutions to be imple-
mented in VLSI. Work undertaken by Ted Kehl of the Department of Computer
Science and Engineering at the University of Washington in the areas of self tun-
ing of VLSI circuits and a mutual exclusion element which restricts the spread of
metastable voltages [KB] offers the opportunity to produce a simple arbiter with

the required properties.
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Chapter 12

Continuing & Future Work

This chapter outlines likely future developments in the Monash Secure RISC Mul-
tiprocessor project for the system software and the hardware. Section 12.1 covers

software and section 12.2 covers hardware developments.

12.1 Software

The Walnut Kernel provides an environment which supports persistent shared mem-
ory. This section outlines further work on the kernel itself and on a number of
projects which exploit its features. The section also details the advantages of us-
ing a capability based operating system for these tasks and problems likely to be

encountered by implementors of these projects.

12.1.1 Kernel

Development of rent and charging code have both been postponed in the current
version as their presence was not required during the initial development phase. Tt
is planned to implement these monetary functions and disk reconstruction code in
the near future.

Although the current kernel has functions which allow the manipulation of
money, it does not contain code to implement charging by kernel operations and

rent collection. Provision has been made for the implementation of these features.
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Charging for kernel services is intended to be performed by debiting a process
a fixed amount of money per service when the service is requested. This allows the
budget required for the needs of a process to be easily calculated.

The rent collection mechanism is intended to run periodically. Tt will examine
each object mounted on a volume and debit the appropriate amount of rent. Typi-
cally the rent collector will run when the system load is light. As the rent collector
may visit objects at irregular intervals', it is necessary to store a time stamp in each
object to determine when rent was last collected and the amount currently due.

At present the Walnut Kernel provides no mechanism for the recovery of cor-
rupted volumes. Provision has been made for reconstruction software to be incor-
porated. It is expected that the reconstruction software would consult the bitmap
which describes the allocation of pages on the volume and scan the volume for pages
containing magic numbers indicating that the page contains a header page. By com-
paring this information it should be possible to confirm that a volume has not been
corrupted when the volume is mounted and failing that restore at least part of the

lost data.

12.1.2 User Code

User Interface

The Walnut Kernel currently supports a text based interface which provides screen
multiplexing - the interface provides a number of virtual screens which may be
connected to processes, and the user may select for viewing any virtual screen by
using a sequence of keystrokes. This interface was developed by Mr Glen Pringle.

Support for a graphical interface is planned. This will require modification of
the kernel by the addition of code to control the mode of the graphics card.

At present the text based interface interacts with a shell which supports the
execution of programs and basic object management, using a simple interactive
command language. Where traditional operating systems use a hierarchical direc-
tory structure, this shell employs a set based representation directory structure. Mr

Glen Pringle is continuing work on the shell.

"High system load or unmounting a disk may result in rent collection operation being delayed
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Unix Compatibility Library

To allow the exploitation of the significant quantities of existing C code available to
UNIX systems, a partial emulation of the C libraries which provide an interface to
UNIX has been constructed.

The input-output and memory allocation functions of the standard C library are
based on the functionality found in UNIX operating system. As the Walnut Kernel
is based on a different paradigm, code which emulates the features of UNIX using
the functions provided by the Walnut Kernel has been written. This work has been
only partially completed.

Mr Carlo Kopp’s work on a library that emulates the functionality provided by
UNIX for standard input-output is nearing completion.

Professor Chris Wallace, Mr Glen Pringle and myself have developed a partial
emulation of the standard C memory allocation routines. Work is continuing in this
area.

Work is also continuing on the development of a replacement for standard C

libraries where existing libraries are unable to operate in the environment provided

by the Walnut Kernel.

Shared Libraries

The Walnut Kernel was designed to facilitate the sharing of memory objects. The
development of shared libraries under this environment presents a number of chal-
lenges. It is necessary to provide mechanisms which allow the relocation of code, the
dynamic linking of code and support the storage of variables local to the instance
of the shared library being used. In addition it is necessary to consider policies for
updating and possibly removing old libraries.

Preliminary work has been performed to demonstrate possible mechanisms for
implementing shared libraries. This work exploited the 1486’s support of position
independent code.

A number of possible approaches to the problem of implementing shared libraries
have been put forward. These include:

Locating modules of the libraries at a fixed virtual address. This requires
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programs which use modules from these libraries to load the module and any pages
required to store data local to the instance of the module at a fixed location in the
process’s address space. This mechanism is simple to implement and allows the most
efficient addressing modes available on the processor to be used. It has significant
disadvantages in that it places restrictions on the organization of program memory,
and may prevent modules from multiple libraries being used in the same program
due to clashes in address space usage.

Where the processor provides support for position-independent code, a table of
pointers located at a known place in the process’s address space can be used to
access data items and subroutines which are not contained within the code module.
The table can be indexed with the capability index allowing the shared routines to be
arbitrarily placed in the available address space. This mechanism offers flexibility in
the structuring of process address space and does not prevent modules from multiple
libraries being employed. The use of indirect access to data and code outside the
shared module reduces the efficiency of the code.

An alternative mechanism for use on systems supporting position independent-
code is to employ a buddy scheme. This method places a data object at a fixed
distance away from the code object. This object would contain all references and
local storage for the instance of the shared module. This scheme offers the majority
of the features of the table-based mechanism described above while surrendering
only a marginal degree of flexibility in the organization of the process address space.
The mechanism also allows faster addressing modes to be used. This is because code
can be generated in the buddy page that makes most efficient use of the available
modes while allowing the code to be customised for access to data in the current
instance of the shared library.

Professor Chris Wallace has students currently investigating the implementation
of shared libraries under the Walnut Kernel.

With suitable language support it is possible to dynamically replace a shared
library. TLanguages such as Frlang? provide mechanisms which allow the most recent

version of a function to be called in preference to the version existing at the time of

ZA functional language developed at Ericsson and Ellemtel Computer Science Taboratories

[AVWO3]
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starting the program. More traditional languages, such as C, do not provide direct
support for the replacement of a module.

To support the dynamic replacement of modules, without language support, it
is necessary to check for the existence of a new module each time a function in the
module is called. This process is potentially expensive and careful evaluation of the

costs and benefits of providing dynamic replacement of modules is required.

12.2 Hardware

Chapter 11 described the design of the proposed hardware and described work cur-
rently being undertaken by Dr Ronald Pose of the Department of Computer Sci-
ence, Monash University and his students. This work covers the implementation
of hardware based on the principles outlined in [CP94] and VIL.SI-based distributed
arbitration circuitry.

To optimise performance on the environment presented to the operating system
by this hardware requires the operating system to dynamically relocate both pro-
cesses and data pages. To provide best performance it is necessary to balance the
competing goals of increasing parallelism by employing a greater number of pro-
cessors and decreasing the overhead of interprocess communication by limiting the
number of processors. The wide range of memory access speeds provided by this
design makes this optimisation complex. It is a significant research area in its own
right.

Recent research by Dunning and Ramakrishnan of Bowling Green State Uni-
versity [RD93] has shown that the assignment of tasks to a multiprocessor system
of moderate size is an NP-complete problem. Tt is expected that work on assign-
ment of tasks will rely on heuristics and concentrate on the avoidance of worst case
performance.

The original intention was to implement the Walnut Kernel on the proposed
hardware. However, to speed development, a 1486 based platform was selected. A

port of the Walnut Kernel to the proposed hardware is still intended.
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Chapter 13

Conclusion

The Secure RISC Architecture project is the successor to the Password-Capability
System. The features of the kernel on the earlier system have been retained. The
Walnut Kernel, however, incorporates significant innovations and alterations to en-
hance the applicability of the kernel to a wide range of commonly available hardware
and to meet the needs of programmers. The hardware component of the project is
scalable from a single processor system to a cluster of multiprocessors. The wide
scaling range is gained by abandoning centralised clocks and distributing switch-
ing hardware. This chapter identifies the features of the Walnut Kernel and of the
proposed hardware and evaluates them in the context of other systems.

The design of the Walnut Kernel incorporates significant changes to the original
password-capability model to allow a more portable implementation. It demon-
strates that a useful system can be constructed using the password-capability model
which is easily transportable between hardware platforms. Furthermore, the Walnut
Kernel showed that portability has not been won at the cost of security.

Significant departures from the Password-Capability System include moving from
a system based on capability registers (a segment register like mechanism) to using
paging for all access control; the introduction of the subprocess mechanism; the
ability to restrict the rights of a capability after it has been created; and the intro-
duction of the SRMULTILOAD mechanism and the ability to create capabilities
with non-random passwords.

The shift from capability registers to a page-based implementation has made the

223
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granularity of protection coarser. While fine grained control has been lost, it is not
crippling. This change forces programmers to use capabilities which cover larger
regions of memory than those used in the Password-Capability System. If space is
at a premium, programmers can aggregate small data structures, which have the
same security requirements, into a single object. Offsetting the coarsening of the
protection domain is the ability to load and access a far greater number of objects
at one time. This reduces the number of load and unload operations required, in
comparison to the Password-Capability System, and allows the programmer greater

flexibility.

Difficulties found while writing application programs have motivated changes to

the functions provided by the kernel.

The message passing mechanism was required to handle messages of different
types in different ways and to guarantee the delivery of high priority messages. This
requirement was met by introducing a subprocess mechanism, and functions which
allow the reservation of mail boxes based on target subprocess or message prefix.
The subprocess mechanism provides elegant handling of events asynchronous to a
process. The mechanism can also be used to implement a form of co-operative

multitasking within a process.

The initialisation process requires a capability for the physical memory where the
kernel resides. Although the passwords for this capability are randomly allocated,
this situation presents a significant opportunity for attacking the system. To improve
security it was useful to be able to remove rights, through the restrict operation,
from this and other capabilities. The ability to remove rights from a capability after
it has been created is a fundamental change from the Password-Capability System.
Access to this capability would allow a process unfettered access to the system. The
restrict operation deletes rights from a capability preventing those rights being
used by processes that load the capability after the restrict operation has been
performed. Instances of the capability loaded at the time of the restrict operation
are unaffected. The operation enhances the security of the system by pruning rights

present in the capability tree.

While writing the screen and keyboard device manager - Glui - it was found
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that device managers needed greater control over processes using capabilities which
allow access to raw devices. A new mechanism to control the scheduling of a process
was introduced, along with a mechanism to limit the use of a capability to a single
process. Capabilities without the SRMULTILOAD right can only be loaded by
processes with a serial number equivalent to the password 2 of the capability. This
mechanism provides a a method of restricting the use of a capability to a specific
process. This mechanism is teamed with the protected freeze and thaw opera-
tions. These operations allow a process to be frozen and to prevent another process

from unfreezing it.

To make the SRMULTILOAD right useful it was necessary to add the ability to
specify the passwords of a derived capability. This mechanism increases flexibility,
as it allows capabilities with widely known values to be used as mechanisms for

accessing services, and it does not reduce the security of the system

Another significant difference from the Password-Capability System is that part
of the serial number of a capability under the Walnut Kernel is used to represent
the disk block of the header block of the object. This change has been shown to
have a minimal cost in terms of the ability to guess a capability. At most one bit of

the serial number is lost.

The current fixed queue size round robin scheduling mechanism is inadequate
for a production system. However, a user process providing storage for the names
of processes to be scheduled and long and medium termed scheduling is planned to

overcome the deficiencies of current scheduler.

Two types of windows have been introduced into the Walnut Kernel. This makes
the programmer’s task more complex. All capabilities can be loaded into small
windows but only a small fraction of the process address space is available for small
windows. Some capabilities cannot be loaded into a large window. The convenience

of the size of large windows is traded for the flexibility of small windows.

Execute only code is not available under the Walnut Kernel as its target popu-
lation of processors does not generally support execute without read in page table
entries. This prevents the use of embedding capabilities in execute only code as a

mechanism of protecting capabilities. Furthermore, it prevents the hiding of algo-
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rithms and implementations from users of library code. Mechanisms that provide

these protections using the available facilities are being investigated.

The Walnut Kernel does not have an adequate backup mechanism. Currently
volumes can be archived at the block level and restored after a failure of the media.
However, although individual users can backup the contents of an object they can-
not backup an object itself. The set of capabilities derived for the object and the
capability for the object is lost. The partial backup and restore problem is common
to most capability based systems. In addition, there is a need to eliminate tamper-

ing with the contents of a backed up object to prevent manipulation of the money

field.

Unlike the Password-Capability System, which was designed around custom
hardware, the Walnut Kernel was written with portability as a high priority. The
design traded the advantageous features of a specific architecture for a more generic
set of functions. In the case of the 1486 implementation this meant sacrificing the
fine grained control offered by segment registers for the more widely available paging

mechanism.

The Walnut Kernel incorporates a general mechanism for accessing devices by
representing the interfaces to devices as operations performed on blocks of memory
mapped into the kernel’s address space. This model of interaction between the
kernel and hardware exactly describes the actions of a multiprocessor system with
specialised 10O controllers which write into shared memory blocks. It is also a good fit
for uniprocessor versions of the kernel as a timer interrupt or a device interrupt can
be used to activate an interrupt service routine which treats the memory block as
memory shared with the kernel. This model has the valuable side effect of allowing
interrupt service routines to be written as if they are separate from the kernel. This
simplifies the task of porting the kernel from system to system as the device drivers

are clearly identifiable and independent of the kernel code.

A simple but effective memory management model was adopted for managing
the physical memory. Part of the physical memory is reserved for the kernel. The
kernel is loaded into this section of memory and remains resident. The kernel area

is not paged and is present in all process address spaces. The physical memory used
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to hold pages of objects is managed by allocating new pages - on demand - from
the list of free pages. Pages are added to the free list by a procedure in the kernel
which periodically invalidates and disposes of clean pages, and writes dirty pages to
disk. The simple expedient of periodically disposing of page tables and maintaining
a last reference time for each page of an object allows the kernel to ensure that a

page cannot be accessed and can safely be removed from the physical memory.

The Walnut Kernel allows a far greater number of capabilities to be loaded by a
process than the Password-Capability System. Also, the address space of a process is
considerably larger in the Walnut Kernel. These facilities are partial compensation

for the loss of fine grained access control that was provided by specialised hardware.

The performance measurements indicate that the Walnut Kernel provides similar
performance to a conventional operating system, where the operations are compa-
rable. This demonstrates that capability based operating systems in general and
the Walnut Kernel in particular could become practical alternatives to conventional

operating systems.

The survey clustered operating systems into categories based on the kernel type
and the dominant paradigm of the kernel. From a commercial perspective the most
successful operating system has a monolithic kernel and has a file based paradigm.
Small kernel and micro-kernel based operating systems have emerged as both pro-
duction and research systems. Capability based operating systems tended to be

experimental.

KeyKOS demonstrated that a capability based operating system offered features
and facilities demanded by commercial computing users. Of particular importance
to the commercial environment were the high level of security, ease of sharing data
and the ability to accurately charge for services. Furthermore, a capability based
operating system provided these features as a natural extension of the operating

system.

The concepts of small kernels and micro-kernels are valuable as they allow soft-
ware engineering practices to be applied to systems programming. Critical pieces of
code are isolated, and well defined interfaces are used for communication between

both kernel components and layers of software providing services.
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The Walnut Kernel was designed as a small kernel to provide the functionality
required in a commercial environment. The password-capability mechanism is more
flexible than the alternatives of segregation and tagging. Tagged architectures are
demonstrably not cost efficient, while segregated architectures are more complicated
and less flexible. The ability to directly manipulate a capability and treat it as ordi-
nary data eliminates the need for the kernel to mediate all operations on capabilities.
If the kernel is required to perform all operations on capabilities the set of opera-
tions is limited to those explicitly provided for by the operating system designer.
The Walnut Kernel allows user code to extend the range of operations available for
manipulating a capability. Examples of where this ability might be useful include
communicating capabilities through an untrusted third party. The Walnut Kernel
would allow the most up-to-date encryption algorithms to be employed. Alternative
systems are either unable to provide this facility or the algorithm is fixed in the

kernel.

Single address space operating systems such as Opal provide a more direct link
between capabilities and addresses than the load /unload capability model employed
by the Walnut Kernel. This simplifies the application of the paradigm and reduces
complexity for the programmer. Users of a SASOS list a set of capabilities for
the protection domain that the program is allowed to use. Users of the Walnut
Kernel are required to explicitly load capabilities into their address space. The Wal-
nut Kernel enjoys greater portability than SASOS operating systems as an address
space significantly larger than 32 bits is required to adequately support the SASOS
paradigm. The Walnut Kernel functions well in a 32 bit address space.

The container mechanism used in Grasshopper is more general than the loading
of segments provided by the Walnut Kernel. Containers are a collection of segments
of objects. Containers may be nested within other containers. Under Grasshopper,
the locus of a process’s execution jumps from container to container as it proceeds.
Similar functionality could be emulated under the Walnut Kernel by employing a
set of routines within each Walnut Kernel process that load and unload segments
based on addressing exceptions. However, the implementation would be less elegant

and less efficient.
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The hardware proposed is novel in two respects. The hardware distributes the
interprocessor switches allowing for cost effective system growth, and it eliminates
the requirements for central clocking of the system.

Current multiprocessors, such as the CM-5, use centralised interconnects which
allow easy growth up to the capacity of the interconnect. Adding a single processor
when an interconnect is full, incurs the cost of adding either a new interconnection
module or replacing the existing interconnect. The cost of the interconnect dom-
inates the sizing of the system. By distributing the switching hardware, we allow
the interconnect to grow as the system expands. This allows the number of mod-
ules to be right sized for the problem, as the cost of the interconnection no longer
determines the most cost efficient size of the system.

Eliminating the requirement for central clocking, the multiprocessor allows greater
flexibility in the physical layout of the system. In addition, it lifts size constraints
on a multiprocessor allowing systems to be constructed using multiple cages, and
even cages separated by large physical distances. This allows systems to be easily
put together for large jobs. The mechanism proposed has the additional benefit of
allowing processors to operate at different clock speeds within the same multipro-
cessor. This has significant advantages in that allows investment in earlier model
processors to be retained without losing the full benefit of incorporation of faster
new processors into the system.

The Secure RISC Architecture project incorporates both hardware and software
elements to address the problem of building systems which range in size from single
processor workstations through to large multi-cabinet multiprocessors. The Walnut
Kernel operating system and the hardware were designed to be mutually supportive

to provide performance, security and reliability.
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Appendix A

User Level Programmer’s (Guide

This appendix is drawn from the technical report 95/222 entitled The Walnut Ker-
nel: User Level Programmer’s Guide. This technical report is available from the

Department of Computer Science, Monash University:

Title: The Walnut Kernel: User Level Programmer’s Guide
Author: Maurice Castro

No.: 95/222

Revised: November 1995

I present it in support of my thesis.
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A.1 Overview

The Walnut Kernel is a capability-based operating system under development in
the Department of Computer Science at Monash University. This operating sys-
tem draws on the concepts of and experience gained from the Password-Capability
System’.

The Walnut Kernel employs 128-bit names - Password-Capabilities - for views
onto persistent objects. The random allocation of names within a sparse name space
provides a known level of statistical security for views and the contents of objects.
Associated with each name is a set of rights which entitle the holder of the capability
to access a section of the named object in a specified way.

The Walnut Kernel was designed as a portable operating system although it
currently runs only on 80486 based PCUs. Programs are compiled on a FreeBSD 1.1
system and transferred onto the target machine on floppy disks. Work is continuing
on the development of the kernel as well as the development of interfaces, shells,
and utilities for the system.

This document contains a programmer’s manual for the Walnut Kernel. The
document is subject to revision as the kernel alters and currently describes only the
lowest level of the kernel interface.
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A.2 Objects

All entities controlled by the Walnut Kernel are objects. A Walnut Kernel object is
analogous to a segment in segmented computer architecture. It comprises an ordered
array of bytes. An individual byte is identified by its ‘offset’, a number indexing
the array. The first byte has offset zero. An object is defined by the following
characteristics:

Maximum Offset The largest addressed offset in the object. (Note: this value is
set on creation and automatically increases, as long as there are pages available
in the allocated space of the object)

Limit The largest addressable offset allowed in the object.

Maximum Size The maximum number of bytes guaranteed to be available to an
object. The number of bytes includes storage for the objects capabilities and
dope vectors. (In practice this value represents the maximum number of pages
and header pages guaranteed to be available to an object. The number of pages
is calculated by dividing the maximum size by the page size and rounding
upwards.)

Maximum Capabilities The maximum number of capabilities that can represent
this object. (Note: this value automatically increases, as long as there is space
available to hold the new derived capabilities)

Money The amount of money the object has available. Sufficient money must be
present in an object to pay for its resource consumption.

Fach object has at least one capability that allows access to the object - the
object’s Master Capability. Deletion of the object’s master capability results in
the deletion of the object. Other capabilities for views of the object are derived
from the master capability or its descendants.
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A.3 Capabilities

The Walnut Kernel employs password capabilities to identify access rights to objects.
Fach capability (see figure A.1) consists of a 128 bit identifier composed of four 32 bit
values: a volume number, a serial number, password 1 and password 2. Associated
with each capability is a view which determines the region of an object a capability
applies to, a set of user rights, and a set of system rights which control how that
capability is to be used.

32 bits 32 bits 32 bits 32 bits

Volume Serial Password 1 Password 2

Figure A.1: A Password Capability

A.3.1 View

A view is the attribute of a capability that defines the region of the object that can
be addressed by the possessor of the capability. Views are contiguous regions and
are defined by an offset from the base of the object and an extent. The view entitles
the user to address part of an object, it does not guarantee that pages are contained
in that region nor that the pages are readable by user processes.

A.3.2 User Rights

User rights consist of a set of 32 bits which are managed by the kernel. The kernel
attaches no meaning to the user rights bits. They are intended to be used by user
processes to implement access to services in a way that is analogous to the control
system rights bits have over access to kernel services.

A.3.3 System Rights

The system rights associated with a capability are encoded in a 32-bit word, basically
as the OR of bits representing particular rights (the SRSEND field is an exception).
For the numeric value of the system rights symbols see figure A.4.

SRDERIVE - Allow capabilities to be derived from this capability.
SRSUICIDE - Allow this capability to destroy itself and its children.

SRDEPOSIT - Allow the holder of this capability to deposit money into the ob-

ject.
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SRWITHDRAW - Allow the holder of this capability to withdraw money from
the object.

SRREAD - Allow the holder of this capability to read from the view.
SRWRITE - Allow the holder of this capability to write to the view.
SREXECUTE - Not used.

SRUSER - Allow user processes to use the view.

SRPEEK - Allow the holder of this capability to perform a peek system call on
the process represented by this capability (see A.11.2).

SRMULTILOAD - Allow this capability to be loaded by any process. If this right

is absent then only processes with a serial number equivalent to the capability’s
password 2 may load this capability.

SRSEND - an 8-bit field which, if non-zero, specifies the subprocess to which
messages may be sent by using this capability. This field has two special
values: 0xff - allow messages to be sent to any subprocess of the process, and
Oxfe - disallow messages to subprocess zero but allow messages to be sent to
any other subprocess of the process.

A.3.4 Deriving Capabilities

Derived capabilities have equal or lesser rights than than their parent capability, at
the time of derivation. Suicide right is an exception as this right may be added to
the children of capabilities which do not hold this right.

The rights of a parent capability may be reduced through the use of the re-
strict system call after a child capability has been derived. The child capability is
unaffected by the restriction of the parent capabilities rights.
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A.4 Process Structure

A process in the Walnut Kernel is essentially an object which contains state infor-
mation relating to the execution of the process. The minimal information found
within a process object is:

e Sub-process table

o Message slots

e Table of Loaded Capabilities
e Process cash

o lock words

e Parameter page

e Address map

Of these only the parameter page and the address map are directly accessible to the
user process. The address map is read-only. The parameter block and the remainder
of process object are both readable and writable by the user process.

The process structure is detailed in diagram figure A.2.

A.4.1 Process Address Space

The address space of a process operating under the Walnut Kernel is composed of
three regions:

Kernel Area is located at the bottom of the address space and is not addressable
by user processes.

Small Window Area is located above the Kernel Area and has a page sized gran-
ularity. Single pages or multiple pages of objects may be mapped into this
region of the address space by a user process. These mapped regions always
begin and end on a page boundary.

Large Window Area is located above the Small Window Area. Tt has a coarser
granularity than the Small Window Area. The first large window contains the
Process Object. All other large windows are allocated by the process.

On a system with a 4 kilobyte page size, large windows have a granularity of 4
megabytes and small windows have a granularity of 4 kilobytes.

Two distinct paradigms are used to describe how the address is populated with
objects.

The Password-Capability system used the term ‘Window Registers’ to describe
a set of segment registers. The Password-Capability system used the upper bits of
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Oxffffffff
0xf£fb00000
large windows
0x£f£700000
H+0x400000
R
M Message Area ‘
P Parameter Block ( Process object
A Address Map
H
| |
| |
small windows
0x401000
0x400000
0xd000 Kernel Area
0xc000 The Wall
0x00000000
Description Constant Name Value
R remainder of process object PARAMADDRESS + 0x1000 0x1011000
M  message area EXTRAADDRESS 0x101004c
P parameter page PARAMADDRESS 0x1010000
A address map 0x100f000
H  process header PROCHDADDRESS 0x1000000

Figure A.2: Process Address Space: This diagram describes the major features
of the address space seen by a process operating on a system with 4 kilobyte pages.
The message area and the parameter block are collectively known as the parameter

page.
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the virtual address to indicate which register was in use. We retain this terminology
in the Walnut Kernel. The analogy between the two systems is imperfect as: the
Walnut Kernel supports two classes of window registers; and although the number
of window registers is fixed on the Walnut Kernel the location of the registers in
the virtual address space is not fixed, under the Password-Capability System both
of these parameters were constant.

The second paradigm describes the operation of the system. On a system with
4 kilobyte pages, it views the address space as two address ranges. The address
range from 0x400000 to Oxffffff can have objects loaded on 4 kilobyte boundaries.
The address range 0x1400000 to Oxffffffff has objects loaded on 4 megabyte
boundaries.

A.4.2 Parameter Page

This page is composed of two parts: the parameter block and the message area.
The parameter block is a structure defined in the file param.h. This block is used
to pass parameters to the kernel when a system call is made. The second area is
used to pass additional information to the kernel and to receive information from
the kernel. The information passed via the message area varies with the type of call.

Parameter Block

The declaration of the parameter block structure is found in figure A.3.
The fields are named after the function they are used for in the majority of calls.
The values contained in the fields are:

error The error field contains an integer error value on returning from a system
call. If the value is zero then the system call completed successfully. If the
value is greater than zero the system call could not be completed successfully.
If the return value is negative? or greater than 20000000, an internal kernel
error has occurred: contact the system’s maintainer urgently and report the
value. The file include/kerror.h contains a translation table which allows error
values to be converted to ascii strings.

vol serial passl pass2 The capability field composed of vol, serial, passl and
pass2, contains either a capability being passed to a system call or a capa-
bility being passed back by a system call.

srights The system rights field contains one of

e a bitmap indicating the system rights provided by a capability (Figure
A4 defines the symbolic and numeric forms of the system rights bits)

e a mask which restricts the system rights provided to a derived capability

2Negative error values are used internally by the kernel to indicate partial completion of a
system call which cannot be completed because of a transient problem.
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[k —mm */
/% Parameter Structure */
[k —mm */
typedef struct Paramst {

Sw error;

Uw vol; /* volume ID */

Uw serial; /* serial in volume */

Uw passi; /* password 1 */

Uw pass2; /* password 2 */

Uw srights; /* System rights */

Uw urights; /* User rights */

Sw base; /* O0ffset of cap from front of object */

Sw limit; /* Max addressing offset from base */

/* Zero means "to end of object" */

Sw money; /* money word */

Uw type; /* Type of object */

Sw maxoff; /* Max addressing offset in whole object */

Sw maxsz; /* Max size of defined content */

Sw maxcap; /* Max capabilities now allowed */

Sw offset; /* An offset in a capability window */

Sw subpn; /* A subprocess number */

Sw cindex; /* Index of a capl in a process TLC */

Uw clocktime;

Uw reserve; /* Non-zero shows reserved by sub-process */

} Param;

Figure A.3: Parameter Block Declaration
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e a set of limits used in the creation of a process

e an encoded process state when inquiring about a process state
urights The user rights field contains either

e a bitmap indicating the user rights provided by a capability
e a mask which restricts the user rights provided to a derived capability

base The base field contains an offset from the beginning of a view or - on process
creation - the time, in seconds, at which the new process is scheduled to wake

up.
limit The limit field contains one of

e the length of a message
e the maximum addressable offset of an object

e the maximum size of a view
money The money field contains one of

e the amount of money in an object
e the amount of money to be deposited or withdrawn
e the amount of money to be sent with a message
e the amount of money received from a message
type The type field contains the object type. The top bit of this field is set if

the object is a process. The following type values are reserved by the kernel:
00000000

00000003 Prototype process
0000ffff Physical memory object
80000000

80000002 Drive process

80000003 Prototype process

maxoff The maximum offset field contains the current maximum offset of an object.
maxsz The maximum size field contains the current maximum size of an object.

maxcap The maximum capability field contains the current maximum number of
capabilities for a process

offset The offset field contains an offset into a process’s address space.

subpn The subprocess number field contains the destination subprocess number
for a message.
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cindex The capability index field contains the index into the table of loaded capa-

bilities that a capability occupies.

clocktime The clocktime field, after returning from a system call, contains the

current time in seconds. The clocktime field is set to the wakeup time for a

process when a wait system call is made.

reserve The reserve field provides both a locking function which prevents other

subprocesses accessing the parameter block and indicates the type of kernel

call being made. The currently available kernel call constants are listed in

figure A.5.

#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine
#tdefine

SRDERIVE
SRSUICIDE
SRDEPOSIT
SRWITHDRAW
SRREAD
SRWRITE
SREXECUTE
SRUSER
SRPEEK
SRMULTILOAD
SRSEND

0x40000000 /* System rights bits  */
0x20000000

0x10000000

0x08000000

0x04000000

0x02000000

0x01000000

0x00800000

0x00400000

0x00200000

0x000000FF /* Bits relating to send rights */

Figure A.4: System Rights Constants

Message Block

The message area’s contents are interpreted differently for each class of call. There

are currently three classes of information stored in the message block:

o Messages - Messages to be sent by the send message system call and messages

recovered by the receive message system call are stored at the front of the

message block.

o System states - The save register and load register system calls store the regis-

ter set and other state information for a subprocess at the front of the message

block.

e Read/Write Data - Bytes to be transferred by the external read or external

write system calls are stored at the front of the message block.

e Initialization information - Initial values used to set stack and program coun-

ters, the name of an heir and a list of capabilities to be pre-loaded into a

process are stored at the front of the message block.
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[k —mm */
/* Action Codes */
[k —mm */

#define K_MAKEOBJ 1
#define K_MAKECAP 2
#define K_DEL 3
#define K_DELDER 4
#define K_RESIZE 5
#define K_SHRINK 6
#define K_WAIT 7
#define K_LOADCAP 8
#define K_UNLOADCAP 9
#define K_CAPID 10
#define K_MAKEPROC 11
#define K_SEND 12
#define K_RECV 13
#define K_EXTSEND 14
#define K_EXTREAD 15
#define K_EXTWRITE 16
#define K_BANK 17
#define K_RESTRICT 18
#define K_CAPSTAT 19
#define K_RENAME 20
#define K_MAKESUBP 21
#define K_DELSUBP 22
#define K_LOADREG 23
#define K_SAVEREG 24
#define K_SETTRAP 25
#define K_RECV_CLOSE 26
#define K_ACCEPT_MAIL 27
#define K_CLOSE_BOX 28
#define K_COPYOBJ 29
#define K_PEEK_PROC 30
#define K_SET_HEIR 31

Figure A.5: Defined Kernel Call Constants
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A.4.3 The Wall

Every process has a read-only page mapped into its address space known as the
Wall. This page contains public information, including the current time, and the
capabilities of public utilities. A wall manager places information in the wall. The
wall currently contains:

0xc000 Scheduler Start Variable

0xc004 Physical Object: Volume!

0xc008 Physical Object: Serialf

0xc00c  Physical Object: Password 17

0xc010 Physical Object: Password 2f

0xc000 GLui: Magic Number

0xc004 GlLui: Volume

0xc008 Glui: Serial

0xc00c Glui: Password 1

0xc010 GlLui: Password 2

0xc014 Name Server Set: Magic Number

0xc018 Name Server Set: Volume

0xcO01c Name Server Set: Serial

0xc020 Name Server Set: Password 1

0xc024 Name Server Set: Password 2

0xc028 Name Server Set: Offset

Oxcfe0 Time in Seconds

Oxcfe4 Time in Microseconds

7: These locations are used by the initialization process. After initialization the

capability of the physical object is overwritten by the initialization process and the
value of the scheduler start variable is no longer significant.
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A.5 Process Structure Conventions

This section covers the conventional layout of a process (Section A.4 outlined the
mandatory elements of a process structure).

A.5.1 The Process Object

The following elements of the process object are visable to the user process and are
provided by the kernel:

e The Process Address Map
e The Parameter Page
o The Message Area

They form part of the mandatory component of the process structuring convention
used by Walnut Kernel processes.

By convention the following items are located within the process object

Startup Code Area (optional) This area may contain a small amount of code
used in starting a process.

File Descriptor Table (mandatory) This area contains the file descriptors for use
by the process. Note: The first 3 elements of the File Descriptor Table are
mandatory to allow for standard output, standard input and standard error.

Private Data Pointer Table (mandatory) This area contains pointers to private
data. The table is indexed by the capability index of the executing code and
is used to locate data used by the executing code.

Default Heap (optional) The default location for the creation of the heap.
Default Stack (optional) The default location for the creation of the stack.

The structure of the process object is outlined in figure A.6.

A.5.2 The Process

Conventional processes will be constructed according to the following rules:
e The code object will be loaded at address 0x1400000
e The data object will be loaded at address 0x5400000

e Initialized data will be placed at the front of the data object
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0x1400000
Default Stack

| |

| |
0x1017000 Default Heap
0x1016000 Private Data Pointer Table
0x1012000 File Descriptor Table
0x1011000 Startup Code Area
0x1010000 Parameter Page
0x100£000 Process Address Map
0x1000000

Figure A.6: Process Object: This diagram describes the major features of the
process object

This design allows multiple instances of a process to be created by sharing the
code objects and using copies of the data objects. In addition by placing the ini-
tialized data at the front of the data object it is possible to ensure that the original
data object is compact and hence easy to copy. The copy of the data object will
expand as required when uninitialized data is accessed.

This arrangement of code and data allows up to 64 Mbytes of code to be sup-
ported. With the introduction of shared code libraries larger programs can be sup-

ported.
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A.6 Process Creation

This section describes the process of creating a process and the initial state of a new
process.

A.6.1 Making Processes

A process is created using the Make Process call covered in section A.11.2. This
section will provide a general introduction to the creation of a process.

Creating a process involves:

e (reating a new process object

e (reating an address space

e loading the new process object into the address space

e (reating subprocess () and subprocess 1.

e loading pre-loaded capabilities into the address space

e Setting initial program counter and stack pointer values for subprocess 1.

e Setting the wake up time of subprocess 1.

e loading the new process object into address space of the creating process

This process appears as an atomic operation to the process issuing the Make
Process system call. If the system call was successful the master capability for
the new process object will be returned and the new process will be loaded at the
address given in offset in the parameter block.

At the completion of the Make Process system call, the new process object is
loaded into the address space of the creating process. If the new process object is
larger than 4 megabytes in size, only the first 4 megabytes of the new process object

is visable. Thus the process which issued the Make Process system call and the
new process have a region of shared memory.

A.6.2 Initial Process State

Immediately after a process has been created:

e The parameter block of the new process will contain:
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vol Volume of master capability for process
serial Serial of master capability for process
passl Password 1 of master capability for process
pass2 Password 2 of master capability for process

srights  Fncoded process creation parameters

urights  User rights of process’s master capability

limit Maximum size of process object (hard limit)
money  Amount of money in process object / process cash
type Type of process

maxoff  Maximum offset of view on process object

maxsz  Maximum size of process object

maxcap Maximum number of capabilities

o The message area will consist of a table of pre-loaded capabilities with the
format:

vol Volume

serial  Serial

passl  Password 1

pass2  Password 2

base Start of the loaded window relative to the capability

limit, Size of the loaded window. Zero indicates capability limit

offset  Location of window in the new process’s address space

cindex Index in table of loaded capabilities. Zero for automatic allocation

e The process object will be loaded at the location PROCHDADDRESS

The address space will contain all pre-loaded capabilities

Only subprocess () and subprocess 1 will exist

Subprocess 1 will begin executing

The process creation parameters are encoded in the system rights field:

8 bits 8 bits 8 bhits 8 bits
Max subp # message slots | Max loaded caps | # auto load caps

msh Isb

e Max subp - The maximum number of subprocesses for the new process includ-
ing subprocess 0.

o # message slots - The number of message slots for the new process. As a
message slot is reserved for subprocess 0 the number of message slots must be
1 or greater.
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e Max loaded caps - The maximum number of loaded capabilities for the new
process. This number includes the capability for the process.

e # auto load caps - The number of capabilities to be automatically loaded into
the new process’s address space including the capability for the new process.

When a process is created two equal sums of money are deposited into the
new process. The sums are deposited into the process cash and the process object
respectively. The size of one of the deposited sums is reported in the money field.

It is normal practice for the first action of a process to be the duplication of the
information passed in at process creation. It is particularly important to store the
capability for the process as it is not possible to locate the master capability for the
process subsequently.

The creation of subprocesses other than subprocess () and subprocess 1 is handled
by the application using the Make Subprocess call.
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A.7 Subprocess Zero

The Walnut Kernel implements two direct methods of communication with the ker-
nel: system calls and messages to subprocess zero of a process. The system call
mechanism (described in the section A.11) allows a process to alter its own state,
operate on capabilities and send messages. The subprocess zero mechanism allows
a process to control another process’s state.

Subprocess zero functions are accessed by sending messages to a process’s sub-
process zero. The message contains a function identifier and arguments. On receipt
of a message to subprocess zero the kernel interprets the instruction provided and
performs the required action. Subprocess zero operations and messages are the
highest priority function of a process.

The currently implemented subprocess zero functions are:
Freeze Prevent process from being scheduled.
Thaw Allow process to be scheduled.
Wakeup Set the wakeup time of the specified subprocess to zero
Cooee Request the process to send a status message using a specified capability.

Protected Freeze Prevent process from being scheduled until all protected freezes
on the process have heen thawed.

Protected Thaw Allow a process to be scheduled when all other protected freezes
have been thawed.

Figure A.7 lists the identifiers and arguments of the messages.

Function Function 1D | Arg 1 Arg 2 Arg3 Arg4

Freeze 33330001

Thaw 33330002

Wakeup 33330003 subp #

Cooee 33330004 vol ser pass 1 pass 2

Prot Freeze | 33330007 magic
Prot Thaw | 33330008 magic

Figure A.7: Subprocess Zero Functions and Arguments

A.7.1 Freeze

On receipt of a freeze message subprocess zero sets the process state to frozen and
causes the process to be removed from the scheduler queue.
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A.7.2 Thaw

When a process receives a message it is placed into the scheduler queue. If the
process is frozen the process is typically removed from the queue after the subprocess
zero messages are parsed. On receipt of a thaw message, subprocess zero sets the
process state to normal and process execution resumes.

A.7.3 Wakeup

The wakeup message sets the wakeup time of the nominated subprocess to the
current time. This allows a process to start a process that has suspended activity
and has closed mail boxes as the mail box allocated to subprocess zero cannot be
closed.

One application of this function is to allow the initialization of data structures
within a process object. The process is created with a wakeup time of never prevent-
ing the scheduling of the process. The creating process initializes the required data
structures before waking the created process up. At that stage the created process
may elect to open its mail boxes as processes are created with all but subprocess
zero’s mail boxes closed.

A.7.4 Cooee

On receiving a cooee message subprocess zero attempts to send a message using
the capability found in the cooee message. If the capability in the cooee message
allows transmission to any subprocess of a process then the message will be sent to
subprocess one of the nominated process, otherwise, the message will be sent to the
subprocess represented by the capability.

The reply message is of the form:

‘ 33330005 H volume H serial H status ‘

The message consists of a set of words which represent the Cooee reply identifier,
the volume and serial number of the current process and a process status. The
process status is given in figure A.8.

State State 1D Value
Normal State PROCSTATENORMATL 1
In Kernel Call PROCSTATEKERNEL 2
In Read Fault PROCSTATERFAUILT 3
In Write Fault PROCSTATEWFAUILT 4
Process Frozen PROCSTATEFROZEN )
Process in Probate | PROCSTATEPROBATE 6
Process Dead PROCSTATEDEAD 7

Figure A.8: Process Status
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A.7.5 Protected Freeze

On receipt of a protected freeze message subprocess zero sets the process state to
frozen, XORs the magic word with a key held in the process state, increments a count
held in the process state and causes the process to be removed from the scheduler
queue. This prevents other parties from thawing the process unless they know the
set of magic words used in the protected freeze operations applied to the process.

A.7.6 Protected Thaw

On receipt of a protected thaw message subprocess zero XORs the magic word with
a key held in the process state and decrements a count held in the process state. If
both the count and key held in the process state are zero then the process is thawed.
If the count is zero and the key is non-zero then the process is terminated.
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A.8 Subprocesses

Subprocesses are implemented in the Walnut Kernel as threads of execution which
share a single address space. This section describes subprocesses and their schedul-

mng.

A.8.1 Anatomy of a Subprocess

When a process is created a fixed number of subprocess slots are allocated in the
process structure. These slots form the subprocess table which is used to store the
subprocess states.

When a subprocess is created the creator specifies a priority which is used to
determine which subprocess should be scheduled, the starting address of the sub-
process and the the address of the subprocess’s stack pointer. It is the responsibility
of the programmer to ensure that the stacks of subprocesses do not overlap.

Subprocesses share the address space of the process and hence have no protection
from the actions of other subprocesses of the process.

A.8.2 Operations on Subprocesses

Subprocesses can be made through the use of the K. MAKESUBP system call
and they are destroyed by K_DELSUBP. Messages are sent to subprocesses using
K_SEND and K_LEXTSEND. There are three types of capabilities which can be
used to send messages: capabilities which can send messages to any subprocess of a
process, capabilities which can send a message to any subprocess of a process other
than subprocess zero, and capabilities which can only send messages to a particular
subprocess. The type of capability determines if the subprocess parameter of the
send operation is used.

A.8.3 Scheduling

Subprocesses have the semantics of processes on a time sharing system. That is,
when a subprocess of a process is executing no other subprocess of that process
can be executing. On the Walnut Kernel processes are used to support concurrent
execution.

The algorithm for determining which subprocess to run at the beginning of a
time slice for a process is as follows:

1. If a subprocess was executing and there is a non-zero value in the reserve field
of the parameter block resume execution of that subprocess.

2. Execute the subprocess with the highest priority which is not waiting.

3. For subprocesses of equal priority select the first subprocess encountered in
the subprocess table.
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Before performing the algorithm to determine which subprocess to schedule the
mail boxes are scanned. If a new message has arrived for a subprocess the subprocess
is made runnable (not waiting).

Subprocesses can ensure that other subprocesses of the current process are ex-
cluded from executing by setting the reserve field to a non-zero value. It is essential
that any subprocess attempting to make a system call sets the reserve field to the
appropriate value for the system call before accessing other elements of the parame-
ter block. Tt is also necessary to test or copy all required values from the parameter
block before zeroing the reserve field after returning from a system call.
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A.9 Messages and Mailboxes

This section describes the processes of sending and receiving messages.

A.9.1 Sending Messages
Messages are sent using either the K_.SEND or K_ EXTSEND system calls. A

message consists of the contents of the message area. The length of the message is
variable (currently up to 16 words may be sent) and it is specified by setting the
limit field to the number of hytes to be transferred.

Messages are sent to processes represented by a capability. The capability may
be derived to allow messages to be sent to only one subprocess or to allow messages
to be sent to all subprocesses of the process. If the latter type of capability is used
then the subpn field contains the destination subprocess number.

A message will only be sent if there is an empty mailbox available to receive the
message at the destination process. An error is returned if there are no suitable
mailboxes at the destination process.

A.9.2 Receiving Messages

Messages are retrieved and mailboxes are cleared by issuing a K_LRECV system
call. A match string can be specified for the receive system call allowing the user
program to control the order in which messages are retrieved from mailboxes.

When there is a message in a mailbox waiting to be received, the wakeup time of
the subprocess is set to the current time. This nullifies the effect of any K_WAIT
system calls.

A.9.3 Mailboxes

Mailboxes have 3 independent parameters which determine whether or not they will
accept a message: state, prefix, and subprocess.
The state of the mailbox:

Open - The mailbox is prepared to accept a message that meets the other criteria
Closed - The mailbox will not accept messages
A message prefix consists of a string of characters:

Non-zero length - Only messages starting with the prefix string are accepted.
The lTength of the prefix string is specified in bytes.

Zero Length - Accept any message meeting the other criteria

Mailboxes may accept messages for specified subprocesses:
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Subprocess 0 - 250 - Only messages intended for the specified subprocess are ac-
cepted

Subprocess 255 - Accept any message meeting the other criteria

If a message matches the mailbox’s criteria and the mailbox is empty then the
message is placed in the mailbox. The criteria are used to ensure that mailboxes are
available for particular types of messages. The first available mailbox that accepts
the message is used.

The K_LRECV_CLOSE, K. ACCEPT_MAIL and K_CLOSE_BOX system
calls are used to manipulate the parameters of the mailbox.

Both the KLCLOSE_BOX and the K_LRECV_CLOSE system calls close mail-
boxes. The K_LRECV_CLOSE receives a message from a mailbox and then closes
the mailbox from which the message was extracted. The K_ACCEPT_MAIL sys-
tem call opens a mailbox and specifies the parameters which determine the messages
the mailbox will accept.
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A.10 Exceptions

This section describes the handling of exceptions by processes under the Walnut
Kernel. The default behavior of the Walnut Kernel is to terminate any process
which encounters an exception. This behavior can be modified by using trap handling
subprocesses.

A.10.1 Types of Exception

The Walnut Kernel detects the following exceptions:

FPFAULT - All exceptions relating to errors in arithmetic. This may include float-
ing point exceptions, integer arithmetic exceptions, dividing by zero, overflow
and underflow. The types of errors detected by this exception are processor
dependent.

OPFAULT - This exception is raised when an invalid instruction is parsed by the
processor.

ADDRSFAULT - This exception is used to catch all errors relating to addresses.

It is raised under the following conditions:

e An unmapped region of the address space has been accessed
e A write has been attempted on a read-only area of memory
o A read or write has been attempted on an privileged area of memory

e An object could not be automatically expanded to accommodate the
attempted access due to the lack of unreserved space on the volume

DBFAULT - This exception is raised whenever a debug exception is raised by the
processor. This exception is processor dependent.

ALIGNFAULT - This exception is raised on unaligned accesses. This exception

is processor dependent.

A.10.2 Trap Handling Subprocesses

A trap handler is a normal subprocess which has been nominated to receive trap
messages for a given subprocess. The K_.SETTRAP system call is used to inform
the kernel where trap messages should be sent. The set trap system call takes two
arguments: the subprocess for which traps are to be handled and the subprocess
which will handle the trap.

A subprocess cannot handle its own traps. If a subprocess traps and the trap
message is to be sent to the same subprocess then the process will be terminated.

When an exception occurs in a subprocess, which has a nominated trap handler,
the subprocess with the fault is marked DEAD, its wake up time is set to NEVER
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and a message is sent to the trap handler. The format of the message is discussed
in section A.10.3.

The trap handler can examine and alter the state of the dead subprocesses reg-
ister sets through the use of the K_LOADREG and K_.SAVEREG system calls.
The subprocess can be restored to operation through the use of the K. MAKESUBP

system call.

A.10.3 The Trap Message

A five word message is sent (see figure A.9) to the trap handling subprocess. The
words of the message are:

1. Message Type - this word indicates that the message is the result of an excep-
tion. The failure message identifier is 0x3333ffff.

2. Subprocess Number - the subprocess number of the subprocess in which the
exception occured.

3. Fault Identifier - a code which identifies the type of exception which occured
(see table A.1).

4. Processor Error Code - a processor dependent error code for non-floating point
operations.

5. Floating Point Error Code - a processor dependent error code for floating point
operations.

The error codes are processor dependent and are only returned where relevant to
the cause of the exception.

0x3333ffff | Subprocess Fault Processor FP

Number Tdentifier Frr Code Frr Code

Figure A.9: Structure of the Failure Message

Mnemonic Description Value
FPFAULT Floating Point Fault | 101
OPFAULT Opcode Fault 102
ADDRSFAULT | Address Fault 103
DBFAULT Debug Fault 104
ALIGNFAULT | Alignment Fault 105

Table A.1: Error Identifier Values
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A.11 System calls

All system calls implemented within the Walnut Kernel use the parameter block to
contain all the parameters of the call. There is only one parameter block per process.
To prevent subprocesses from altering the parameter block while another subprocess
is setting up or receiving the results of a system call it is essential that the reserve
field be set to a non-zero value while a subprocess manipulates the parameter block.
Setting the reserve field to a value prevents any other subprocess of a process being
run until the reserve field is cleared.

A.11.1 Procedure

How to make a system call:
e Put the call number in the parameter block’s reserve field
e Fill in necessary parameters
o Call system_call()
After a successful system call has been completed:
e Copy any desired information out of the parameter block
e Set the reserve field to zero
After an unsuccessful system call (error > 0)

e Copy the error code and any other desired information out of the parameter

block

e Set the reserve field to zero
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A.11.2 Available System Calls

This section describes the currently available system calls on the Walnut Kernel and

the parameters required for those calls.

Make Object

Name Symbol Value
Make Object K_MAKEOBJ 1
Input Parameters:
vol -Volume on which to create object

srights -System rights
urights -User rights

limit -Highest byte offset of object (hard limit)

money -Initial money

type -Object type

maxoff -Highest byte offset of object (soft limit)

maxsz -Maximum size of object

maxcap  -Maximum number of capabilities including master
Output Parameters:

vol -Master capability (volume)

serial -Master capability (serial)

pass| ~-Master capability (password 1)

pass2 ~-Master capability (password 2)

srights -Master capability (system rights)

urights -Master capability (user rights)

limit -Highest byte offset of object (hard limit)

money -Initial money

type -Object type

maxoff -Highest byte offset of object (soft limit)

maxsz -Maximum size of object

maxcap  -Maximum number of capabilities including master
Description:

This call creates an object of the size specified on the volume specified. The
object will have the rights dictated by the srights & urights field.
Before using the limit value, it is transformed:

o {BIGLIMIT if limit = 0
limit =

limit otherwise

To create a new object the following preconditions must be met limit&023ff = 0,

mazxoff < limat, limit < BIGLIMIT, and maxsz < BIGLIMIT.
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Derive Capability

Name Symbol Value
Derive Capability K_MAKECAP 2
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights mask

urights -User rights mask

base -Offset from the beginning of existing view

limit, -Size of derived view

money -Drawing limit of capability

subpn -New password 1 (if subpn >= 1024)

cindex -New password 2 (if subpn >= 1024)
Output Parameters:

vol -Volume

serial -Serial

passl -Derived capabilities password 1
pass2 -Derived capabilities password 2
srights -Derived capabilities system rights
urights -Derived capabilities user rights
base -Cleared by call

limit, -Maximum size of derived view

money -Drawing limit of capability
type -Drawing limit of derived capability
Description:

This capability derives a capability from a given capability. The new capability
may have weaker rights and/or a smaller view of an object. Note that the suicide
right may be added to a derived capability.

Attempts to derive capabilities from a capability without the SRMUTLITL.OAD
right always have the same pass2 as the original capability.

If limit is set to 0 then the view of the derived capability will extend from the
base to the end of the view provided by the original capability.

The following pre-conditions must be met view.limit > base and limit > ().
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Delete Capability

Name Symbol Value
Delete Capability K_DEL 3
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

Output Parameters:
Description:

Deletes the capability specified (if the capability has suicide right) and all of its
derivatives (if the capability has derive right).

Delete Derived Capabilities

Name Symbol Value
Delete Derived Capabilities K_DELDER 4
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

Output Parameters:

Description:
Deletes all of the derivatives of the specified capability (if the capability has
derive right).
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Resize Object

Name Symbol Value
Resize Object K_RESIZE 5
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

limit, -New limit

maxoff -New maximum offset

maxsz, -New maximum size

maxcap  -New maximum number of capabilities

Output Parameters:

Description:

Resizes an object to the values given in limit, maxoff and maxsz. If maxcap
is greater than the current number of permitted capabilities then the number of
capabilities is increased, otherwise, maxcap is ignored.

Preconditions: to be specified

Shrink Object

Name Symbol Value
Shrink Object K_SHRINK 6
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

Output Parameters:

Description:

Shrinks the object to a size just sufficient to contain its current contents and
sets the limits to make this the maximum size of the object. The object’s limit,
maximum offset, maximum size and maximum number of capabilities are

altered.
Preconditions: to be specified
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Wait
Name Symbol Value
Wait K_WAIT 7

Input Parameters:
clocktime -Wakeup time
Output Parameters:

Description:

Provided there are no outstanding messages this call puts the subprocess to sleep
until either a message arrives or the wakeup time has been reached. The wakeup
times of 0 and -1 have special meanings:

0  Surrender the remainder of time slice
-1 Set no wakeup time. Awake only when sent a message

Wakeup times are in seconds and are absolute. Relative wakeup times can be

created by adding a value to the time found in clocktime.
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Load Capability

Name Symbol Value
Load Capability K_LOADCAP 8
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
base -Offset from start of view
limit, -Size of window to be loaded
offset -Logical address of load location
cindex -Capability index
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

srights -System rights of capability

urights -User rights of capability

base -Offset from start of view

limit, -Size of window loaded

money -Drawing right or money provided by capability

offset -Logical address of load location
cindex -Capability index
Description:

[oads a view or part of view provided by a capability into the processes address
space.

To nominate the capability index of the loaded capability a non-zero cindex
should be provided to an empty slot in the table of loaded capabilities. If cindex
is zero then a value will be automatically allocated.

The kernel can be requested to load a capability at a suitable address to contain
the view of the object. The following table gives the values of offset and their
meanings.

0 load anywhere, preferably a large window
1 load anywhere, preferably a small window
2 load as a large window
3 load as a small window

All other values of offset are interpreted as specific addresses. The value of offset
is truncated to give a page boundary for small windows or a segment boundary for
large windows.

Limit gives the size of the window to be loaded. A limit of zero specifies that
the limit specified by the capability should be used.
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Unload Capability

Name Symbol Value
Unload Capability K_UNLOADCAP 9
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
offset -Offset of window to be unloaded
cindex -Index in table of load capabilities of capability to be unloaded
Output Parameters:
limit, -Limit of freed window
offset -Offset of freed window
cindex -Index of freed window
Description:

Unloads a capability from address space of the process. If offset = 0 then the
capability vol serial pass1l pass2 will be unloaded. If offset = 1 then the capa-
bility located at index cindex in the table of loaded capabilities will be unloaded.
Otherwise the capability at the location offset will be unloaded.
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Identify Capability

Name Symbol Value
Identify Capability K_CAPID 10
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
offset -Offset
cindex -Index in table of load capabilities
Output Parameters:
vol -Volume of loaded capability
serial -Serial of loaded capability
passl -Password 1 of loaded capability
pass2 -Password 2 of loaded capability

srights -System rights of loaded capability
urights -User rights of loaded capability

limit, -Limit of loaded capability

offset -Offset of loaded capability

cindex -Index of loaded capability
Description:

Fills in the rights, limit, offset and cindex for a loaded capability. If offset
= 0 then information for the capability vol serial passl pass2 will be returned.
If offset = 1 then the information for the capability located at index cindex in
the table of loaded capabilities will be returned. Otherwise information for the
capability loaded at location offset will be returned.
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Make Process

Name Symbol Value
Make Process K_MAKEPROC 11

Input Parameters:

vol -Volume to create new process on

srights -Encoded process parameters

urights -User rights of new process

base -Start up time for new process

limit -Highest byte offset of object (hard limit)

money -Money to be transferred to new process

type -Type of new process

maxoff -Maximum offset of new process object (soft limit)

maxsz ~-Maximum size of new process object (soft limit)

maxcap  -Maximum number of capabilities for new process (soft limit)

offset -Offset at which to load new process object

cindex -Index in table of loaded capabilities for new process object
Output Parameters:

vol -Master capability (volume)

serial -Master capability (serial)

pass| ~-Master capability (password 1)

pass2 ~-Master capability (password 2)

urights -User rights of new process

limit, -Limit of new process object

money -Money deposited in new process

type -Type of new process

maxoff -Maximum offset of new process object

maxsz, -Maximum size of new process object

maxcap  -Maximum number of capabilities for new process

offset -Offset of new process object

cindex -Index of new process object in table of loaded capabilities
Description:

Make Process creates an object, loads the object into the current process’s ad-
dress space and fills in the process state information for the new process.

Initially this call creates an object of the size specified on the volume specified
with user rights dictated by the urights field and system rights set to SRPRO-
CESSMASTER.

Before using the limit value, it is transformed:

limit otherwise

o {BIGLIMIT if limit = 0
limit =

The new object is created if the following preconditions are met limit&0x3f f £ 0,
mazxoff < limat, limit < BIGLIMIT, and maxsz < BIGLIMIT.

The object is then loaded into the process’s address space at either a nominated
location or an automatically allocated location. The location is determined by the
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value of offset. If offset is either 0 or 2 then the kernel will allocate a suitable large
window automatically and load the object at that location, otherwise the object will
be loaded at the segment boundary specified in offset.

The capability index of the loaded capability may be nominated by specifying a
cindex for to an empty slot in the table of loaded capabilities. Tf cindex is zero
then a value will be automatically allocated.

A process is then created with the parameters dictated by the srights field. The
srights field is interpreted as four fields of 8 hits:

8 bits 8 bits 8 bits 8 bhits
Max subp # message slots | Max loaded caps | # auto load caps

msh Isb

e Max subp - The maximum number of subprocesses for the new process includ-
ing subprocess 0.

o # message slots - The number of message slots for the new process. As a
message slot is reserved for subprocess 0 the number of message slots must be
1 or greater.

e Max loaded caps - The maximum number of loaded capabilities for the new
process. This number includes the capability for the process.

e # auto load caps - The number of capabilities to be automatically loaded into
the new process’s address space including the capability for the new process.

The first four words of the message area contain the initial values of the program
counter and stack pointer for subprocess 1. The values are encoded:

message area index for PC
initial PC

message area + 2 | index for SP
initial SP

The index is the index of a capability in the table of loaded capabilities. If an
index value of zero is supplied the initial values are treated as logical addresses
instead of as a byte offset from the start of a capability.

The next four words contain the capability of the new process’s ‘heir’. The heir is
notified in case of the death of the process. The message sent contains the remaining
cash. If this field contains zero then the master capability for the creating process
is used as the heir.

The remainder of the parameter page contains a list of capabilities to be pre-
loaded into the new process’s address space. The list is composed of records of the
form:
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vol Volume
serial  Serial
passl  Password 1
pass2  Password 2
base Start of the loaded window relative to the capability
limit, Size of the loaded window. Zero indicates capability limit
offset  Location of window in the new process’s address space
cindex Index in table of loaded capabilities. Zero for automatic allocation
The creating process will have twice the value indicated in money deducted
from its cash. This money will be transferred equally to the new process’s cash and
new process’s process object.
The process is scheduled to wake up at the time given in base with the wakeup
times of 0 and -1 having the special meanings:
0 Wake up immediately
-1 Set no wakeup time. Awake only when sent a message
Information relating to the new process object is returned to the creating pro-
cess.
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Name Symbol Value
Send Message K_SEND 12
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

money -Amount of money to be sent to process

limit -Size of message in bytes

offset -Offset

subpn -Subprocess number to send message to

cindex -Index in table of load capabilities

Output Parameters:

srights -System rights of loaded capability

urights -User rights of loaded capability

money -Amount of money sent to process

limit -Size of message in bytes

offset -Offset of loaded capability

cindex -Index of loaded capability
Description:

Sends a message to a process which is loaded into the address space of the sender.

If offset = 0 then the message will be sent to vol serial passl pass2 provided

process object is loaded into the sender’s address space. If offset = 1 then the

message will be sent to the process with its process object loaded at index cindex

in the table of loaded capabilities. Otherwise the message will be sent to the process

with its process object loaded at location offset. The message length is specified in

limit in bytes. The message to be sent is located at the beginning of the message

area. A positive amount of money - money - is removed from sender’s cash and

sent with the message.
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Receive Message

Name Symbol Value
Receive Message K_RECV 13
Input Parameters:
limit -Size of match string
Output Parameters:
money -Amount of money received with message
limit -Size of message
Description:

Recovers message from a subprocess’s message queue. If limit is non-zero then
only a message which matches the first limit characters found in the match string
will be recovered. The match string is found at the beginning of the message area.
The message received is placed into the message area.

If no message is present an error code is returned

External Send Message

Name Symbol Value
External Send Message K_EXTSEND 14
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
money -Amount of money to be sent to process
limit -Size of message in bytes
subpn -Subprocess number to send message to
Output Parameters:
money -Amount of money sent to process
limit -Size of message in bytes
Description:

Sends a message to the process vol serial passl pass2. The message length
is specified in limit in bytes. The message to be sent is located at the beginning
of the message area. A positive amount of money - money - is removed from the
sender’s cash and sent with the message.
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External Read Memory

Name Symbol Value
External Read Memory K_EXTREAD 15
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit, -Number of bytes to be read
offset -Offset in bytes from start of capability
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit, -Number of bytes read
offset -Offset in bytes from start of capability
Description:

Reads limit bytes from offset offset in capability vol serial passl pass2. The
bytes read are stored at the start of the message area.

External Write Memory

Name Symbol Value
External Write Memory K_EXTWRITE 16
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit, -Number of bytes to be written
offset -Offset in bytes from start of capability
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
limit, -Number of bytes written
offset -Offset in bytes from start of capability
Description:

Writes limit bytes from offset offset in capability vol serial pass1 pass2. The
bytes to be written are stored at the start of the message area.



A.11. SYSTEM CALLS 273

Bank
Name Symbol Value
Bank K_BANK 17
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
money -Amount of money to be transferred from capability to cash
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

srights -System rights of capability
urights -User rights of capability

limit, -Size of view in bytes
money -Drawing limit available to capability
Description:

Transfers money from cash from the calling process to the capability vol serial
passl pass2. Both positive and negative amounts of cash may be transferred.

If money is positive then the capability must have deposit right to perform the
transfer. If money is negative then the capability must have withdraw right to
perform the transfer.
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Restrict Rights

Name Symbol Value
Restrict Rights K_RESTRICT 18
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

srights -System rights mask

urights -User rights mask
Output Parameters:

vol -Volume
serial -Serial

passl -Password 1
pass2 -Password 2

srights -System rights of capability
urights -User rights of capability
Description:
Reduces the rights of a capability by performing a bitwise and of the rights masks
supplied with the rights bitmaps of the capability vol serial passl pass2.
The capability named must have suicide right for restrict to operate.
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Capability Status

Name

Symbol

Value

Capability Status

K_CAPSTAT

19

Input Parameters:

vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
Output Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2

srights -System rights of capability

urights -User rights of capability

base -Cleared by call

limit, -Limit of view of capability

money -Withdrawal right of capability

type -Type of object

maxoff -Maximum offset of object

maxsz -Maximum size of object

maxcap  -Maximum number of capabilities for object
Description:

Returns details of capability vol serial pass1l pass2 and associated object.

275
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Rename Capability

Name Symbol Value
Rename Capability K_RENAME 20
Input Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2
Output Parameters:

vol -Volume

serial -Serial

passl -Password 1

pass2 -Password 2

base -Cleared by call
Description:

Changes the passwords of capability vol serial passl pass2 to a new pair of
random values.

A precondition to this call is that the capability has suicide right. In addition
the master capability of a process cannot be renamed.
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Make Subprocess

Name Symbol Value
Make Subprocess K_MAKESUBP 21
Input Parameters:
base -Start up time for new subprocess
limit, -Priority of new subprocess
subpn -Subprocess number
Output Parameters:
base -Start up time for new subprocess
limit, -Priority of new subprocess
subpn -Subprocess number of new subprocess
Description:

Creates a new subprocess of the current process. If subpn is not zero and no
subprocess of the current process has been allocated that number then the subpro-
cess’s number will be subpn. The priority is set to the least 8 bits of limit. The
subprocess is scheduled to wake up at the time given in base with the wakeup times
of 0 and -1 having the special meanings:

0 Wake up immediately
-1 Set no wakeup time. Awake only when sent a message

The first four words of the message area contain the initial values of the program

counter and stack pointer for the new subprocess. The values are encoded:

message area index for PC
initial PC

message area + 2 | index for SP
initial SP

The index is the index of a capability in the table of loaded capabilities. If an
index value of zero is supplied the initial values are treated as logical addresses
instead of as a byte offset from the start of a capability.
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Delete Subprocess

Name Symbol Value
Delete Subprocess K_DELSUBP 22
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number of deleted subprocess
Description:

Deletes subprocess subpn. Note that neither subprocess () nor 1 can be deleted.

Load Register Set

Name Symbol Value
Load Register Set K_LOADREG 23
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number
Description:

Copies the structure sysstate at the start of the message area into subprocess
table entry subpn.

Save Register Set

Name Symbol Value
Save Register Set K_SAVEREG 24
Input Parameters:
subpn -Subprocess number
Output Parameters:
subpn -Subprocess number
Description:

Copies the structure sysstate from subprocess table entry subpn into the start
of the message area.
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Set Trap
Name Symbol Value
Set Trap K_SETTRAP 25
Input Parameters:
offset -Subprocess number to send trap message to
subpn -Subprocess number whose trap is being set
Output Parameters:
offset -Subprocess number to send trap message to
subpn -Subprocess number whose trap is being set
Description:

Sets the destination subprocess for trap messages. Subprocess offset is notified
of faults in subprocess subpn.

Receive Message and Close Box

Name Symbol Value
Receive Message Close K_RECV_CLOSE 26
Input Parameters:
limit -Size of match string
Output Parameters:
money -Amount of money received with message
limit -Size of message
Description:

Recovers message from a subprocess’s message queue and closes the mail box the
message is recovered from. If limit is non-zero then only a message which matches
the first limit characters found in the match string will be recovered. The match
string is found at the beginning of the message area. The message received is placed
into the message area.

If no message is present an error code is returned.
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Accept Mail

Name Symbol Value
Accept Mail K_ACCEPT_MAIL 27
Input Parameters:
limit -Size of match string
subpn -subprocess for which mail box is reserved

Output Parameters:

Description:

Opens a mail box for a subprocess and sets the acceptance string for the mail
box. The mail box is taken from the pool of closed mail boxes and set to receive
messages for a specific subprocess subpn or if subpn is 0xFF the mail box can be
used for any subprocess.

If limit is non-zero then the mail box created will only accept messages which
match the first limit characters found in the match string when the mail box is
opened. The match string is found at the beginning of the message area.

Close Mail Box

Name Symbol Value
Close Matching Mail Boxes K_CLOSE_BOX 28
Input Parameters:
limit -Size of match string
subpn -subprocess for which mail box is reserved
Output Parameters:
base -Number of mail boxes closed by operation
Description:

Closes mail boxes which match the closing criteria. If subpn equals 0xFF and
limit is zero then all user mail boxes will be closed. Tf limit is non-zero then only
user mail boxes with match strings matching the first limit characters of the match
string found at the beginning of the message area will be closed. If subpn is non-zero
then only user mail boxes for subprocess subpn are closed.
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Copy Object

Name Symbol Value
Copy Object K_COPYOBJ 29

Input Parameters:

vol -Volume (original)

serial -Serial (original)

pass] -Password 1 (original)

pass2 -Password 2 (original)

srights -System rights mask

urights -User rights mask

base -Start of copy relative to beginning of original

limit, -FEnd of copy relative to base

money -Money to be transferred to copy

type -Type of copy

maxsz, ~-Maximum size of copy

maxcap  -Maximum number of capabilities of copy
Output Parameters:

vol -Volume (copy)

serial -Serial (copy)

pass| -Password 1 (copy)

pass2 -Password 2 (copy)

srights -System rights of copy

maxoff -Maximum offset of copy

maxcap  -Maximum number of capabilities of copy
Description:
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Duplicates an object by creating a new object and copying the contents of the

original object to the new object. This call copies only the defined pages of an object

and hence produces an exact duplicate of the contents of the section of the object
referred to by the capability for the original object. The rights fields allow the rights

of the copy to be reduced as the rights mask and the rights fields are combined by
a bitwise AND to produce the copy’s rights field. The money field indicates the

amount of money to be transferred from the process cash to the new object. The

maxsz field specifies the maximum size of the new object. The type field specifies

the type of the copy. The base field specifies the start of the the copy region which

extends through to limit. If the limit and base fields are zero then the complete

object is copied.

NOTE:

e This call will not duplicate processes

e This call corrupts the first four words of the message area
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Check Process State

Name Symbol Value
Peek Process K_PEEK_PROC 30
Input Parameters:
vol -Volume
serial -Serial
passl -Password 1
pass2 -Password 2
Output Parameters:
srights -State of process
base -Wakeup time
Description:

Returns the state and wakeup time of a process given a suitable capability (ca-
pability must have SRPEEK right). for the process. The wakeup time is returned
in base and the process state in srights. The process state is encoded:

Value State

-2 No such process
-3 No right to inquire
1 Process normal
2 Process in kernel
3 Process in read fault
4 Process in write fault
) Process frozen
6 Process in probate
7 Process dead
Set Heir of Process
Name Symbol Value
Set Heir K_SET_HEIR 31
Input Parameters:
vol -Volume of heir
serial -Serial of heir
passl -Password 1 of heir
pass2 -Password 2 of heir

Output Parameters:

Description:
Set the heir of a process to the capability vol serial pass1l pass2. The heir of
a process receives a process’s death message and any remaining cash.



Appendix B
Formal Description of Restrict

The effect of the restrict function on the ability to provide data confinement is
formally expressed in this appendix. The following notation will be used:

C - Capability

R - Rights Set of a Capability

M - Rights Mask

O - Origin of the subtree

Superscripts identify the location of an element (relative to the origin of the
subtree ) in the subtree. For example C'?%? is the second child of the third child
of the capability at the origin of the subtree. Figure B.1 illustrates a subtree of the
capability tree using the notation.

The notion of the depth of a node is used in the discussion. The formal definition

of the depth of a node relative to the origin of the subtree is provided in equations

B.1 and B.2.
The depth of the origin is defined to be zero:

depth(C?) < 0 (B.1)
The depth of other elements is found using the recurrent relationship:
depth(CO=m") « depth(C?™) 4 1 (B.2)

The rights used in this analysis consist of the union of system and user rights

(excluding suicide right - see sections 5.1 and 2.1 for the rational of the suicide
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MO,R,Q

Figure B.1: A Subtree of a Capability Tree

right’s exceptional behavior) and the ability to access a range of the contents of the
object. Derived capabilities have a subset of the parent capabilities rights and have
access to a subrange of the object’s address space. Neither of these criteria is strict,
so derived capabilities may have equivalent rights and ranges to their parents.

In practice, the selection of pages for a derived capability is performed by using an
offset from the base of the parent capability and an extent. The extent is restricted
to be less than or equal to the top of the range of the parent’s entitlements. For
notational convenience the accessible pages of an object will be considered to be
a set of access rights, and the rights mask will be extended to represent access to
regions of the object. The restriction that the set be contiguous will be implicit
throughout this discussion.

When a capability is derived its rights are determined by applying the logical-
and operator to the rights of the parent capability and the mask:

RO ..... m,&MO,...,m,,n — RO,...,Tn,n
this is equivalent to the set operation:

RO ..... ™ A MO,...,m,,n — RO,...,Tn,n
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Thus the following property is true at the time of derivation of a capability:
RO,...,Tn,n g RO,...,Tn

In the Password-Capability System the relationship is static and hence remains true.
The relationship between the rights of a capability (C7++™) and the rights of its

descendents (O™ can be stated:

RO,...,m,...,n C RO,---JH (R3>

The rights of capabilities display the properties of a heap, in that, capabilities at
a greater depth than their ancestors are guaranteed to be no more powerful than
their ancestors. This property is used to assure users that in giving a capability to
another user, the other user cannot use that capability to generate a capability or
use the capability in a way which allows the other user to gain access to rights not
explicitly conveyed by the capability.

The introduction of the restrict operator to the Walnut Kernel invalidates the
property defined in equation B.3. To show that the restrict operator does not make
the system less able to protect users’ interests in restricting information flow it is
necessary to prove that a new criterion exists of equal or greater strength than the
heap criterion of equation B.3.

An enhanced notation is required to handle the description of the restrict op-
eration. This notation introduces a subscript to the string used to describe the
position of a capability in the subtree of capabilities. The new subscript denotes
the number of restrict operations that have been applied to a node. Figure B.2
illustrates a subtree of capabilities where the restrict operation has been applied
to a number of the nodes. The application of the restrict operation generates a
new tree subtree of the original subtree. The origin of the new subtree overlaps the
restricted node. No new nodes can be generated from the restricted node, however,
its children are unaffected.

When a capability is restricted its rights are determined by applying the logical-
and operator to the rights of the original capability and the restrict mask. The
restrict mask is designated by the letter M.

RO 8 AMOiromidt _y ROismg
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MO1:20

MOanJn

Figure B.2: A Subtree of a Capability Tree - Enhanced Notation

this is equivalent to the set operation:
ROwmi f MOtmitt _y RO (B.4)

As restrict may only be applied to the last version of a capability’s set of rights,

and there is no inverse operation, the following property is true:
RO matn C RO
Furthermore, the property
ROumivemi € ROty (B.5)

is true, as a tree - with the heap property - can be constructed that extends from
the origin down to the leaf, by selecting subtrees with origins listed in the path as
members of the of the tree, instead of the nodes that represent the latest revisions

of the restricted capabilities. Figure B.3 illustrates such a tree derived from figure

B.2 for the node (/P0:21:10,
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MOoilo

MOanJn

Figure B.3: A Tree with the Heap Property for (/%0110

The presence of such a tree assures users that there has been no loss of security
through the introduction of the restrict operator. Composing equations B.4 and

B.5 provides
Roh---77n]+17nk C Rom---,m],nz

where MOb-mk = JOirmi

If the restriction at m; results in a less powerful capability, that is if ROimi+1 C
RO#m5 then the operation may be viewed as a way of trimming the tree of potential
branches. The branches eliminated could have held rights in ROimi 0 AMOiremit!,
The ability to trim the tree of potential capabilities enhances the ability of the

Walnut Kernel to control access to objects and services.
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Appendix C
Hardware Description

This appendix is drawn from a paper presented at ACSC-17 The Monash Secure
RISC Multiprocessor: Multiple Processors Without a Global Clock. This paper ap-

pears as:

Title: Monash secure RISC multiprocessor:
Multiple processors without a global clock

Author: Maurice D. Castro and Ronald D Pose

Journal: Australian Computer Science Communications,
Proceedings of the Seventeenth Annual Computer Science
Conference (ACSC-17) Christchurch, New Zealand

Date: 19-21 January 1994

Editor: Gupta G

Pages: 453-459

I present it in support of my thesis.
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The Monash Secure RISC Multiprocessor:
Multiple Processors Without a Global Clock

Maurice Castro* and Ronald Poset

Department of Computer Science

Monash University
Clayton, Vic 3168, Australia
Phone: +61 03 565 5203
Fax: 461 03 565 5146

Abstract

The goal of the Secure Monash RISC Multiprocessor Project is to pro-

duce a powerful general purpose scalable multiuser multiprocessor com-

puter. The requirement for synchronous clocks can be a major limita-

tion on both physical layout and electrical design. Instead of attempt-

ing to provide a global clock over all processors, we are developing a

novel design which has clocks local to each processor and a self clocked

bus with asynchronous arbitration.

The overall system architecture

stresses the ease of scalability by integrating a small switch into the

basic processor-memory module, effectively distributing the intercon-

nection network hardware across all nodes.

1 Introduction

During the initial stages of the design
of the Monash Secure RISC Multipro-
cessor it became clear that the exist-
ing interconnection networks and bus ar-
chitectures for multiprocessing comput-
ers could not satisfy a number of the
design goals of the project adequately.
The design required an interconnection
structure that was easily scalable, suf-
ficiently versatile to solve general prob-
lems, yielded high performance for a
large class of problems, and a high de-
gree of fault tolerance.

A novel mesh based interconnection
scheme was developed for the bus struc-
ture'. A consequence of this scheme was
a major clock distribution problem: there
are multiple paths of differing lengths

*maurice@bruce.cs.monash.edu.an
rdp@bruce.cs.monash.edu.an
trdp@h h.ed

which must be clocked synchronously.
After calculating an approximate size for
a processor node board and hence the size
of a small, medium and large system, it
was apparent that it would be extremely
difficult to provide a clock of the required
frequency that would be sufficiently well
aligned at the processors’ bus interfaces
to be useful for transferring data across
the interprocessor buses.

To overcome these problems a self
clocking bus structure was proposed with
asynchronous arbitration. This system
allows the retention of the design goal
of easy scalability and avoids the re-
quirement that the system have a global
clock[1]. This permits the construction of
a fully distributed system with a passive

interconnection scheme.

The use of FIFOs to decouple a bus

"The scheme used for this bus structure will be the subject of a future paper
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clock from a processor clock is not un-
usual?, however, the use of a deep FIFO
capable of holding a number of complete
transactions with the aim of preventing
the bus being locked by a partially com-
plete transfer is a notable design feature.

2 Design Goals

The design goals of the Monash Secure
RISC Multiprocessor project are:

e Scalability - The system will be
constructed from modular compo-
nents enabling the construction of
single processor workstations, mul-
tiprocessor workstations, medium
size multiprocessors and large clus-
tered multiprocessors.

e High Performance - The design will
minimize the potential for perfor-
mance limiting bottlenecks in the
bus structure.

e Flexibility - The architecture
should be sufficiently flexible to
support a variety of algorithms,
rather than being tuned to a spe-
cific class of algorithms.

The

the failure

e Fault Tolerance - system
should provide for
of processors or communications
paths in a multiprocessor and pro-
vide some means of isolating the
faulty component and continuing

operation.

3 Design Decisions

Two key design decisions were made at
the beginning of the project which have
strongly influenced the design:

e Passive interconnection

2The FutureBus+ uses this technique[2]
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e Single active module type

All the multiprocessor nodes are in-
terconnected by passive backplanes. Al-
though active interconnections offer a
wider scope for avoiding the problems
of clock distribution we chose a passive
backplane because of its inherent advan-
tages of simplicity and reliability.

A single type of active module offered
advantages in the service and design of
the machine. In case of failure a mod-
ule can be unplugged and replaced eas-
ily. The design effort is reduced as only
a single module needs to be designed.

This arrangement also makes the ex-
pansion of the system very simple. Extra
modules are purchased and plugged to-
gether without requiring any active inter-
connection components. Unlike currently
available massively parallel machines, all
the required switching logic is integrated
into the basic module. There are no
centralized unscalable resources such as
active interconnection networks used in

other massively parallel machines.

4 Satisfying the Design Cri-
teria

The design proposed for this project at-
tempts to satisfy the project goals by
using an interconnection scheme which
incorporates both the features of a bus
sharing network and a switched network.

4.1 Design Criteria

Scalability

To achieve scalability in small machines
SMP

Processor) design is used for communica-

a classical (Symmetric  Multi-

tion within a processor board. This gives



292

cost effective scaling for a small number
of processors, and allows cache consis-
tency to be achieved using bus snooping.

To build larger systems the processor
boards are linked by a mesh-like network.
This network is essentially a store and
forward network where data is passed
from processor board to processor hoard
over a shared external bus. A two part
communication protocol is used to ensure
that lost messages are accounted for. Tt
is not possible to guarantee cache consis-
tency with this system as only processors
on the path of a memory transaction are
able to see the contents of that transac-
tion.

Performance

Performance in a multiprocessor system
Of

most importance to our design were

may be limited by several factors.

memory bandwidth and memory latency.

The design proposed has high band-
width, as all connections are made with
64 bit wide buses driven at the proces-
sor’s external speed. Within processor
boards latency is low as the shared inter-
nal bus yields a latency proportionate to
the speed of the processors and the mem-
ory. The latency of interboard communi-
cations is higher as transactions crossing
multiple processor boards are delayed by
the passage through each board.

The latency of external transactions
will Timit the performance of individual
programs, however, as the target oper-
ating system is intended to be multipro-
grammed, the performance of the overall
system will not be limited. By having
multiple processors within a node the fa-
cilities of the node may be utilized while
an individual processor waits for remote
memory. When a process is blocked on a
memory transaction another process may
be allowed to proceed, maintaining sys-
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tem utilization. Furthermore, it is pos-
sible for the operating system to relo-
cate processes and their memory pages
dynamically so that the path length be-
tween processors and data is minimized,
hence reducing the overall latency and
improving performance.

Flexibility

By adopting a mesh-like external con-
nection it is possible to provide reason-
able performance for a variety of algo-
rithms. The system, as it is being imple-
mented, allows for a variety of intercon-
nection topologies with different perfor-
mance tradeoffs.

Fault Tolerance

A dual ported design is employed which
ensures that each processor board has
at least two data paths into the exter-
nal network permitting redundant access
If the external
network is sufficiently redundant then it

to the shared resources.

is possible to allow continued operation
A bus

given a single processor failure.
failure can also be tolerated.

4.2 Consequences

To achieve maximum flexibility in deter-
mining the configurations of the external
network it was necessary to abandon a
globally clocked system. This is because
we have a large number of small bus
segments each with multiple processors.
Since each processor spans two buses it
seemed natural to have a single clock.
However the logistics of distributing such
a clock without violating our design aim
of a modular system without any critical
centralized resources made it necessary
to consider alternative arrangements. A
self clocked bus was adopted, allowing
wide variations in physical path lengths
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of the physical buses and eliminating the
clock distribution problem]3].

5 Multiprocessor Node

The Multiprocessor Node board (Figure
1) supports a combination of processor or
memory modules on the M-P bus (Mem-
ory - Processor Bus). A single Multipro-
cessor Node board behaves as a classic
SMP machine. Using the 2 external ports
it 18 possible to connect to an external
network of multiprocessor node boards
using a passive backplane.

Fach Multiprocessor Node Board has
a local clock pulse generator. This is used
to provide clock signals to the processor
and memory daughter boards, the con-
trol logic, and the arbiters. This clock is
also gated out through the ports to clock
the external bus when the port becomes
a bus master.

The requirement for a global clock is
eliminated by using the FIFOs to decou-
ple the local clocks from the clock found
on the external bus.

5.1 Functional Description

The Multiprocessor Node Board consists
of 4 major functional blocks connected by
a state machine (the control logic). The
blocks are:

e M-P Bus
e Bus Switching Unit

e 2 Port Interface Units

M-P Bus
The Memory-Processor bus (M-P bus)

is a data, address, and control signal
bus. The data and address paths are
64 bits wide, with the data and address
This

signals multiplexed onto the bus.
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bus runs using a split bus protocol pro-
vided by the processors[4] on the daugh-
ter boards plugged into the Multiproces-
sor Node Board.

The components on the M-P bus form
a classical shared memory, SMP machine.

Bus Switching Unit

To help provide off-board communica-
tions the switching unit provides 4 op-
erational states:

e Port A connect Port B
e M-P Bus connect Port A

e M-P Bus connect Port B

e No Connection

Port Interface Units

Fach port has a port interface unit which
performs the 2 functions of transmitting
data onto a bus and receiving data from
the bus.

To receive data this unit recognizes
relevant information on the bus and ac-
cepts it into the input FIFQ, otherwise
bus traffic is ignored.

To transmit data the port interface
unit arbitrates for the bus and then out-
puts data from the output FIFO.

5.2 Operational Description

All addresses in the system are parti-
tioned into 2 regions. The most signif-
icant bits of the address determine which
Multiprocessor Node Board is to be ac-
cessed and the least significant bits de-
termine the address of the memory loca-
tion on the Multiprocessor Node Board
(see Figure 2). Two Multiprocessor Node
board numbers are reserved: Node board
number zero always refers to memory lo-
cal to the node board, and the maximum
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Figure 1: Block Diagram of Multiprocessor Node

node board number refers to hardware
control memory local to the node board.

The Node Number is used to index
into a routing look-up table held in static
RAM, which is decoded to determine
where the memory location can be found.

There are three types of access avail-
able to the processor:

e l.ocal Memory - Memory is ad-
dressed directly over the M-P bus.

e Remote Memory - Discussed in

Section 5.2

e Hardware Control Memory - The
bus ports are isolated and the rout-
ing (look-up) tables are modified by
the processors.

In addition a Memory to Memory
DMA transfer facility will be available to
facilitate page sized transfers.

Routing

This section will follow the path of a
memory access to illustrate the operation

of routing data between memory and pro-
Cessor.

Transfers between nodes employ a
packet structure. A packet comprises a
header, a body containing the data and
a packet check sum. The header contains
the source and destination addresses, the
packet size and the packet type. Packet
types include read, write and an indi-
cation of whether the destination is a
processor or memory. Packets are con-
structed and interpreted by control logic
in the multiprocessor node board.

[.ocal memory operations use the in-
trinsic addressing mechanism of the pro-
Cessor.

Memory accesses are routed through
the network in a manner similar to a
packet based store and forward network.

When a processor utters an off-board
address, the high order bits of the address
are used to index the M-P Bus look-up
table.
which indicate which port should be used

The look-up table contains bits

to attempt the access (Figure 3).
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Figure 2: Partitioning of Addresses
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Figure 3: Contents of Look-Up Tables

If the output FIFO on the required
port is below the high water mark (the
point at which it is guaranteed that the
largest permissible packet will fit in the
FIFO) and there is no traffic currently
passing through the switch, then the
switch is connected to the appropriate
port. A packet header is constructed and
transferred to the FIFQ. Data is trans-
ferred to the output FIFO. A check sum
is added to the FIFO. If the conditions
are not met the processor should reat-
tempt the operation later.

When there is data in the output
FTFO and there is no bus master an at-
tempt is made to arbitrate for the ap-
propriate bus (The arbiter is discussed in
Section 6). When the port becomes the
bus master the packet is broadcast onto
the bus.

The high order bits of the destination

address of the packet on the bus index the
port look-up tables of all ports attached
to the bus. If the port’s ‘Read In’ bit is
set and the input FIFO is below the high
water mark then the data on the bus is
read into the FIFO, otherwise the data is
ignored.

The node number of the destination
address in the header of the first packet
in the FIFO is used to index the M-P Bus
If the ‘In” bit is set the
switch allows the contents of the packet
to be directed to the memory on the M-P
Bus. Otherwise the switch is set to per-
mit the flow of data from the input FIFO
to the opposite output FIFQ.

look-up table.

5.3 Design Features
The M-P bus and

memory packet transfer allows better uti-

switched external
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lization of processor memory resources.
Both the external and M-P buses may
be loaded to the level providing optimal
utilization of the bus capacity.

The design introduces a memory hi-
erarchy based on the number of hops be-
tween nodes. This feature introduces a
new degree of flexibility in the manage-
ment of both memory pages and pro-
cesses. The throughput of a processe is
maximized by relocation of the process
and /or its data to minimize the memory
access time. The optimization of over-
all system performance is complicated by
memory being shared by multiple proces-
sors. Peak performance is achieved by
balancing processor load, memory load,
and process average access time.[5].

By employing dual FIFOs on the
ports this design attempts to reduce the
risk of locking a bus due to traffic from
the M-P bus to the other bus port. This
design decision adds latency to every
transfer through a multiprocessor node,
however it significantly increases the bus
loading required to cause a bus to be
stalled by FIFO being full. This fea-
ture is especially valuable where large
packet transfers are expected as it effec-
tively doubles the depth of the FIFOs for
flow through traffic, hence halving the
risk that a packet will not be accepted
due to a FTFO being above the high wa-

ter mark.

6 The Arbiter

Fach port uses a priority based arbiter
to resolve bus master conflicts. Priorities
are rotated to ensure fairness.

The arbiter has the properties:

e Fairness - by rotating the priori-
ties on each attempt to select a
bus master each board has an equal
chance of being the board with the
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highest priority in the pool

e (Guaranteed Result - A bus master
is selected every time an attempt is
made.

e Varying Asynchronous Clocks - Ar-
biters are synchronous with respect
to their local clock.

7 Conclusion

The design criteria of easy scalibility and
high bus utilization are readily satisfied
by the design described. In addition, the
multiprocessor nodes, through the use of
distributed asynchronous arbitration and
a self clocked bus allow a large number of
network designs to be evaluated without
the need to redesign the multiprocessor
nodes. The use of deep FIFOs increases
external and internal bus utilization by
postponing the onset of bus saturation.
Although a lacking global

clocking was initially considered to be

design

a less attractive option than a globally
clocked design we have found that the
advantages of dispensing with the global
clock (greater flexibility, easier bus de-
sign) have overshadowed the cost (higher
latency in data transfers).
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Appendix D

Glossary

ADC Access Control Descriptors.
AOT Active Object Table.
APD Active Protection Domain.

Copy-on-write A technique which delays the copying of a page until a write to
the page occurs. A page is made available to more than one process in a read-
only mode, when a process attempts to write to the page the original page is

duplicated and the new page is made available to the process to write into.
C-list Capability List.
Copy-on-write A technique which delays the copying of a page until

Capability A number which uniquely identifies an object and access rights to the

object or a section of the object.
DMA Direct Memory Access.
DSM Distributed Shared Memory.
FAT File Allocation Table.
TAS Intermediate Address Space.
IPC Interprocess Communication.
LRPC Lightweight Remote Procedure Call.
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Mail box A section of the process object used to hold messages

Message area The area of the parameter page that does not contain the parameter

block.
Message slot A section of the process object used to hold messages

NUMA Non-Uniform Memory Access. The term is applied to architectures with

memory access times varying according to memory location.
OT Object Table.

Password capability A capability composed of two components: a unique identi-

fier for an object and a randomly allocated password.
PDX Protection Domain Extension.

Physical Memory Table This table describes the current state of each page of

physical memory.

Physical Object An object on the physical volume which permits access to the
first 4 megabytes of the physical memory of the system. This object is used

to provide access to buffers used by low level device drivers.
Physical Volume A dummy volume used to contain the physical object.

PMT Physical Memory Table.

Private page tables Second level page tables associated with a specific process.

These page tables are used to provide small windows.

Rights A capability has associated with it a set of rights. These rights define the

types of access to objects that are conferred by the capability.
RPC Remote Procedure Call.
RPD Regular Protection Domain.

TLC Table of L.oaded Capabilities.

Table of Loaded Capabilities A table associated with each process that contains

mappings of capabilities to memory locations.
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SASA Single Address Space Architecture.
SASOS Single Address Space Operating System.
UT Unique Identifier.

View An attribute of a capability. The region of an object that possession of the
capability makes addressable.

Wall A page of memory visible to all Walnut Kernel processes.

Window An area of a process’s address space where a view of an object can be

loaded.
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